论文中文题名: |
类煤岩材料组合体静载破裂能量耗散与裂隙演化耦合特征研究
|
姓名: |
何永琛
|
学号: |
18220089013
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
083700
|
学科名称: |
工学 - 安全科学与工程
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2021
|
培养单位: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全科学与工程
|
研究方向: |
矿井瓦斯灾害防治
|
第一导师姓名: |
赵鹏翔
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2021-06-18
|
论文答辩日期: |
2021-05-30
|
论文外文题名: |
Study of the energy dissipation and crack evolution coupling mechanism in static loading of coal-rock-like composite materials subjected
|
论文中文关键词: |
类煤岩材料组合体 ; 静载破裂 ; 裂隙演化 ; 能量耗散 ; 储能极限
|
论文外文关键词: |
Coal-like rock material combination ; Static load rupture ; Crack evolution ; Energy dissipation ; Energy storage limit
|
论文中文摘要: |
︿
煤炭能源是我国经济繁荣可持续发展的绝对基础和重要支撑,随着我国多地煤矿逐渐进入深部高强开采阶段,伴随而来的诸多瓦斯动力灾害严重制约着矿井生产安全。本文以山西和顺某高瓦斯矿井煤层地质条件为原型,制备三种类型煤岩组合体模型,结合能量理论、分形理论开展了煤岩组合体单轴载荷条件下的力学及声发射特征实验,初步得到以下研究结果:
(1)利用自主研发的类煤岩材料试件定量化制备系统制作煤岩组合体试件,开展不同组合方式条件下煤岩组合体单轴压缩力学特征实验,获得了不同煤岩组合体试件的全应力应变曲线、破坏形态、抗压强度、峰值应变以及弹性模量的变化特征。
(2)运用高清摄像监测系统分析了不同组合条件下煤岩组合体全应力应变过程中的裂隙生成、扩展、发育、贯通行为,并基于MATLAB编写“计盒-关联”分形维数一体化综合分析软件处理裂隙演化图像,计算得到不同类型煤岩组合体不同应力阶段的分形维数,定量描述了试件静载破裂过程中裂隙网络的发育程度。
(3)采用声发射信号采集系统监测了不同组合条件下煤岩组合体变形破坏过程的声发射行为,结合煤岩组合体试件裂隙图像演化规律,采用声发射定位事件对裂隙渐进扩展特征进行反演,进一步分析了煤岩组合体变形破坏过程中应力变化与声发射参数及裂隙渐进扩展特征的演化关系。
(4)基于能量理论研究了不同类型煤岩组合体试件单轴压缩变形破坏过程中的能量转化规律、储能特性及能耗特征,分析了能量驱动条件下煤岩组合体试件破坏机制及裂隙渐进演化耦合规律,进一步探讨了工程实践中煤岩系统变形破坏特征。
通过上述研究,本文分析了不同类型煤岩组合体静载破裂过程中的声发射行为、破坏形态以及能量驱动条件下的裂隙渐进演化规律,对矿井动态灾害的防治等现场工程实践问题提供了重要的理论支撑。
﹀
|
论文外文摘要: |
︿
Coal is the absolute foundation and important support for the sustainable development of China's economic. As coal mines in many parts of China gradually enter the deep mining stage, the accompanying coal and gas protrusion, impact ground pressure and many other dynamic hazards seriously restrict the mine production safety. In this paper, three types of coal-rock composite models were prepared based on the geological conditions of a high gas mine seam in Heshun, Shanxi Province. The mechanical and acoustic emission characteristics experiments of coal-rock composite specimens under uniaxial loading conditions were carried out by combining energy and fractal theory, and the following results were obtained.
