- 无标题文档
查看论文信息

题名:

 高家堡井田洛河组水文地质条件精细解析与箱式注浆减水技术研究    

作者:

 李晓龙    

学号:

 18109071002    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 081803    

学科:

 工学 - 地质资源与地质工程 - 地质工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2023    

学校:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质资源与地质工程    

研究方向:

 矿井水害防治    

导师姓名:

 董书宁    

导师单位:

 中煤科工西安研究院(集团)有限公司    

提交日期:

 2023-12-06    

答辩日期:

 2023-11-15    

外文题名:

 Fine analysis of hydrogeological conditions of Luohe Formation in Gaojiabu coal mine and research on box-type grouting water reduction technology    

关键词:

 洛河组 ; 精细解析 ; 富水性评价 ; 减水技术 ; 箱式注浆 ; 高家堡井田    

外文关键词:

 Luohe Formation ; Fine analysis ; Evaluation of water richness ; Water reduction technique ; Box-type grouting ; Gaojiabu coal mine    

摘要:

洛河组含水层是黄陇侏罗纪煤田广泛分布的主要含水层,厚度巨大,富水性以中等为主,洛河组含水层对矿区水资源保护,矿井安全开采意义重大。高家堡煤矿是顶板洛河组砂岩含水层高强度充水的典型矿井,现矿井涌水量已达5000~6000m3/h,为黄陇侏罗纪煤田彬长矿区矿井涌水量最大的矿井,矿井充水水源主要为洛河组含水层地下水。本文以高家堡井田为研究区,采用沉积环境分析、水文地质分析、微观孔裂隙结构测试、数值模拟以及工程试验等方法,对洛河组地层进行了精细划分,对洛河组各层段水文地质条件进行了精细解析,揭示了洛河组富水性差异的形成机理。在此基础上,研发了减少矿井涌水量的技术及成套关键技术,并成功应用于工程实践。

通过矿物成分和砂岩粒度等测试,地质剖面写实以及各层段地层学特征研究,确定了洛河组两个最重要的标志层,其中上标志层为洛河组中部区域性厚层冲积相含砾砂岩,下标志层为厚层泥岩。以这两个标志层为界将洛河组划分为3段:上段主要为沙漠相沉积,其次为河流相沉积,岩性以巨粒-细粒砂岩为主,粒度较粗,偶含泥岩夹层;中段以沙漠相沉积为主,发育多期冲积相和旱谷亚相含砾砂岩,湿丘间亚相泥岩和粉粒砂岩增多,岩性以中-细粒砂岩为主;下段含石膏和方沸石化学沉积,以湖泊相沉积为主,岩性以厚层泥岩、粉砂岩为主。发现了鄂尔多斯盆地南部长武地区洛河组早期为滨浅湖沉积,确定了湖盆边界。提出了洛河组湖泊-冲积-风成沉积模式。

通过双Packer分层抽水试验、分布式光纤声波传感技术、流量测井,以及环境水化学等方法,揭示了高家堡井田洛河组各层段水文地质条件的垂向差异:洛河组垂向富水性由强到弱依次为上段、中段、下段,水质和水力联系亦呈现上好下差的规律。

通过NMR、CT以及孔渗测试,揭示了洛河组上段风成细砂岩有效孔隙度较高,水成巨粒砂岩、粗粒砂岩含微裂隙,含>241μm的连通孔,这是造成上段富水性较强的微观机理。上段含砾砂岩占比小于中段,主要岩性为巨粒-细粒砂岩,故上段富水性较强;中段厚层冲积相含砾砂岩的孔隙度、有效孔隙度和饱和含水率最低,且中段以中细粒砂岩沉积为主,水成中粒砂岩孔隙度较低,泥岩和粉粒砂岩占比显著增加,中段富水性较上段弱;下段岩性为厚层泥岩夹粉粒砂岩,富水性更弱。提出了影响研究区洛河组含水层富水性的9个主控因素,采用随机森林方法对洛河组含水层富水性进行了评价,富水性呈现西强东弱的规律。

采用实测、定向钻孔探查、数值模拟方法研究了覆岩裂隙发育规律,提出了研究区大采高、高地压条件下的导水裂隙带高度预测模型,并给出了适用条件。

基于洛河组含水层垂向富水性差异,研发了煤层开采前,通过地面定向钻孔在顶板巨厚洛河组砂岩含水层中实施侧向帷幕和平面注浆改造的“箱型”模式预注浆减水技术。减水关键技术包括:洛河组砂岩帷幕注浆层位选择关键技术、洛河组砂岩帷幕注浆丛式井主孔和套管多次重复利用成孔关键技术、洛河组砂岩高压劈裂注浆关键技术、洛河组砂岩箱式注浆钻注减水关键技术。该技术成功应用于四盘区洛河组含水层治理工程,减水效果显著,保证了工作面安全回采。

外文摘要:

The aquifer of Luohe Formation is the main aquifer widely distributed in the Jurassic coal field of Huanglong, with huge thickness and medium water richness. The aquifer of Luohe Formation is of great significance to the protection of water resources and the safe mining of mine. Gaojiabu Coal mine is a typical mine with high intensity water inrush in Luohe Formation sandstone aquifer. The current mine water inflow has reached 5000 to 6000 cubic meters per hour, which is the largest mine water inflow in Binchang mining area of Jurassic coal field in Huanglong, and the main water source of mine water filling is Luohe Formation. In this paper, the Gaojiabu coal mine is taken as the research area. Using sedimentary environment analysis, hydrogeological analysis, micro-pore and fissure structure testing, numerical simulation, physical simulation of similar materials and engineering tests, etc, the strata of Luohe Formation is finely divided, the stratum and hydrogeological conditions are finely analyzed, and the formation mechanism of water richness difference in Luohe Formation is revealed. On this basis, the technology of reducing mine water inflow and a set of key technologies are developed and successfully applied to engineering practice.

