- 无标题文档
查看论文信息

论文中文题名:

 有机硅/碳氢表面活性剂与纳米颗粒协同构建的无氟泡沫研究    

姓名:

 李杨    

学号:

 20220226115    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 消防科学与工程    

第一导师姓名:

 盛友杰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Study of fluorine-free foam synergistically constructed by silicon/hydrocarbon surfactants and nanoparticles    

论文中文关键词:

 无氟泡沫 ; 纳米颗粒 ; 有机硅表面活性剂 ; 碳氢表面活性剂 ; 泡沫稳定性 ; 灭火性能    

论文外文关键词:

 Fluorine-free foam ; nanoparticles ; silicon surfactant ; hydrocarbon surfactant ; foam stability ; fire extinguishing performance    

论文中文摘要:

水成膜泡沫(Aqueous film-forming foam, AFFF)是扑灭液体火灾最有效的灭火技术,然而其核心组分——长链氟碳表面活性剂被证实存在环境危害。开发适用于液体火灾的不含氟碳表面活性剂的新型环保泡沫灭火剂具有重要的意义。本文以有机硅/碳氢表面活性剂复配体系为起泡剂,纳米颗粒为稳泡剂,协同构建无氟泡沫,旨在从根本上杜绝使用氟碳表面活性剂,促进生态环境的可持续发展。

首先,通过文献调研,筛选了性能优异的表面活性剂和纳米颗粒。所选有机硅表面活性剂为非离子型CoatOsil-77,纳米颗粒为Mg(OH)2、Al(OH)3和SiO2三种。研究了有机硅表面活性剂分别与非离子型(APG-0810)、阴离子型(AOS)和两性离子型(BS-12)等典型碳氢表面活性剂的复配体系的表面活性和起泡性能。优选出了表面活性高、起泡性能好的有机硅/碳氢表面活性剂复配体系(CoatOsil-77/BS-12)作为起泡剂,以Mg(OH)2、Al(OH)3和SiO2三种纳米颗粒为稳泡剂,构建了无氟泡沫体系。

其次,研究了三种纳米颗粒的浓度变化和SiO2的比表面积变化对无氟泡沫混合液电导率、表面活性和粘度三种性质的影响,分析了不同纳米颗粒与表面活性剂的相互作用。研究发现,相较于Mg(OH)2和Al(OH)3,SiO2的浓度变化对无氟泡沫混合液性质的影响最大。在四种比表面积的SiO2中,300m2/gSiO2对无氟泡沫混合液性质影响最大。此外,三种纳米颗粒与表面活性剂的相互作用有明显差异。Mg(OH)2与两种表面活性剂均没有强烈的相互作用;Al(OH)3仅与碳氢表面活性剂有强烈的相互作用;而SiO2与两种表面活性剂均存在强烈的相互作用。

再次,深入研究了三种纳米颗粒的浓度变化和SiO2的比表面积变化对无氟泡沫起泡性、泡沫析液和粗化的影响。研究发现,SiO2对无氟泡沫起泡性能影响最大,浓度大于1%或比面积大于200m2/g的SiO2会大幅降低无氟泡沫的起泡性能。此外,浓度为1%的Mg(OH)2或比表面积小于300m2/g的SiO2会加速泡沫析液和粗化,降低泡沫稳定性。浓度大于1%的Mg(OH)2通过紧密排列在Plateau边界来延缓泡沫析液和粗化,提高泡沫稳定性。Al(OH)3通过分布在Plateau边界和增强液膜弹性两种作用来共同延缓泡沫析液和粗化,进一步提高泡沫稳定性。浓度大于1%或比表面积大于200m2/g的SiO2通过在液膜和Plateau边界处形成稳定的网状结构,延缓泡沫析液和粗化,大幅度提高泡沫稳定性。

最后,基于上述研究结果,优选了性能优异的无氟泡沫配方,对比研究了无氟泡沫与AFFF的灭火性能。研究发现,以配比为1%CoatOsil-77/1%BS-12/2%SiO2为代表的无氟泡沫有极强的控火能力。但从灭火和抗烧两个方面来看,无氟泡沫的灭火性能仍然与AFFF有一定差距。本课题的研究结果表明有机硅/碳氢表面活性剂与纳米颗粒构建的无氟泡沫具有作为新型环保泡沫灭火剂的研究潜力。

论文外文摘要:

Aqueous film-forming foam (AFFF) is the most effective fire-fighting technology for extinguishing flammable liquid fires. However, the core component of AFFF, long-chain fluorocarbon surfactants, has been shown to be environmentally hazardous. Therefore, it is meaningful to develop new environmental-friendly foam extinguishing agent without fluorocarbon surfactants applicable to liquid fires. In this paper, the mixed system of silicone and hydrocarbon surfactants is used as foaming agents and nanoparticles as foam stabilizers to construct a fluorine-free foam. The aim is to fundamentally avoid the use of fluorocarbon surfactants and promote sustainable development of ecological environment.