(1) The coal-rock composite specimens were prepared by the self-developed quantitative preparation system of coal-rock-like material specimens. To obtain the full stress-strain curve, damage pattern, compressive strength, peak strain and elastic modulus variation characteristics of different coal-rock composite specimens. Uniaxial compression mechanical property experiments were carried out with coal-rock composite specimens under different combination methods
(2) The crack generation, extension, development and penetration behavior of different coal-rock composite specimens during the full stress-strain process were analyzed using a high-definition camera monitoring system. The "box-correlation" fractal dimension integrated analysis software based on MATLAB was written to process the crack evolution images and calculate the fractal dimension of different coal-rock composite specimens at different stress stage. The development degree of fracture network in the process of static load rupture of the specimen is quantitatively described.
(3) The acoustic emission behavior of coal-rock combination deformation and damage process under different combination conditions was monitored by acoustic emission signal acquisition system. The evolution of crack image of coal-rock combination specimen was combined with the inversion of crack progressive expansion characteristics by using acoustic emission localization events. The evolution relationship between stress change and acoustic emission parameters and crack progressive expansion characteristics during deformation and damage of coal-rock combination was further analyzed.
(4) Based on the energy theory, the energy conversion law, energy storage and energy dissipated characteristics during uniaxial compression deformation damage of different types of coal-rock composite specimens are studied. The damage mechanism of coal-rock composite specimens and the coupling law of crack progressive evolution under energy-driven conditions are analyzed. The deformation damage characteristics of coal-rock systems in engineering practice are further discussed.
Through the above research, this paper analyzed the acoustic emission behavior, damage morphology during the static load rupture of different types of coal-rock combinations and the crack progressive evolution law under energy-driven conditions, which provided important theoretical support for the prevention and control of dynamic mine disasters and other field engineering practice problems.
﹀
|
参考文献: |
︿