Two important marker layers of Luohe Formation are identified through mineral composition and sand grain size testing, geological profile realism and sequence stratigraphy. The upper stratigraphic marker layer is the regional thick alluvial gravelly sandstone in the middle of Luohe Formation, and the lower stratigraphic marker layer is the thick mudstone.The Luohe Formation can be divided into 3 sections based on the boundary between these two stratigraphic marker layer: the upper section is mainly desert facies deposit, followed by fluvial facies deposit. The lithology is mainly giant to medium grained sandstone with coarse grain size and occasionally containing mudstone interlayers. The middle section is dominated by desert facies deposits, multi-stage alluvial facies and dry valley subfacies gravelly sandstones, interwet and dune subfacies mudstone and siltstone increase, and the lithology is mainly medium-fine grained sandstone. The lower section contains chemical deposits of gypsum and zeolite, mainly lacustrine facies, and the lithology is mainly thick mudstone and siltstone. It is explained that Luohe Formation in Changwu area of southern Ordos Basin was a shoreline shallow lake deposit in the early stage, and the boundary of lake basin is determined. It is confirmed that the Luohe Formation in the study area is a lake-alluvian-eolian sedimentary system.

By means of double Packer stratified pumping test, distributed optical fiber acoustic wave sensing technology, flow logging and environmental hydrochemistry, the vertical differences of stratum and hydrogeological conditions of Luohe Formation in Gaojiabu coal mine are revealed. The vertical water richness of Luohe Formation is from strong to weak in order of upper section, middle section and lower section, and the relation between water quality and hydraulic power also presents this law.

NMR, CT and permeability tests show that the effective porosity of eolian fine sandstone in the upper section of Luohe Formation is high, and the giant sandstone and coarsegrained sandstone of fluvial facies deposit contain micro-cracks and connected pores greater than 241μm, which is the microscopic mechanism of the strong water richness in the upper section. The proportion of pebbly sandstone in the upper section is smaller than that in the middle section, and the main lithology is giant and fine grained sandstone, so the upper section has strong water richness. The porosity, effective porosity and saturated water content of the pebbled sandstone in the middle section are the lowest, and the middle section is dominated by the medium and fine grained sandstone, the porosity of the medium-grained sandstone of fluvial facies deposit is lower, the proportion of mudstone and silty sandstone is significantly increased, and the water-rich water in the middle section is weaker than that in the upper section. The lithology of the lower section is thick mudstone with silty sandstone, and the water richness is more weaker. The paper puts forward 9 main controlling factors affecting the water richness of Luohe Formation aquifer in the study area, and evaluates the water richness of Luohe Formation aquifer by using random forest method.

The fracture development law of overburden rock is studied by means of actual measurement, directional drilling exploration, numerical simulation and physical similarity simulation based on digital speckle technology. A prediction model for the height of water-flowing fracture zone under large mining height and high ground pressure in the study area is proposed, and the applicable conditions are given.

Based on the difference of vertical water richness of Luohe Formation aquifer, the "box type" pre-grouting technology is developed to implement side curtain and plane grouting transformation in Luohe Formation sandstone aquifer with very thick roof before coal seam mining. The key technologies of water reduction include: Key technology of curtain grouting horizon selection in Luohe Formation sandstone, the key technology of reusing main hole and casing of curtain grouting cluster well in Luohe formation, the key technology of high pressure split grouting in Luohe Formation, and the key technology of curtain grouting and drilling to reduce water in Luohe Formation. This technology has been successfully applied to the treatment project of Luohe Formation in the fourth mining area, and the water reduction effect is remarkable, ensuring the safety of the mining face.

参考文献:

[1]董书宁.鄂尔多斯盆地煤层典型顶板水害成因与防控技术[M].北京:科学出版社, 2021.

[2]Dong Shuning, Zheng Liwei, Tang Shengli, et al. A scientometric analysis of trends in coal mine water inrush prevention and control for the period 2000-2019[J]. Mine Water and the Environment,2020,39:3-12.

[3]Dong Shuning, Wang Hao, Zhou Wanfang. Application of a pump and treat system to addressing potential vapor intrusion risk in a karst terrane: design parameter optimization and performance evaluation[J]. Sustainable Water Resources Management, 2022,8(5).

[4]Fan Limin, Ma Liqiang, Yu Yihe, et al. Water-conserving mining influencing factors identification and weight determination in northwest China[J]. International Journal of Coal Science & Technology,2019,6:95-101.