Firstly, the surfactants and nanoparticles with excellent properties were screened through literature research. The selected silicone surfactant was the nonionic CoatOsil-77, and the nanoparticles were Mg(OH)2, Al(OH)3, and SiO2. The surface activity and foaming ability of the mixed systems of silicon surfactant with typical hydrocarbon surfactants such as nonionic (APG-0810), anionic (AOS), and amphoteric (BS-12) were investigated, respectively. A silicone/hydrocarbon surfactant mixed system (CoatOsil-77/BS-12) with high surface activity and good foaming ability was preferred as a foaming agent, and three nanoparticles of Mg(OH)2, Al(OH)3, and SiO2 were used as stabilizers to construct the fluorine-free foam system.

Secondly, the effects of the variation of the concentration of three nanoparticles and the variation of the specific surface area of SiO2 on the conductivity, surface activity and viscosity of fluorine-free foam dispersions were investigated. The interactions between different nanoparticles and surfactants were analyzed. It was found that the concentration variation of SiO2 had the greatest effect on the properties of the fluorine-free foam dispersion compared to Mg(OH)2 and Al(OH)3. Among the four specific surface areas of SiO2, 300 m2/g SiO2 had the greatest effect on the properties of fluorine-free foam dispersion. Furthermore, the interactions of the three nanoparticles with surfactants were significantly different. Mg(OH)2 had no strong interactions with two surfactants; Al(OH)3 only had strong interactions with hydrocarbon surfactant; and SiO2 had strong interactions with both surfactants.

Thirdly, the effects of the variation of the concentration of three nanoparticles and the variation of the specific surface area of SiO2 nanoparticles on the foaming ability, foam drainage and foam coarsening of fluorine-free foams were investigated. It was found that SiO2 had the greatest effect on the foaming ability of fluorine-free foam. SiO2 with a concentration greater than 1% or a specific area greater than 200m2/g would significantly decrease the foaming ability of fluorine-free foam. Besides, Mg(OH)2 with a concentration of 1% or SiO2 with specific surface area less than 300m2/g accelerated foam drainage and coarsening, and thus decreased foam stability. Mg(OH)2 with a concentration greater than 1% can closely arrange at the Plateau border, and delay foam drainage and coarsening, thus improving foam stability. On the one hand, Al(OH)3 can delay the foam drainage and coarsening by distributing at the Plateau border. On the other hand, Al(OH)3 also can adsorb on the liquid film to delay the foam drainage and coarsening by enhanceing the elasticity of the foam film. The two effects together can further improve the foam stability. SiO2 with a concentration greater than 1% or a specific surface area greater than 200m2/g substantially improve the foam stability by forming a stable mesh structure at the liquid film and Plateau border.

Finally, according to the above research results, the fluorine-free foam formulations with excellent properties were selected, and the fire extinguishing performance of fluorine-free foam and AFFF was studied in comparison. It was found that the fluorine-free foam represented by the formulation ratio with 1% CoatOsil-77/1% BS-12/2% SiO2 has excellent fire control ability. However, the fire extinguishing performance of fluorine-free foam still has a certain gap with AFFF in the terms of fire extinguishing and burn-back. The results of this study indicate that the fluorine-free foam constructed by silicon/hydrocarbon surfactants and nanoparticles has the potential to be used as a new environmental-friendly foam extinguishing agent.

参考文献:

[1]张博. 化工火灾事故调查方法研究[J]. 化工管理, 2023, No.660(09): 112-115.

[2]Guiberti T F, Cutcher H, Roberts W L, et al. Influence of pilot flame parameters on the stability of turbulent jet flames[J]. Energy & Fuels, 2017, 31(3): 2128-2137.