[1] 谢和平, 王金华, 王国法, 等. 煤炭革命新理念与煤炭科技发展构想[J]. 煤炭学报, 2018, 43(5): 1187-1197. [2] 谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(7): 1949-1960. [3] 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报, 2016, 41(01): 1-6. [4] 袁亮. 煤炭精准开采科学构想[J]. 煤炭学报, 2017, 42(01): 1-7. [5] 谢和平, 高峰, 鞠杨, 等. 深部开采的定量界定与分析[J]. 煤炭学报, 2015, 40(01): 1-10. [6] 何满潮. 深部的概念体系及工程评价指标[J]. 岩石力学与工程学报, 2005, 24(16): 2854-2858. [7] 何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 2005, 24(16): 2803-2813. [8] 袁亮, 张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报, 2019, 44(08): 2277-2284. [9] 林海飞, 李树刚, 赵鹏翔, 等. 我国煤矿覆岩采动裂隙带卸压瓦斯抽采技术研究进展[J]. 煤炭科学技术, 2018, 46(01): 28-35. [10] 李树刚, 林海飞, 赵鹏翔, 等. 采动裂隙椭抛带动态演化及煤与甲烷共采[J]. 煤炭学报, 2014, 39(08): 1455-1462. [11] Cook N G W. Seismicity associated with mining[J]. Engineering Geology, 1976, 10(2-4): 99-122. [12] Srinivasan C, Arora S K, Yaji R K. Use of mining and seismological parameters as premonitors of rockbursts[J]. International Journal of Rock Mechanics & Mining Sciences, 1997, 34(6): 1001-1008. [13] Torabi A, Zarifi Z. Energy release rate of propagating deformation bands and their hosted cracks[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67: 184-190. [14] 程志恒, 齐庆新, 李宏艳, 等. 近距离煤层群叠加开采采动应力-裂隙动态演化特征实验研究[J]. 煤炭学报, 2016, 41(02): 367-375. [15] 程详, 赵光明, 李英明, 等. 软岩保护层开采卸压增透效应及瓦斯抽采技术研究[J]. 采矿与安全工程学报, 2018, 35(05): 1045-1053. [16] 张勇, 张春雷, 赵甫. 近距离煤层群开采底板不同分区采动裂隙动态演化规律[J]. 煤炭学报, 2015, 40(04): 786-792. [17] 陈彦龙, 吴豪帅, 张明伟, 等. 煤层厚度与层间岩性对上保护层开采效果的影响研究[J]. 采矿与安全工程学报, 2016, 33(04): 578-584. [18] Wang K, Du F, Zhang X, et al. Mechanical properties and permeability evolution in gas-bearing coal-rock combination body under triaxial conditions[J]. Environmental Earth Sciences, 2017, 76(24): 815. [19] Zhang H, WAN Z, Zhang Y, et al. Mechanical Properties and Failure Behavior of Composite Samples[J]. Advances in Materials Science and Engineering, 2018, 2018: 1-16. [20] J A. Hudson, JP Harison. Engineering Rock Mechanics: An Introduction to the Principles and App lications[M] N ederland: Elsevier Science, 1997. [21] 谢和平, 鞠杨,黎立云,等. 岩体变形破坏过程的能量机制[J]. 岩石力学与工程学报,2008, 27 (9): 1729-1740. [22] 彭瑞东. 基于能量耗散及能量释放的岩石损伤与强度研究[D]. 北京: 中国矿业大学, 2005. [23] 赵忠虎. 基于能量耗散与能量释放的岩石变形破坏研究[D]. 成都: 四川大学, 2007. [24] 姜耀东, 赵毅鑫, 刘文岗, 等. 煤岩冲击失稳的机制和试验研究[M]. 北京: 科学出版社, 2009. [25] Lee H, Jeon S. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression[J]. International Journal of Solids & Structures, 2011, 48(6): 979-999. [26] Park C H, Bobet A. Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression[J]. Engineering Fracture Mechanics, 2010, 77(14): 2727-2748. [27] Li D, Wang E, Kong X, et al. Mechanical behaviors and acoustic emission fractal characteristics of coal specimens with a pre-existing flaw of various inclinations under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 116: 38-51. [28] 赵洪宝, 王中伟, 张欢, 等. 冲击荷载对煤岩内部微结构演化及表面新生裂隙分布规律的影响[J]. 