[5]董书宁,柳昭星,王皓.厚基岩采场弱胶结岩层动力溃砂机制研究现状与展望[J].煤炭学报,2022,47(01):274-285.

[6]董书宁,刘再斌,程建远,等.煤炭智能开采地质保障技术及展望[J].煤田地质与勘探,2021,49(01):21-31.

[7]董书宁,姬亚东,王皓,等.鄂尔多斯盆地侏罗纪煤田典型顶板水害防控技术与应用[J].煤炭学报,2020,45(07):2367-2375.

[8]李思田.含能源盆地沉积体系[M].武汉:中国地质大学出版社,1996.

[9]程守田,刘星,郭秀蓉,等.古沙漠沉积及其层序单元-以鄂尔多斯白垩纪内陆古沙漠盆地为例[J].地球科学,2000(06):587-591.

[10]江新胜.中国白垩纪沙漠及其古气候[D].成都:成都理工大学,2003.

[11]王建强,刘池洋,刘鑫,等.鄂尔多斯盆地南部下白垩统演化改造特征[J].西北大学学报(自然科学版),2011,41(02):291-297.

[12]谢渊,王剑,江新胜,等.鄂尔多斯盆地白垩系沙漠相沉积特征及其水文地质意义[J].沉积学报,2005,23(1):73-83.

[13]杨友运.鄂尔多斯盆地白垩系沉积建造[J].石油与天然气地质,2006,27(2):167-172.

[14]Andrew D Miall. Principles of Sedimentary Basin Analysis[M].New York,Springer-Verlag,1984,371.

[15]Ahlbrandt T S, Fryberger S G. Sedimentary features and significance of interdune deposits[M].1981,293-314.

[16] Langford R P, Chan M A. Fluvial-aeolian interactions: Part II, ancient systems[J]. Sedimentology, 2010, 36(6):1037-1051.

[17]李孝泽,董光荣,靳鹤龄,等.鄂尔多斯白垩系沙丘岩的发现[J].科学通报, 1999(08): 874-877.

[18]李志德,程守田,蒋磊,等.风成沙丘间沉积成因类型与风成垂向层序-以鄂尔多斯早白垩世内陆古沙漠为例[J].地质科技情报,2004(03):30-34.

[19]于波,张忠义,刘显阳,等.鄂尔多斯盆地白垩系洛河组至环河华池组砂体展布规律研究[J].地层学杂志,2008,32(3):285-289.

[20]魏斌,张忠义,杨友运,等.鄂尔多斯盆地白垩系洛河组至环河华池组沉积相特征研究[J].地层学杂志,2006,30(4):367-372.

[21]张忠义.鄂尔多斯盆地白垩系洛河组-环河华池组沉积特征研究[D].西安:长安大学,2005.

[22]谢渊,王剑,殷跃平,等.鄂尔多斯盆地白垩系含水层沉积学初探[J].地质通报,2003,22(10):818-828.

[23]江新胜,徐金沙,潘忠习.鄂尔多斯盆地白垩纪沙漠石英沙颗粒表面特征[J].沉积学报,2003(03):416-422.

[24]李明辉,王剑,谢渊,等.鄂尔多斯盆地白垩纪岩相古地理与地下水相关性探讨[J].沉积与特提斯地质,2003(04):34-40.

[25]谢从瑞,杨忠智,王永和,等.鄂尔多斯盆地白垩系沉积建造对地下水的控制[J].沉积与特提斯地质,2013,33(02):40-45.

[26]李云峰,冯建国,王玮,等.鄂尔多斯盆地白垩系含水系统分析[J].西北地质, 2004(02): 90-96.

[27]张泓,晋香兰,李贵红,等.鄂尔多斯盆地侏罗纪-白垩纪原始面貌与古地理演化[J].古地理学报,2008(01):1-11.

[28]庞军刚,李文厚,国吉安,等.鄂尔多斯盆地白垩纪沉积体系及古地理演化[J].西北大学学报,2021,51(2):314-324.

[29]朱强,司庆红,李建国,等.鄂尔多斯盆地西南部下白垩统洛河组灰色砂岩的两种成因及其含铀性[J/OL].地球科学:1-27[2023-05-09].

[30]陈印,李建国,苗培森,等.鄂尔多斯盆地西南部风成沉积体系内砂岩型铀矿找矿突破[C]//中国地球物理学会.首届全国矿产勘查大会论文集.2021:554-557.

[31]郭庆银.鄂尔多斯盆地西缘构造演化与砂岩型铀矿成矿作用[D].北京:中国地质大学(北京),2010.

[32]张天福,苗培森,程先钰,等.鄂尔多斯盆地早白垩世含铀岩系的新发现及其层序地层[J].大地构造与成矿学,2020,44(04):633-647.

[33]向尧.风成沉积体系中氧化还原作用与铀成矿关系[D].武汉:中国地质大学,2022.

[34]郝诒纯,苏德英,余静贤,等.中国的白垩系(中国地层12)[M].北京:地质出版社,1986.

[35]郭小铭.彬长矿区洛河组沉积控水及开采扰动流场响应特征研究[D].北京:煤炭科学研究总院,2022.