[3]姜宁. 基于短链碳氟-碳氢复配体系的耐海水型水成膜泡沫灭火剂研究[D]. 中国科学技术大学, 2021.

[4]盛友杰. 碳氢和有机硅表面活性剂复配体系为基剂的泡沫灭火剂研究[D]. 中国科学技术大学, 2018.

[5]Kong D, Liu P, Zhang J, et al. Small scale experiment study on the characteristics of boilover[J]. Journal of Loss Prevention in the Process Industries, 2017, 48: 101-110.

[6]Kim A. Overview of recent progress in fire suppression technology[J]. SCIENCE, TECHNOLOGY AND STANDARDS FOR FIRE SUPPRESSION SYSTEMS, 2002, 1-13.

[7]叶洪烈, 傅学成, 胡英年. SD-AFFF型水成膜泡沫灭火剂的研究[J]. 消防科学与技术, 2001, (04): 36-38.

[8]胡彪, 刘付永, 张荣, 等. 泡沫灭火剂环保性能评价及研究进展[J]. 化工环保, 2020, 40(06): 573-579.

[9]唐宝华. 强化油品抗烧三相泡沫灭火剂开发及性能研究[D]. 河北工业大学, 2016.

[10]康青春, 李成. 泡沫灭火剂的综合评价与选用方法研究[J]. 消防科学与技术, 2019, 38(08): 1123-1126.

[11]简丽霞. 水成膜泡沫液的成分与性能研究[D]. 广州大学, 2017.

[12]刘振营, 郭亚军, 沈明欢, 等. 新型氟碳表面活性剂在轻水泡沫灭火剂中的应用研究[J]. 化工时刊, 2007, (01): 45-47.

[13]Magrabi S A, Dlugogorski B Z, Jameson G J. A comparative study of drainage characteristics in AFFF and FFFP compressed-air fire-fighting foams[J]. Fire Safety Journal, 2002, 37(1): 21-52.

[14]韩郁翀, 秦俊. 泡沫灭火剂的发展与应用现状[J]. 火灾科学, 2011, 20(4): 235-240.

[15]刘玉恒, 金洪斌, 叶宏烈. 我国灭火剂的发展历史与现状[J]. 消防技术与产品信息, 2005, 1: 82-87.

[16]陆强. 当前我国泡沫灭火剂发展中的若干问题探讨[J]. 消防科学与技术, 2016, 35(9):3.

[17]Gol'dfarb I, Kann K, Shreiber I. Liquid flow in foams[J]. Fluid Dynamics, 1988, 23(2): 244-249.

[18]张佳庆, 尚峰举, 王东升, 等. 常见泡沫灭火剂在变压器油面铺展性能及隔热性能实验研究[J].安全与环境学报, 2023, 1-10.

[19]孟亚伟. 无氟合成泡沫灭火剂制备关键技术研究[D]. 中国民用航空飞行学院, 2018.

[20]王伟轩, 罗振海. 泡沫灭火性能及应用探析[J]. 武警学院学报, 2017, 33(8): 23-25.

[21]包志明, 胡成, 陈涛. 典型泡沫灭火剂产品的环境影响及生物降解性能研究[C]// 中国消防协会. 2017中国消防协会科学技术年会论文集. 中国科学技术出版社, 2017, 36-38.

[22]Mclachlan M S, Holmström K E, Reth M, et al. Riverine discharge of perfluorinated carboxylates from the European continent[J]. Environmental science & technology, 2007, 41(21): 7260-7265.

[23]Wang T, Wang Y, Liao C, et al. Perspectives on the inclusion of perfluorooctane sulfonate into the Stockholm convention on persistent organic pollutants[J]. 2009, 5171-5175.

[24]志贺博. 不含氟类表面活性剂的泡沫灭火剂: 日本, ZL 02823068. X[P], 2007.

[25]Vinogradov A V, Kuprin D S, Abduragimov I M, et al. Silica foams for fire prevention and firefighting[J]. ACS applied materials & interfaces, 2016, 8(1): 294-301.

[26]Dlugogorski B Z, Phiyanalinmat S, Kennedy E M. Dynamic surface and interfacial tension of AFFF and fluorine-free class B foam solutions[J]. 2005, 719-730.

[27]Kennedy M J, Conroy M W, Dougherty J A, et al. Bubble coarsening dynamics in fluorinated and non-fluorinated firefighting foams[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470: 268-279.

