题名: | 基于集成学习的换热器污垢因子与热负荷预测研究 |
作者: | |
学号: | 22213225068 |
保密级别: | 保密(1年后开放) |
语种: | chi |
学科代码: | 085600 |
学科: | 工学 - 材料与化工 |
学生类型: | 硕士 |
学位: | 工程硕士 |
学位年度: | 2025 |
学校: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 化学工程 |
导师姓名: | |
导师单位: | |
提交日期: | 2025-06-11 |
答辩日期: | 2025-05-29 |
外文题名: | Research on the Prediction of Heat Exchanger Fouling Factor and Heat Load Based on Ensemble Learning |
关键词: | |
外文关键词: | Heat exchanger ; Heat load ; Fouling factor ; Ensemble learning ; Interpretability |
摘要: |
作为化工生产过程中的关键设备,换热器的换热效率在实现节能减排目标中发挥着至关重要的作用。然而换热器运行过程中易因结垢导致换热效率下降,影响工艺稳定性和运行成本,甚至引发设备故障,因此其运行状态监测与维护管理已成为化学工程领域的关键问题。在换热器运行状态监测中,污垢因子用于量化换热器的结垢程度,而热负荷则反映其运行效率与能源消耗情况。然而,传统的定期维护与人工监测方式难以满足现代工业对高效、智能化管理的需求。针对这一问题,本文基于集成学习方法,分别构建污垢因子预测和热负荷预测模型,实现换热器运行状态的动态监测。通过提高预测精度和增强模型可解释性,优化设备维护策略,从而提升换热器的运行效率,促进化工生产的可持续发展。 针对现有污垢因子预测方法参数量大且模型不稳定的问题,提出了一种基于Stacking集成学习的污垢因子预测模型。首先,利用K-Nearest Neighbors(KNN)、Random Forest、Bagging、Extreme Gradient Boosting(XGBoost)、Light Gradient Boosting Machine(LightGBM)和Gaussian Process Regression(GPR)构建多个污垢因子预测子模型,并评估其性能。随后,选择表现最优的Random Forest、XGBoost和LightGBM进行集成,并采用线性回归层融合其预测结果,从而构建最终的Stacking模型。实验结果表明,该模型在污垢因子预测方面表现优异,具体性能指标为MSE = 1.26×10⁻⁴,MAE = 4.38×10⁻³,R² = 0.99683,RAE% = 2.39,MAPE% = 15.94,不仅优于现有的Multi-Layer Perceptron(MLP)方法,在性能上也超越了GPR。本研究首次建立了基于集成学习的换热器污垢因子预测基准,并进一步验证了集成学习方法在复杂工程应用场景中的优势与适用性。 针对现有热负荷预测方法在处理复杂非线性数据时精度有限且缺乏可解释性的问题,本文提出了一种新方法——InsightBoost,以提升预测性能和可解释性。InsightBoost由SupertBoost模型与SHAP解释性分析模块组成。SupertBoost集成了六种基础学习器(Random Forest、XGBoost、LightGBM、Gradient Boosting、Adaptive Boosting(AdaBoost)、Categorical Boosting(CatBoost)),并采用线性回归作为元模型融合各基础模型的预测结果,同时利用GridSearchCV进行超参数优化,以提高模型的泛化能力。SHAP值则用于量化各特征对预测结果的影响,提升模型透明度与可解释性。实验结果表明,InsightBoost在预测精度和可解释性方面均优于传统的单一机器学习算法,其关键性能指标为MSE = 1.04×10⁻²,MAE = 7.92×10⁻²,R² = 0.9908,RMSE = 0.1022。该方法有效克服了现有白箱模型适用性受限与机器学习黑箱模型透明性不足的问题,为换热器的优化运行与智能化决策提供了有力支持。 |
外文摘要: |
As a critical component in chemical production processes, heat exchangers play a vital role in achieving energy conservation and emission reduction goals through their thermal efficiency. However, during operation, fouling often leads to a decline in heat transfer performance, which can compromise process stability, increase operational costs, and even cause equipment failure. Consequently, the monitoring and maintenance of heat exchanger operating conditions has become a key issue in the field of chemical engineering. In operational monitoring, the fouling factor is commonly used to quantify the extent of fouling, while thermal load reflects the operational efficiency and energy consumption of the heat exchanger. Traditional approaches based on periodic maintenance and manual monitoring, however, fall short of meeting the demands of modern industry for efficient and intelligent management. To address this challenge, this study proposes an ensemble learning-based approach to develop predictive models for both the fouling factor and thermal load, enabling dynamic monitoring of heat exchanger performance. By improving prediction accuracy and enhancing model interpretability, the proposed method aims to optimize maintenance strategies, thereby enhancing heat exchanger efficiency and promoting the sustainable development of chemical