岩石力学与工程学报, 2016, 35(5): 971-979. [29] Unteregger D, Fuchs B, Hofstetter G. A damage plasticity model for different types of intact rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 80: 402-411. [30] Štambuk Cvitanović, Nataša Nikolic, Mijo Ibrahimbegović. Influence of specimen shape deviations on uniaxial compressive strength of limestone and similar rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 80: 357-372. [31] Park C H, Bobet A. Crack coalescence in specimens with open and closed flaws: A comparison[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(5): 819-829. [32] Chen C, Xu T, Li S. Microcrack evolution and associated deformation and strength properties of sandstone samples subjected to various strain rates[J]. Minerals, 2018, 8(6): 231. [33] Cheng L, Xu J, Peng S, et al. Mesoscopic crack initiation, propagation, and coalescence mechanisms of coal under shear loading[J]. Rock Mechanics and Rock Engineering, 2018: 1979-1992. [34] Zhao Z, Wang W, Dai C, et al. Failure characteristics of three-body model composed of rock and coal with different strength and stiffness[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(5): 1538-1546. [35] Zhao Z, Wang W, Wang L, et al. Compression-shear strength criterion of coal-rock combination model considering interface effect[J]. Tunnelling and Underground Space Technology, 2015, 47: 193-199. [36] Zhang Z, Lv X, Wang W, et al. Damage evolution of bi-body model composed of weakly cemented soft rock and coal considering different interface effect[J]. SpringerPlus, 2016, 5(1): 292. [37] Liu J, Wang E, Song D, et al. Effect of rock strength on failure mode and mechanical behavior of composite samples[J]. Arabian Journal of Geosciences, 2015, 8(7): 4527-4539. [38] 曹吉胜, 戴前伟, 周岩, 等. 考虑界面倾角及分形特性的组合煤岩体强度及破坏机制分析[J]. 中南大学学报(自然科学版), 2018(1): 175-182. [39] Zhao T, Guo W, Lu C, et al. Failure characteristics of combined coal-rock with different interfacial angles[J]. Geomechanics and Engineering, 2016,11: 345-359. [40] 陈宇龙, 张宇宁, 李科斌, 等. 单轴压缩下软硬互层岩石破裂过程的离散元数值分析[J]. 采矿与安全工程学报, 2017, 34(4): 795-802. [41] 邓绪彪, 胡海娟, 徐刚, 等. 两体岩石结构冲击失稳破坏的数值模拟[J]. 采矿与安全工程学报, 2012, 29(6): 833-839. [42] 赵善坤, 张寅, 韩荣军, 等. 组合煤岩结构体冲击倾向演化数值模拟[J]. 辽宁工程技术大学学报(自然科学版), 2013, 32(11): 1441-1446. [43] 郭东明, 左建平, 张毅, 等. 不同倾角组合煤岩体的强度与破坏机制研宄[J]. 岩石力学, 2011. 32(5), 1333-1339. [44] 薛俊华, 刘超, 王龙. 组合串联煤岩冲击倾向性影响因素数值模拟[J]. 西安科技大学学报, 2016, 36(1): 65-69. [45] 朱卓慧, 冯涛, 宫凤强, 等. 煤岩组合体分级循环加卸载力学特性实验研究[J]. 中南大学学报(自然科学版), 2016, 47(7): 2469-2475. [46] 左建平, 谢和平, 吴爱民,等. 深部煤岩单体及组合体的破坏机制与力学特性研究[J]. 岩石力学与工程学报, 2011, 30(1): 84-92. [47] 左建平, 陈岩, 崔凡. 不同煤岩组合体力学特性差异及冲击倾向性分析[J]. 中国矿业大学学报, 2018, 47(1): 81-87. [48] 张泽天, 刘建锋, 王璐, 等. 组合方式对煤岩组合体力学特性和破坏特征影响的试验研究[J]. 