[28]Hinnant K M, Conroy M W, Ananth R. Influence of fuel on foam degradation for fluorinated and fluorine-free foams[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2017, 522: 1-17.

[29]Schaefer T H, Dlugogorski B Z, Kennedy E M. Sealability properties of fluorine-free fire-fighting foams (FfreeF)[J]. Fire Technology, 2008, 44(3): 297-309.

[30]Williams B, Murray T, Butterworth C, et al. Extinguishment and burnback tests of fluorinated and fluorine-free firefighting foams with and without film formation[C]. Suppression, Detection, and Signaling Research and Applications-A Technical Working Conference (SUPDET 2011), 2011.

[31]H H Ralf K F, W Kai, et al. Fire testing a new fluorine-free AFFF based on a novel class of environmentally sound high performance siloxane surfactants[J]. Fire Safety Science-Proceedings of the Eleventh International Symposium, 2014: 1261-1270.

[32]Ananth R, Snow A W, Hinnant K M, et al. Synergisms between siloxane-polyoxyethylene and alkyl polyglycoside surfactants in foam stability and pool fire extinction[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579 123686.

[33]Banerjee A, Liu Y. Essential factor of perfluoroalkyl surfactants contributing to efficacy in firefighting foams[J]. Langmuir, 2021, 37: 8937-8944.

[34]Back G G. An evaluation of the firefighting effectiveness of fluorine-free foams[J]. Fire Technology, 2020, 1-10.

[35]Hinnant K. Characterizing trends between surfactant structure, fuel transport through a foam layer, and foam fire extinction performance for firefighting foams containing novel environmentally-friendly surfactants[D]. The George Washington University, 2021.

[36]Kaller M, Van Bortel G, Engels T, et al. An evaluation of the firefighting performance of alcohol-resistant aqueous film forming foams (AFFF-AR) and alcohol-resistant fluorine-free foams (FFF-AR) in the past two decades[J]. Fire Technology, 2022, 1-24.

[37]Hinnant K M, Ananth R, Farley J P, et al. Extinction performance summary of commercial fluorine-free firefighting foams over a 28 ft2 pool fire detailed by MIL-PRF-24385[R]. NAVAL RESEARCH LAB WASHINGTON DC WASHINGTON United States, 2020.

[38]包志明, 傅学成, 李姝, 等. 中国含PFOS泡沫灭火剂替代品研究及生产现状[C]// 持久性有机污染物论坛2011暨第六届持久性有机污染物全国学术研讨会论文集, 2011, 251-252.

[39]亓磊, 焦金庆, 熊靖, 等. 用于液体火灾的环保泡沫灭火剂研究现状[J]. 材料导报, 2022, 36(20): 7.

[40]Wang P. Application of green surfactants developing environment friendly foam extinguishing agent[J]. Fire Technology, 2015, 51(3): 503-511.

[41]刘惠平, 王佳迪, 吴波, 等. 无氟非蛋白表面活性剂制备泡沫灭火剂[J]. 消防科学与技术, 2014, 33(7): 4.

[42]周莹. 无氟合成泡沫灭火剂制备及与2-BTP协同灭火有效性实验研究[D]. 中国矿业大学, 2021.

[43]吴楠, 曹青, 张连超. 有机硅-碳氢表面活性剂对水成膜灭火剂性能的影响[J]. 消防科学与技术, 2020, 39(07): 997-1000.

[44]段佳林. 碳氢和有机硅表面活性剂复配体系为基础的水系灭火剂研究[D]. 南京理工大学, 2020.

[45]焦金庆, 韦岳长, 吴京峰, 等. 基于有机硅表面活性剂的环保泡沫灭火剂的制备及灭火性能研究[J]. 材料导报, 2022, 36(20): 57-62.

[46]扈昊. 环保水系灭火剂的性能优化研究[D]. 上海应用技术大学, 2022.

[47]贾海林, 崔博, 陈南, 等. 低碳醇改性无氟泡沫的性能分析与扑灭油池火的实验研究[J]. 化工学报, 2022, 73(9): 11.

[48]Xiao G, Lei L, Chen C, et al. Optimization and performance evaluation of an environmentally friendly fluorine-free foam extinguishing agent[J]. Journal of Nanoelectronics and Optoelectronics, 2020, 15(7): 884-893.