production processes. To tackle the issues of large parameter sizes and instability in existing fouling factor prediction models, a Stacking ensemble learning-based model is proposed. Initially, multiple base models—K-Nearest Neighbors (KNN), Random Forest, Bagging, Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and Gaussian Process Regression (GPR)—are constructed and evaluated. The top-performing models (Random Forest, XGBoost, and LightGBM) are selected for integration, and their outputs are combined using a linear regression meta-model to form the final Stacking model. Experimental results demonstrate the model’s superior performance in fouling factor prediction, with metrics of MSE = 1.26×10⁻⁴, MAE = 4.38×10⁻³, R² = 0.99683, RAE% = 2.39, and MAPE% = 15.94. The proposed model outperforms both the traditional Multi-Layer Perceptron (MLP) and GPR models, establishing a benchmark for fouling factor prediction in heat exchangers using ensemble learning, and validating its applicability in complex engineering scenarios. To address the limitations of existing thermal load prediction methods in handling complex nonlinear data and lacking interpretability, a novel approach—InsightBoost—is proposed to enhance both predictive performance and model transparency. InsightBoost integrates the SupertBoost model with a SHAP-based interpretability module. SupertBoost combines six base learners (Random Forest, XGBoost, LightGBM, Gradient Boosting, Adaptive Boosting (AdaBoost), and Categorical Boosting (CatBoost)) and employs linear regression as a meta-model to aggregate predictions. Hyperparameters are optimized via GridSearchCV to improve generalization. SHAP values are used to quantify the contribution of each feature to the prediction outcome, thereby enhancing model interpretability. Experimental results show that InsightBoost outperforms traditional standalone machine learning algorithms in both accuracy and explainability, with performance metrics of MSE = 1.04×10⁻², MAE = 7.92×10⁻², R² = 0.9908, and RMSE = 0.1022. This approach effectively bridges the gap between the limited applicability of white-box models and the opacity of black-box machine learning models, offering robust support for optimized heat exchanger operation and intelligent decision-making. |
参考文献: |
[1] 中华人民共和国国务院. 2030年前碳达峰行动方案[R]. 2021年10月. [6] 周泽楷, 侯宏娟, 孙莉, 等. 基于CNN和BiLSTM神经网络模型的太阳能供暖负荷预测研究[J]. 太阳能学报, 2024, 45(10): 415-422. [14] 杨善让,徐志明,孙灵芳. 换热设备污垢与对策[M]. 北京: 科学出版社,2004: 38-42. [15] 蒋宁, 张元毅, 范伟, 等. 基于智能预测和机理模型的换热网络清洗决策[J]. 化工进展, 2022, 41(4): 1781-1792. [16] 黄雄虎, 顾敦罡, 陆嘉麒, 等. 污水源热泵技术在城市污水热能回收中的应用现状与研究进展[J]. 应用化工, 2023, 52(3): 922-928. [35] Thulukkanam K. Heat exchanger design handbook[M]. Boca Raton: CRC Press, 2013. [36] 魏欣宇, 方松, 滕钧杰, 等. 连续转化式低温氢气换热器换热与催化匹配特性研究[J]. 工程热物理学报, 2025, 46(3): 703-713. [84] 张晗筱, 王瑞琪, 张亚婷. 基于CNN-LSTM的换热器污垢因子预测研究[J]. 化工学报, 2025, 1-14. [89] Rigatti S J. Random forest[J]. Journal of Insurance Medicine, 2017, 47(1): 31-39. [91] Zhou Z H. Ensemble methods: foundations and algorithms[M]. CRC press, 2025. [98] 盛科荣, 李晓瑞, 吴石磊, 等. 中国城市多层网络嵌入对能源利用效率的影响[J]. 地理科学, 2025, 45(03): 495-505. [99] 江荣霞, 谢秀娟, 邓笔财, 等. 独立参数对氦低温制冷系统循环效率的影响[J]. 低温工程, 2016, (06): 24-28. |
中图分类号: | TQ051.5 |
开放日期: | 2026-06-27 |