煤炭学报, 2012, 37(10): 1677-1681. [49] Sun C, Tang S, Zhang S, et al. Nanopore characteristics of late paleozoic transitional facies coal-bearing shale in Ningwu basin China investigated by nuclear magnetic resonance and low-pressure nitrogen adsorption[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(9): 6433-6444. [50] Zhao Y, Sun Y, Liu S, et al. Pore structure characterization of coal by NMR cryoporometry[J]. Fuel, 2017, 190: 359-369. [51] Jing Y, Armstrong R T, Ramandi H L, et al. Coal cleat reconstruction using micro-computed tomography imaging[J]. Fuel, 2016, 181: 286-299. [52] Jing Y, Armstrong R T, Mostaghimi P. Digital coal: Generation of fractured cores with microscale features[J]. Fuel, 2017, 207: 93-101. [53] Li Z, Liu D, Cai Y, et al. Multi-scale quantitative characterization of 3D pore-fracture networks in bituminous and anthracite coals using FIB-SEM tomography and X-ray μ-CT[J]. Fuel, 2017, 209: 43-53. [54] Mathews J, Campbell Q, Xu H, et al. A review of the application of X-ray computed tomography to the study of coal[J]. Fuel, 2017, 209: 10-24. [55] Zhang Y, Xu X, Lebedev M, et al. Multi-scale x-ray computed tomography analysis of coal microstructure and permeability changes as a function of effective stress[J]. International Journal of Coal Geology, 2016, 165: 149-156. [56] Nie B, Liu X, Yang L, et al. Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy[J]. Fuel, 2015, 158: 908-917. [57] Ni X, Chen W, Li Z, et al. Reconstruction of different scales of pore-fractures network of coal reservoir and its permeability prediction with Monte Carlo method[J]. International Journal of Mining Science and Technology, 2017, 27(4): 693-699. [58] Fu H, Tang D, Xu T, et al. Characteristics of pore structure and fractal dimension of low-rank coal: A case study of Lower Jurassic Xishanyao coal in the southern Junggar Basin, NW China[J]. Fuel, 2017, 193: 254-264. [59] 杨更社, 谢定义, 张长庆, 等. 岩石损伤特性的CT识别[J]. 岩石力学与工程学报, 1996(01): 48-54. [60] 朱红光, 谢和平, 易成, 等. 岩石材料微裂隙演化的CT识别[J]. 岩石力学与工程学报, 2011, 30(06): 1230-1238. [61] 王宇, 李晓, 阙介民, 等. 基于CT图像灰度水平的孔隙率计算及应用[J]. 水利学报, 2015, 46(3): 357-365. [62] 李果, 张茹, 徐晓炼, 等. 三轴压缩煤岩三维裂隙CT图像重构及体分形维研究[J]. 岩土力学, 2015, 36(6): 1633-1642. [63] 钟江城, 王子辉, 王路军, 等. 基于CT三维重构的深部煤体损伤演化规律[J]. 煤炭学报, 2019, 44(05): 1482-1494. [64] 付裕, 陈新, 冯中亮. 基于CT扫描的煤岩裂隙特征及其对不同围压下破坏形态的影响[J/OL]. 煤炭学报: 1-10 [2020-02-29]. https://doi.org/10.13225/j.cnki.jccs. 2019. 0480. [65] 王登科, 张平, 浦海, 等. 温度冲击下煤体裂隙结构演化的显微CT实验研究[J]. 岩石力学与工程学报, 2018, 37(10): 2243-2252. [66] 王刚, 秦相杰, 江成浩, 等. 温度作用下CT三维重建煤体微观结构的渗流和变形模拟[J]. 岩土力学, 2020, 41(05): 1750-1760. [67] 王登科, 张平, 魏建平, 等. CT可视化的受载煤体三维裂隙结构动态演化试验研究[J]. 煤炭学报, 2019, 44(S2): 574-584. [68] 宋勇军, 杨慧敏, 张磊涛, 等. 冻结红砂岩单轴损伤破坏CT实时试验研究[J]. 岩土力学, 2019, 40(S1): 152-160. [69] 肖晓春, 丁鑫, 潘一山, 等. 颗粒煤岩破裂过程声发射与电荷感应试验[J]. 煤炭学报, 2015, 40(8): 1796-1804. [70] 穆康, 俞缙, 李宏, 等. 水-力耦合条件下砂岩声发射和能量耗散的颗粒流模拟[J]. 岩土力学, 2015, 36(5): 1496-1504. [71] 陈亮, 刘建锋, 王春萍, 等. 北山深部花岗岩弹塑性损伤模型研究[J]. 岩石力学与工程学报, 2013, 32(2): 289-298. [72] 李庆森, 杨圣奇, 陈国飞, 等. 高温后节理砂岩强度及变形破坏特性[J]. 煤炭学报, 2014, 39( 4) : 651-657. [73] 王云飞, 黄正均, 崔芳, 等. 煤岩破坏过程的细观力学损伤演化机制[J]. 