[49]Kang W, Xu Z, Yan L, et al. Preparation of fluorine-free foam extinguishing agent based on silicone and hydrocarbon surfactants for markedly suppressing the pool fire[J]. Thermal Science and Engineering Progress, 2023, 101761.

[50]Yu X, Lin Y, Li F, et al. Highly stable fluorine-free foam by synergistically combining hydrolyzed rice protein and ferrous sulfate[J]. Chemical Engineering Science, 2022, 250: 117378.

[51]Sheng Y, Jiang N, Lu S, et al. Study of environmental-friendly firefighting foam based on the mixture of hydrocarbon and silicone surfactants[J]. Fire Technology, 2020, 56: 1059-1075.

[52]Yu X, Jiang N, Miao X, et al. Comparative studies on foam stability, oil-film Interaction and fire extinguishing performance for fluorine-free and fluorinated foams[J]. Process Safety and Environmental Protection, 2019, 133.

[53]Arriaga L R, Drenckhan W, Salonen A, et al. On the long-term stability of foams stabilised by mixtures of nano-particles and oppositely charged short chain surfactants[J]. Soft Matter, 2012, 8 (43), 11085-11097.

[54]Singh R, Mohanty K K. Synergy between nanoparticles and surfactants in stabilizing foams for pil recovery[J]. Energy & Fuels, 2015, 29(2): 467-479.

[55]Carn F, Colin A, Pitois O, et al. Foam drainage in the presence of nanoparticle-surfactant mixtures[J]. Langmuir, 2009, 25(14): 7847-7856.

[56]向城鑫, 唐晓东, 陈朕, 等. 强化泡沫驱油研究进展[J]. 中外能源, 2020, 25(11): 34-39.

[57]刘珑, 范洪富, 孙江河, 等. 纳米颗粒稳定泡沫驱油研究进展[J]. 油田化学, 2019, 36(04): 748-754.

[58]Liu T, Yu X, Yin H. Impact of nanoparticle size and solid state on dissolution rate by investigating modified drug powders[J]. Powder Technology, 2020, 376.

[59]范宏伟, 张雯. 纳米颗粒在泡沫排水采气中的研究进展[J].石油化工应用, 2021, 40(06): 5-8.

[60]杨兆中, 朱静怡, 李小刚, 等. 纳米颗粒稳定泡沫在油气开采中的研究进展[J]. 化工进展, 2017, 36(05): 1675-1681.

[61]Dickinson E. Food emulsions and foams: stabilization by particles[J]. Current Opinion in Colloid & Interface Science, 2010, 15(1): 40-49.

[62]李梦飒, 赵国华, 叶发银. 纳微米颗粒稳定泡沫的研究现状及在食品中的应用[J]. 食品与发酵工业, 2020, 46(13): 270-279.

[63]Dong L, Johnson D. Surface tension of charge-stabilized colloidal suspensions at the waterair interface[J]. Langmuir, 2003, 19(24): 10205-10209.

[64]Gonzenbach U T, Studart A R, Tervoort E, et al. Stabilization of foams with inorganic colloidal particles.[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2006, 22(26): 10983-8.

[65]Gosa, K.L, Uricanu, V. Emulsions stabilized with PEO–PPO–PEO block copoly- mers and silicaJ. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2002, 197, 257–269.

[66]Binks B P, Kirkland M, Rodrigues J A. Origin of stabilisation of aqueous foams in nanoparticle—surfactant mixtures[J]. Soft Matter, 2008, 4 (12): 2373-2382.

[67]Sun Q, Li Z, Wang J, et al. Aqueous foam stabilized by partially hydrophobic nanoparticles in the presence of surfactant[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 471(8): 54-64.

[68]Zitha P J, 戚倩. 疏水性 SiO2 纳米颗粒的稳泡性研究[J]. 能源化工, 2018, 39(1): 1-6.

[69]王腾飞, 王杰祥, 韩蕾, 等. 纳米氢氧化铝稳定泡沫性能研究[J]. 西安石油大学学报(自然科学版), 2012, 27(5): 78-81.

[70]孙宠, 范振中, 刘浪, 等. SiO2-SDS复合泡沫体系配制与评价[J]. 化学工程师, 2017, 31(07): 68-71.

[71]Kim D W, Lee J Y, Lee S M, et al. Surface modification of calcium carbonate nanoparticles by fluorosurfactant[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 536: 213-223.

[72]崔燕贞. 纳米碳酸钙—表面活性剂混合体系的泡沫性能研究[D]. 江南大学, 2009.