[36]中国区域地质志 陕西志[M].北京:地质出版社,2017.

[37]李超峰.采煤工作面顶板巨厚层状含水层涌水量预测研究[D].北京:煤炭科学研究总院,2019.

[38]陈本刚.高家堡煤矿地层沉积微相对冲击矿压的控制作用研究[D].徐州:中国矿业大学,2022.

[39]李超峰.彬长矿区巨厚洛河组垂向差异性研究[J].煤炭技术,2018,37(4):131-133.

[40]李超峰,虎维岳,刘英锋.洛河组含水层垂向差异性研究及保水采煤意义[J].煤炭学报,2019,44(3):847-856.

[41]李超峰.水力联系系数与含水层之间水力联系定量评价[J/OL].吉林大学学报(地球科学版).

[42]李超峰,刘业献,张金魁,等.基于双Packer抽水试验的洛河组水文地质特征垂向变异性研究[J/OL].煤田地质与勘探:1-10[2023-05-09].

[43]林磊.高家堡煤矿洛河组砂岩沉积控水规律研究[D].西安:西安科技大学,2020.

[44]Sloss L, Krumbein W, Dapples E. Integrated facies analysis[C]//Longwell C. Sedimentary Facies in Geologic history. Indiana: Geological Society of America, 1949: 91-124.

[45]Vail P R, Mitchum Jr R M, Thompson S. Seismic stratigraphy and global changes of sea level: part 3. Relative changes of sea level from coastal onlap: Section 2. Application of seismic reflection configuration to stratigrapic interpretation[J]. AAPG Memoir, 1997,26:63-81.

[46]李峰峰,郭睿,余义常.层序地层划分方法进展及展望[J].地质科技情报, 2019, 38(04): 215-224.

[47]Galloway W E. Genetic stratigraphic sequence in basin analysis I: Architecture and genesis of flooding-surface bounded depositional units[J]. AAPG Bulletin, 1989, 73(2): 125-142.

[48]Cross T A. High-resolution stratigraphic correlation from the perception of base-level cycles and sediment accommodation[C]//Proceeding of Northwestern Europian Sequence Stratigraphy Congress.1994,105-123.

[49]邓宏文,王洪亮,李熙喆.层序地层地层基准面的识别、对比技术及应用[J].石油与天然气地质,1996,17(3):177-184.

[50]Shanley K W, McCabe P J. Perspectives on the sequence stratigraphy of continental strata[J].American Association of Petroleum Geologists Bulletin,1994,78:544-568.

[51]李思田,杨士恭,林畅松.论沉积盆地的等时地层格架和基本建造单元[J].沉积学报,1992(04):11-22.

[52]范立民,迟宝锁,王宏科,等.鄂尔多斯盆地北部直罗组含水层研究进展与水害防治建议[J].煤炭学报,2022,47(10):3535-3546.

[53]孙魁.陕北侏罗纪煤田北部直罗组古河道复合砂体及其控水机理[D].西安:西安科技大学,2022.

[54]Bohacs K M, Carroll A R, Neal J E, et al. Lake-Basin type, source potentional, and hydrocarbon character: An Integrated sequence-stratigraphic-geochemichal Framework [M]. Lake Basins Through Space and Time. 2000.

[55]刘英锋.彬长矿区巨厚含水层特厚煤层综放开采防治水技术研究[D].西安:西安科技大学,2015.

[56]牛永强.宁正矿区白垩系砂岩水文地质特征及煤层顶板涌水危险性评价[D].石家庄:河北工程大学,2013.

[57]方迎辉.青岗坪井田水文地质特征浅析[J].地下水,2008,30(6):121-122.

[58]师修昌,张媛,吕广罗.永陇-彬长矿区保水采煤及地下水资源开发利用[J].采矿与安全工程学报,2018,35(06):1241-1247.

[59]郭小铭,董书宁.深埋煤层开采顶板基岩含水层渗流规律及保水技术[J].煤炭学报,2019,44(3):804-811.

[60]任邓君,孙亚岳,李建阳.高家堡煤矿煤层顶板水水化学特征及其水害防治技术[J].煤田地质与勘探,2019,47(增刊1):26-31.

[61]王青振,任邓君,邢介波.巨厚承压含水层精细化勘探方法研究[J].煤炭技术,2019,38(7):92-94.

[62]冯龙飞,王双明,王海,等.彬长矿区典型顶板水害矿井洛河组砂岩微观孔隙特征研究[J].煤炭科学技术,2023,51(08):208-218.

[63]Saaty T L , Kearns K P .The Analytic Hierarchy Process[J].analytical planning, 1985.

[64]武强,黄晓玲,董东林,等.评价煤层顶板涌(突)水条件的“三图-双预测法”[J].煤炭学报,2000,25(1):60-65.

[65]武强,江中云,孙东云,等.东欢坨矿顶板涌水条件与工作面水量动态预测[J].煤田地质与勘探,2000,28(6):32-35.

[66]武强,樊振丽,刘守强,等.基于GIS的信息融合型含水层富水性评价方法[J].煤炭学报,2011,36(7):1124-1128.