[73]Sheng Y, Li Y, Yan C, et al. Influence of nanoparticles on the foam thermal stability of mixtures of short-chain fluorocarbon and hydrocarbon surfactants[J]. Powder Technology, 2022, 403: 117420.

[74]Sheng Y, Yan C, Peng Y, et al. Influence of nano-aluminum hydroxide on foam properties of the mixtures of hydrocarbon and fluorocarbon surfactants[J]. Journal of Molecular Liquids, 2022, 357: 119158.

[75]Sheng Y, Peng Y, Yan C, et al. Influence of nanoparticles on rheological properties and foam properties of mixed solutions of fluorocarbon and hydrocarbon surfactants[J]. Powder Technology, 2022, 398: 117067.

[76]Binks B P. Particles as surfactants—similarities and differences[J]. Current Opinion in Colloid & Interface Science, 2002, 7(1): 21-41.

[77]Dickinson E, Ettelaie R, Kostakis T, et al. Factors controlling the formation and stability of air bubbles stabilized by partially hydrophobic silica nanoparticles[J]. Langmuir, 2004, 20(20): 8517-8525.

[78]Horozov T, S. Foams and foam films stabilised by solid particles[J]. Current opinion in colloid and interface science, 2008, 13(3): 134-140.

[79]Kam S I, Rossen W R. Anomalous capillary pressure, stress, and stability of solids-coated bubbles[J]. journal of colloid & interface science, 1999, 213(2): 329-339.

[80]Zhao G, Dai C, Wen D, et al. Stability mechanism of a novel three-Phase foam by adding dispersed particle gel[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 497: 214-224.

[81]孙乾, 李兆敏, 李松岩,等. SiO2纳米颗粒稳定的泡沫体系驱油性能研究[J]. 中国石油大学学报:自然科学版, 2014, 38(4): 8.

[82]Hu N, Li Y, Wu Z, et al. Foams stabilization by silica nanoparticle with cationic and anionic surfactants in column flotation: Effects of particle size[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 88: 62-69.

[83]Fang J, Ge Y, Yu J. Effects of particle size and wettability on froth stability in a collophane flotation system[J]. Powder Technology, 2021, 379: 576-584.

[84]Zhou R, Dou X, Lang X, et al. Foaming ability and stability of silica nanoparticle-based triple-phase foam for oil fire extinguishing: experimental[J]. Soft Materials, 2018, 16(4): 327-338.

[85]Yekeen N, Manan M A, Idris A K, et al. A comprehensive review of experimental studies of nanoparticles-stabilized foam for enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2018, 164:43-74.

[86]Zhou R, Lang X, Zhang X, et al. Thermal stability and insulation characteristics of three-phase fire-fighting foam exposed to radiant heating[J]. Process Safety and Environmental Protection, 2021, 146: 360-368.

[87]唐宝华, 陈伟红, 杨双华, 等. 粉体对泡沫灭火剂发泡能力和热稳定性影响研究[J]. 辽宁化工, 2014, (9): 3.

[88]Tang B, Wu Z, Chen W. Effect of nanosilica on foam and thermal stability of a foam extinguishing agent[J]. Nanomaterials and Energy, 2017, 6(2): 67-73.

[89]傅柄棋, 唐宝华. 不同粒径二氧化硅对抗醇泡沫灭火剂性能影响实验研究[J]. 消防科学与技术, 2016, 35(3): 4.

[90]Fu G, Jiang J, Wei D, et al. The study of the stability of aqueous three-phase fire-resistant foam in typical liquidus hydrocarbons[J]. Journal of Dispersion Science and Technology, 2019, 40(8): 1075-1084.

[91]Wang Q, Zhang Y, Li Y, et al. Study on the effect of nanoparticles combined with silicone surfactant and cationic surfactant on foam and fire extinguishing performance [J]. Environmental Science and Pollution Research, 2023, 30: 11065-11080

[92]王尚彬, 欧红香, 薛洪来, 等. 黄原胶和纳米二氧化硅对无氟泡沫性能影响[J]. 化工进展, 2022, 1-8.

[93]Vatanparast H, Samiee A, Bahramian A, et al. Surface behavior of hydrophilic silica nanoparticle-SDS surfactant solutions: I. Effect of nanoparticle concentration on foamability and foam stability[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2017, 513: 430-441.