[67]武强,许珂,张维.再论煤层顶板涌(突)水危险性预测评价的“三图-双预测法”[J].煤炭学报,2016,41(6):1341-1347.

[68]侯恩科,龙天文,刘庆利,等.基于ArcGIS的洛河组含水层富水性评价[J].煤田地质与勘探,2019,47(2):151–156.

[69]侯恩科,童仁剑,王苏健,等.陕北侏罗纪煤田风化基岩富水性Fisher模型预测方法[J].煤炭学报,2016,41(9):2312-2318.

[70]李云龙.基于多源信息融合的姚桥矿水害防治方法与应用研究[D].北京:中国矿业大学(北京),2010.

[71]赵德康.煤层顶底板涌(突)水风险评价与疏降水量预测研究[D].北京:中国矿业大学(北京),2018.

[72]孙建峰.袁大滩井田煤层顶板含水层沉积规律及涌(突)水危险性评价[D].西安:西安科技大学,2018.

[73]李坤,曾一凡,尚彦军,等.基于GIS的“三图-双预测法”的应用[J].煤田地质与勘探,2015,43(2):58-62.

[74]冯洁,侯恩科,王苏健.黄陵矿区洛河组砂岩富水-释水规律[J].西安科技大学学报,2019,39(3):426-434.

[75]毕尧山,吴基文,翟晓荣,等.基于AHP与独立性权系数综合确权的煤矿含水层富水性评价[J].水文,2020,40(4):40-45.

[76]许珂,张维,申建军,等.灰色理论在裂隙含水层富水性评价中的应用[J].辽宁工程技术大学学报(自然科学版),2016,35(8):816-820.

[77]田增林.鸳鸯湖矿区煤层顶板砂岩含水层富水性分区方法研究[D].北京:煤炭科学研究总院,2018.

[78]肖乐乐,牛超,代革联,等.基于富水性结构指数法的直罗组地层富水性评价[J].煤炭科学技术,2018,46(11):207-213.

[79]任智德,吕玉广,郑纲.利用脆性岩石含量指数预测裂隙型含水层富水区[J].煤田地质与勘探,2011,39(4):35-38.

[80]武强,王洋,赵德康,等.基于沉积特征的松散含水层富水性评价方法与应用[J].中国矿业大学学报,2017,46(3):460-466.

[81]赵宝峰.沉积和构造特征对含水层富水性的影响[J].工程勘察,2015,9:51-54,80.

[82]方刚,蔡玥.基于沉积控水分析的巴拉素井田富水性分区研究[J].干旱区资源与环境,2019,33(3):105-111.

[83]方刚.巴拉素井田2号煤层富水机理及煤层水害防治关键技术[D].西安:西安科技大学,2022.

[84]冯洁,侯恩科,王苏健,等.陕北侏罗系沉积控水规律与沉积控水模式[J].煤炭学报,2021,46(5):1614-1629.

[85]钱鸣高,石平五,许家林.矿山压力与岩层控制[M].徐州:中国矿业大学出版社, 2010.84-97,111-113.

[86]宋振骐.实用矿山压力与控制[M].徐州:中国矿业大学出版社,1995.

[87]IME. Report of Investigation into causes of falls, and accidents due to Falls in Bord and pillar whole workings-roof-fracture Control in Bords[J].Transactions of the American Institute of Mining and Metallurgical Engineers,1936,90(4):241-242.

[88]IME. Seventh progress report of investigation into causes of falls and Accidents due to falls-improvement of working conditions by controlled transference of roof load[J]. Transactions of the American Institute of Mining and Metallurgical Engineers,1949, 108(11):489-504.

[89]冯军发.浅埋近距离煤层综采面覆岩结构及其稳定性研究[D].焦作:河南理工大学,2016.

[90]国家煤炭工业局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[S].北京:煤炭工业出版社,2000.

[91]国家安全监管总局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[S].北京:煤炭工业出版社,2017.

[92]许家林,钱鸣高,朱卫兵.覆岩主关键层对地表下沉动态的影响研究[J].岩石力学与工程学报,2005(05):787-791.

[93]许家林,王晓振,刘文涛,等.覆岩主关键层位置对导水裂隙带高度的影响[J].岩石力学与工程学报,2009(02):380-385.

[94]王晓振,许家林,韩红凯,等.顶板导水裂隙高度随采高的台阶式发育特征[J].煤炭学报,2019,44(12):3740-3749.

[95]靳德武,刘英锋,王甜甜.巨厚砂岩含水层下厚煤层综放减水开采技术[J].煤炭科学技术,2020,48(9):88-95.

[96]尹尚先,徐斌,徐慧,等.综采条件下煤层顶板导水裂缝带高度计算研究[J].煤炭科学技术,2013,41(9):138-142.

[97]张玉军,申晨辉,张志巍,等.我国厚及特厚煤层高强度开采导水裂缝带发育高度区域分布规律[J].煤炭科学技术,2022,50(5):38-48.

[98]郭小铭,刘英锋,李超峰.强冲击矿压矿井综放开采覆岩破坏规律研究[J].矿业安全与环保,2018,45(3):24–28.

[99]李超峰.黄陇煤田综放采煤顶板导水裂缝带高度发育特征[J].煤田地质与勘探,2019,47(2):129-136.

[100]薛建坤,王皓,赵春虎,等.鄂尔多斯盆地侏罗系煤田导水裂隙带高度预测及顶板充水模式[J].采矿与安全工程学报,2020,37(06):1222-1230.

[101]鞠金峰,马祥,赵富强,等.东胜煤田导水裂缝发育及其分区特征研究[J].煤炭科学技术,2022,50(2):202–212.

[102]康永华.采煤方法变革对导水裂缝带发育规律的影响[J].煤炭学报,1998,23(3):40-44.

[103]杜时贵,翁欣海.煤层倾角与覆岩变形破裂分带[J].工程地质学报,1997(03):20-26.

[104]王双明,魏江波,宋世杰,等.黄河流域陕北煤炭开采区厚砂岩对覆岩采动裂隙发育的影响及采煤保水建议[J].煤田地质与勘探,2022,50(12):1-11.

[105]侯恩科,范继超,谢晓深,等.基于微震监测的深埋煤层顶板导水裂隙带发育特征[J].煤田地质与勘探,2020,48(05):89-96.

[106]刘英锋,王世东,王晓蕾.深埋特厚煤层综放开采覆岩导水裂缝带发育特征[J].煤炭学报,2014,39(10):1970-1976.

[107]刘瑜.陕北侏罗系煤层开采导水裂缝带动态演化规律研究及应用[D].徐州:中国矿业大学,2018.

[108]李路,乔伟,甘圣丰,单景新,程香港,赵世隆.导水裂隙带动态发育规律及覆岩含水层涌水量预计[J].煤炭科学技术,2020,48(S1):144-149.

[109]申建军.顶板水害威胁下“煤-水”双资源型矿井开采模式与应用[D].北京:中国矿业大学(北京),2017.

[110]王世东,谢伟,罗利卜.霍洛湾煤矿22101工作面顶板两带发育规律[J].煤田地质与勘探,2009,37(03):38-40.

[111]马建全,吴钶桥,彭昊,等.煤岩采动应力-裂隙带发育规律研究-以榆树湾煤矿为例[J].西安科技大学学报,2022,42(01):107-115.

[112]陈荣华,白海波,冯梅梅.综放面覆岩导水裂隙带高度的确定[J].采矿与安全工程学报,2006,23(2):220.

[113]武谋达,王建辉,侯恩科,等.大佛寺煤矿顶板涌水规律及影响因素[J].西安科技大学学报,2018,38(4):636-642.

[114]段红民.彬长矿区特厚煤层顶水安全开采技术研究[J].煤炭科学技术, 2015, 43(11): 22-26,128.

[115]龙天文.彬长矿区东北部矿井导水裂隙带发育高度及涌水量预测研究[D].西安:西安科技大学,2019.

[116]袁峰,申涛,谢晓深,等.基于深度学习的地震多属性融合技术在导水裂隙带探测中的应用[J].煤炭学报,2021,46(10):3234-3244.

[117]罗安昆.巨厚顶板砂岩含水层下煤层开采矿井涌水量预测研究[D].北京:煤炭科学研究总院,2017.

[118]李超峰.黄陇煤田综放采煤导水裂隙带高度经验公式[J].煤炭技术,2021,40(6):119-122.

[119]李超峰,虎维岳,王云宏,等.煤层顶板导水裂缝带高度综合探查技术[J].煤田地质与勘探,2018,46(1):101-107.

[120]许进鹏,鹿存金,张学如,等.基于水质水量的导水裂缝带高度分析计算[J].采矿与安全工程学报,2018,35(06):1248-1252.

[121]丛森,程建远,王云宏,等.导水裂隙带发育高度的微震监测研究[J].中国矿业, 2017,26(03):126-131.

[122]杨静.地面水平定向钻孔注浆封堵覆岩导水裂隙的合理层位研究[D].徐州:中国矿业大学,2019.

[123]李超峰.煤层顶板含水层涌水危险性评价方法[J].煤炭学报,2020,45(S1):384-392.

[124]苗文韬,苗合坤,牛中平.矿井继生充水含水层的涌水特征及其水害防治措施[J].煤田地质与勘探,2013,41(02):46-50.

[125]朱宏军.鸳鸯湖矿区矿井涌水量预测方法研究[D].北京:煤炭科学研究总院,2014.

[126]刘洋,王振荣,牛建立.工作面涌水量预测方法的确定[J].矿业安全与环保,2010,37(5):29-30.

[127]刘英锋,郭小铭.导水裂缝带部分波及顶板含水层条件下涌水量预测[J].煤田地质与勘探,2016,44(05):97-101+107.

[128]虎维岳.浅埋煤层回采中顶板含水层涌水量的时空动态预测技术[J].煤田地质与勘探,2016,44(05):91-96.

[129]靳德武,周振方,赵春虎,等.西部浅埋煤层开采顶板含水层水量损失动力学过程特征[J].煤炭学报,2019,44(03):690-700.

[130]李德彬.侏罗系煤田顶板砂岩水疏放后采空区涌水规律及预测方法[J].煤矿安全,2019,50(05):194-198.