[94]边云朋. 纳米ATH三相泡沫制备及防灭火特性研究[D]. 安徽理工大学, 2021.

[95]邢隽,贺娟,胡苗苗, 等. 水基反相泡沫的制备研究[C]//中国化学会. 中国化学会第28届学术年会第12分会场摘要集, 2012, 10.

[96]Blin J L, Henzel N, Stébé M J. Mixed fluorinated–hydrogenated surfactant-based system: Preparation of ordered mesoporous materials[J]. Journal of colloid and interface science, 2006, 302(2): 643-650.

[97]Wang G, Yin Q, Shen J, et al. Surface activities and aggregation behaviors of cationic-anionic fluorocarbon-hydrocarbon surfactants in dilute solutions[J]. Journal of Molecular Liquids, 2017, 234: 142-148.

[98]鲍艳, 吴成兰, 马建中. 碳氢表面活性剂复配研究的进展[J]. 日用化学工业, 2011, 41(5): 7.

[99]Wang R, Li Y, Li Y. Interaction between cationic and anionic surfactants: detergency and foaming properties of mixed systems[J]. Journal of Surfactants and Detergents, 2014, 17: 881-888.

[100]Pilarska A A, Klapiszewski Ł, Jesionowski T. Recent development in the synthesis, modification and application of Mg(OH)2 and MgO: A review[J]. Powder Technology, 2017, 319: 373-407.

[101]宋超, 叶学民, 李春曦. 纳米颗粒与表面活性剂的自组装行为对硅油-水界面性质影响的分子动力学[J]. 化工进展, 2022, 41(S01): 10.

[102]Sharma K P, Aswal V K, Kumaraswamy G. Adsorption of nonionic surfactant on silica nanoparticles: structure and resultant interparticle interactions[J]. Journal of Physical Chemistry B, 2010, 114(34): 10986-94.

[103]Yuan Q, Williams R A. CO-stabilisation mechanisms of nanoparticles and surfactants in Pickering Emulsions produced by membrane emulsification[J]. Journal of Membrane Science, 2016, 497: 221-228.

[104]康文东, 徐志胜, 丁发兴, 等. 多糖聚合物对环保型泡沫灭火剂理化性能的影响[J]. 应用化工, 2022, 51(05): 1219-1225.

[105]Rosen MJ, Kunjappu JT. Surfactants and interfacial phenomena [P]. Wiley, New Jersey, 2012, pp 308–331.

[106]龚佳怡, 乔建江. 表面活性剂起泡及润湿性能的影响研究[J]. 日用化学工业, 2021, 51(11): 7.

[107]柳书伦, 岳胜文. Boltzmann方程的意义的探讨[J]. 长沙理工大学学报:社会科学版, 1988, (2): 41-49.

[108]Wang J, Xue G, Tian B, et al. Interaction between surfactants and SiO2 nanoparticles in multiphase foam and its plugging ability[J]. Energy & Fuels, 2017, (1): 31.

[109]Binks B P, Desforges A, Duff D G. Synergistic stabilization of emulsions by a mixture of surface-active nanoparticles and surfactant[J]. Langmuir, 2007, 23(3): 1098-1106.

[110]Kaptay G. On the equation of the maximum capillary pressure induced by solid particles to stabilize emulsions and foams and on the emulsion stability diagrams[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282: 387-401.

[111]AlYousef Z A, Almobarky M A, Schechter D S. The effect of nanoparticle aggregation on surfactant foam stability[J]. Journal of colloid and interface science, 2018, 511: 365-373.

[112]Nguyen, A V, Schulze, H J, Colloidal science of flotation[M]. CRC Press, 2004, pp 39–45.

[113]Sheng Y, Xue M, Ma L, et al. Environmentally friendly firefighting foams used to fight flammable liquid fire[J]. Fire Technology, 2021, 57(5): 2079-2096.

[114]Fallows E A, Fleming J W. A tunable diode laser absorption diagnostic for studying the fire suppression mechanism of aqueous high expansion foams[J]. Fire technology, 2012, 48(2): 441-457.

[115]Laundess A J, Rayson M S, Dlugogorski B Z, et al. Small-scale test protocol for firefighting foams DEF(AUST)5706: effect of bubble size distribution and expansion ratio[J]. Fire Technology, 2011, 47(1): 149-162

中图分类号:

 TD753    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式