[131]傅耀军.矿井涌水量动态预测非稳定释水-断面流法[J].中国煤炭地质, 2021, 33(01):52-57.

[132]周振方,靳德武,虎维岳,等.煤矿工作面推采采空区涌水双指数动态衰减动力学研究[J].煤炭学报,2018,43(09):2587-2594.

[133]徐智敏,陈天赐,陈歌,等.煤层采动顶板水文地质参数演化与矿井涌水量动态计算方法[J].煤炭学报,2023,48(02):833-845.

[134]范立民,马雄德.浅埋煤层矿井突水溃沙灾害研究进展[J].煤炭科学技术, 2016, 44(01): 8-12.

[135]柳昭星,董书宁,靳德武,等.深埋采场压架切顶诱发井下泥石流形成机理与防控[J].煤炭学报,2019,44(11):3515-3528.

[136]韩江水,赵婷,武谋达.综采放顶煤工作面顶板涌水机理分析[J].西安科技大学学报, 2012,32(02):144-148.

[137]汤国水.老虎台矿上覆岩层结构特征对开采影响研究[D].阜新:辽宁工程技术大学, 2016.

[138]李超峰.回采工作面顶板复合含水层涌水量时空组成及过程预测方法[J].水文地质工程地质,2018,51(12):1-13.

[139]张英环.澳大利亚悉尼煤田水体下采煤的可能性[J].矿山测量,1975(1):30,62-67.

[140]Dumpleton S. Effects of longwall mining in the Selby Coalfield on the piezometry and aquifer properties of the overlying Sherwood Sandstone[J]. Geological Society London Special Publications,2002,198(1):75-88.

[141]Singh K K K. Mine Vue radar for delineation of coal barrier thickness in underground coal mines: case studies[J]. Journal of the Geological Society of India,2015,85(2):247-253.

[142]Tokgoz M, Yilmaz K K, Yazicigil H. Optimal aquifer dewatering schemes for excavation of collector line[J]. Journal of Water Resources Planning & Management, 2002, 128(4):248-261.

[143]Singh R N, Atkins A S. Application of idealised analytical techniques for prediction of mine water inflow[J]. Mining Science and Technology,1985,2(2):131-138.

[144]Brunetti E, Jones J P, Petitta M, et al. Assessing the impact of large-scale dewatering on fault-controlled aquifer systems:a case study in the Acque Albule basin (Tivoli, central Italy)[J]. Hydrogeology Journal,2013,21(2):401-423.

[145]Howladar M F. Coal mining impacts on water environs around the Barapukuria coal mining area, Dinajpur, Bangladesh[J]. Environmental Earth Sciences,2013,70(1):215-226.

[146]Lovell H L .Coal mine drainage in the United States - An overview[J].Iwa Publishing, 2011, 15(2):1-25.

[147]Booth C J .Groundwater as an environmental constraint of longwall coal mining[J].RMZ/Materials and Geoenvironment, 2003, 50(1).

[148]Kym, L, Morton F, et al. A phased approach to mine dewatering[J].Mine Water & the Environment,1993,12(1):27-33.

[149]王双明,黄庆享,范立民,等.生态脆弱区煤炭开发与生态水位保护[M].北京:科学出版社,2010.

[150]范立民.论保水采煤问题[J].煤田地质与勘探,2005,33(5):50-53.

[151]Fan Limin, Ma Xiongde. A review on investigation of water-pre-served coal mining in western China[J].International Journal of Coal Science & Technology,2018,5(4):411-416.

[152]王双明,黄庆享,范立民,等.生态脆弱矿区含(隔)水层特征及保水开采分区研究[J].煤炭学报,2010,35(1):7-14.

[153]范立民.保水采煤的科学内涵[J].煤炭学报,2017,42(1):27-35.

[154]马雄德,范立民,张晓团,等.基于植被地下水关系的保水采煤研究[J].煤炭学报,2017,42(5):1277-1283.

[155]张建民,李全生,南清安,等.西部生态脆弱区现代煤-水仿生共采理念与关键技术[J].煤炭学报,2017,42(1):66-72.

[156]李文平,王启庆,李小琴.隔水层再造-西北保水采煤关键隔水层N2红土工程地质研究[J].煤炭学报,2017,42(1):88-97.

[157]Li Wenping, Wang Qiqing, Liu Shiliang, et al.Study on the creep permeability of mining-cracked N2 laterite as the key aquifuge for preserving water resources in Northwestern China[J].International Journal of Coal Science & Technology, 2018, 5(3): 315-327.

[158]孙亚军,张梦飞,高尚,等.典型高强度开采矿区保水采煤关键技术与实践[J].煤炭学报,2017,42(1):56-65.

[159]常金源,李文平,李涛,等.干旱矿区水资源迁移与“保水采煤”思路探讨[J].采矿与安全工程学报,2014,31(1):72-77.

[160]张东升,李文平,来兴平,等.我国西北煤炭开采中的水资源保护基础理论研究进展[J].煤炭学报,2017,42(1):36-43.

[161]柳昭星.煤层底板水害超前区域治理关键注浆参数控制机制[D].西安:西安科技大学,2022.

[162]魏永胜,张雁,郭景忠,等.一种截水帷幕超深防渗墙接头箱及施工方法[P].内蒙古自治区:CN114277852A,2022-04-05.

[163]郭佐宁,姬中奎,张建安,等.一种煤矿待采工作面上覆烧变岩隔水帷幕的注浆方法[P].ZL2018105404546,2019.07.30.

[164]姬中奎,王皓,高小伟,等.一种浅埋近水平烧变岩含水层的帷幕注浆方法[P].ZL2018105412059,2020.03.06.

[165]姬中奎,柴建禄,姬亚东,等.一种煤矿帷幕注浆方法[P].ZL202010066566X,2021.05.18.

[166]赵春虎,王明星,曹海东,等.露天煤矿开采侧向帷幕控水原理与截水效果数值分析-以元宝山露天煤矿为例[J].煤田地质与勘探,2022,50(07):10-17.

[167]冯龙飞,王皓,王海,等.煤矿厚硬砂岩顶板水害与冲击地压复合灾害治理方法[P].ZL2022101983902,2023.05.16.

[168]谢世平,侯垣麒,辛小毛,等.一种适用于大水矿床快速开采的帷幕注浆方法[P].湖南省:CN113217025A,2021-08-06.

[169]李超峰,张学如.矿井涌水模式及顶板水害防治关键技术[J].煤炭技术,2018,37(06):153-156.

[170]蔺成森.顶板巨厚砂岩水防治方法研究与应用[J].煤田地质与勘探,2019,47(S1):81-85.

[171]郑立巍.酸性矿井水浸蚀煤岩的损伤机理及长期强度研究[D].西安:西安科技大学,2022.

[172]王双明,吕道生,佟英梅,等.鄂尔多斯盆地聚煤规律及煤炭资源评价[M].北京:煤炭工业出版社,1996.

[173]侯光才.鄂尔多斯白垩系盆地地下水系统及其水循环模式研究[D].长春:吉林大学,2008.

[174]陈刚,李向平,周立发,等.鄂尔多斯盆地构造与多种矿产的耦合成矿特征[J].地学前缘,2005,12(4):535-541.

[175]马聪,王剑,潘晓慧,等.准噶尔盆地吉木萨尔凹陷芦草沟组页岩油储层方沸石成因与甜点意义[J].石油实验地质,2020,42(04):596-603.

[176]朱强,李建国,苗培森,等.鄂尔多斯盆地西南部洛河组储层特征和深部铀成矿地质条件[J].地球科学与环境学报,2019,41(6):675-690.

[177]朱筱敏.沉积岩石学[M].石油工业出版社,2008.

[178]乔大伟,旷红伟,柳永清,等.鄂尔多斯盆地风成含铀岩系的识别-以XX井为例[J].大地构造与成矿学,2020,44(04):648-666.

[179]FOLK R L, WARD W C. Brazos River bar [Texas]; a study in the significance of grain size parameters[J]. Journal of Sedimentary Research,1957,27(1):3-26.

[180]Friedman G M,Johnson K G. Exercises in Sedimentology[M]. New York, USA: John Wiley Sons,1982:68-83.

[181]Mcmanus J. Grain size determination and interpretation[M]. Techniques in Sdimentology. Oxford, UK: Blackwell Scientific Publications,1988:63-65.

[182]Krumbein W C. Size Frequency Disributions of Sediments[J]. Journal of Sedimentary Research, 1934,4(2):65-77.

[183]蔡国富,范代读,尚帅,等.图解法与矩值法计算的潮汐沉积粒度参数之差异及其原因解析[J].海洋地质与第四纪地质,2014,34(1):195-204.

[184]马茜茜,肖建华,姚正毅.风成沉积物3种粒度参数计算方法比较[J].中国沙漠,2020,40(4):95-102.

[185]薛禹群,吴吉春.地下水动力学,2010,北京,地质出版社.

[186]Li Peiyue, Wu Jianhua, Tian Rui, et al. Geochemistry, Hydraulic Connectivity and Quality Appraisal of Multilayered Groundwater in the Hongdunzi Coal Mine, Northwest China[J]. Mine Water and the Environment,2018,37(2):222-237.

[187]彭玲.固结和松散沉积物孔渗特性NMR实验与应用研究[D].武汉:中国地质大学,2021.

[188]姚艳斌,刘大锰.基于核磁共振弛豫谱技术的页岩储层物性与流体特征研究[J].煤炭学报,2018,43(01):181-189.

[189]刘堂晏,肖立志,傅容珊,等.球管孔隙模型的核磁共振(NMR)弛豫特征及应用.地球物理学进展,2004,47:663-671

[190]Breiman L. Random Forests[J].Machine Learning,2001,45(1):5-32.

[191]黄万朋,高延法,王波,等.覆岩组合结构下导水裂隙带演化规律与发育高度分析[J].采矿与安全工程学报,2017,34(02):330-335.

[192]钱鸣高,刘听成.矿山压力及其控制[M].北京:煤炭工业出版社.1991.

[193]李术才,张伟杰,张庆松,等.富水断裂带优势劈裂注浆机制及注浆控制方法研究[J].岩土力学,2014,35(03):744-752.

中图分类号:

 TD745    

开放日期:

 2025-12-07    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式