煤炭学报, 2014, 39(12): 2390-2396. [74] Obert L, Duvall W. Use of subaudible noises for prediction of rock-bursts II-report of investigation[R]. Denver: U.S. Bureau of Mines, 1941. [75] Hodgson E. Velocity of elastic waves and structure of the crust in the vicinity of Ottawa, Canada[J]. Bulletin of the Seismological Society of America, 1942, 32(4): 249-255. [76] Kaiser E. A study of acoustic phenomena in tensile test [Ph. D. Thesis] [D]. München: Technische Hochschule, 1950. [77] 李庶林, 尹贤刚, 王泳嘉, 等. 单轴受压岩石破坏全过程声发射特征研究[J]. 岩石力学与工程学报, 2004, 23(15): 2499-2503. [78] 蒋宇, 葛修润, 任建喜. 岩石疲劳破坏过程中的变形规律及声发射特性[J]. 岩石力学与工程学报, 2004, 23(11): 1810-1818. [79] Li C, Nordlund E. Experimental verification of the Kaiser effect in rocks[J]. Rock Mechanics and Rock Engineering, 1993, 26(4): 333-351. [80] 张立杰, 蔡美峰, 来兴平, 等. 基于AE的深部复变环境下急斜特厚煤层开采动力失稳分析[J]. 北京科技大学学报, 2007, 29(1): 1-4. [81] 张艳博, 吴文瑞, 姚旭龙, 等. 单轴压缩下花岗岩声发射-红外特征及损伤演化试验研究[J]. 岩土力学, 2020(S1): 1-8 [82] 李树刚, 成小雨, 刘超, 等. 单轴压缩岩石相似材料损伤特性及时空演化规律[J]. 煤炭学报, 2017, 42(S1): 104-111. [83] 方杰, 姚强岭, 王伟男, 等. 含水率对泥质粉砂岩强度损伤及声发射特征影响的研究[J]. 煤炭学报, 2018, 43(S2): 412-419. [84] Kong X, Wang E, Hu S, et al. Fractal characteristics and acoustic emission of coal containing methane in triaxial compression failure[J]. Journal of Applied Geophysics, 2016, 124: 139-147. [85] Kong X, Wang E, He X, et al. Time-varying multifractal of acoustic emission about coal samples subjected to uniaxial compression[J]. Chaos, Solitons & Fractals, 2017, 103: 571-577. [86] Wang X, Lu C, Xun J, et al. Experimental research on rules of acoustic emission and microseismic effects of burst failure of compound coal-rock samples[J]. Rock and Soil Mechanics, 2013, 34(9): 2569-2575. [87] Zhao Y, Jiang Y, Zhu J, et al. Experimental study on precursory information of deformations of coal-rock composite samples before failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(2): 339-346. [88] 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005(17): 3003-3010. [89] Xie H, Li L, Ju Y, et al. Energy analysis for damage and catastrophic failure of rocks[J]. Science China Technological Sciences, 2011, 54(1S): 199-209. [90] 秦四清. 初论岩体失稳过程中耗散结构的形成机制[J]. 岩石力学与工程学报, 2000, 19(3): 265-269. [91] 赵忠虎, 谢和平. 岩石变形破坏过程中的能量传递和耗散研究[J]. 四川大学学报, 2008, 40(2): 26-31. [92] 彭瑞东, 谢和平, 周宏伟. 岩石变形破坏过程的热力学分析[J]. 金属矿山, 2008, 38(3): 61-63. [93] 梁昌玉, 李晓, 王声星, 等. 岩石单轴压缩应力-应变特征的率相关性及能量机制试验研究[J]. 岩石力学与工程学报, 2012, 31(9): 1830-1838. [94] 张东明, 白鑫, 尹光志, 等. 含层理岩石单轴损伤破坏声发射参数及能量耗散规律[J]. 煤炭学报, 2018, 43(3): 646-656. [95] 宋真龙, 韩佩博, 李文璞, 等. 瓦斯对冲击性煤样能量耗散的影响[J]. 煤炭学报, 2015, 40(04): 843-849. [96] 单鹏飞, 来兴平, 崔峰, 等. 采动裂隙煤岩破裂能量耗散特性及机理[J]. 采矿与安全工程学报, 2018, 35(4): 834-842. [97] 王笑然, 王恩元, 刘晓斐, 等. 含雁行裂纹砂岩静态加载速率效应实验研究[J]. 煤炭学报, 2017, 42(10): 2582-2591. [98] Gong F, Yan J, Li X, et al. A peak-strength strain energy storage index for rock burst proneness of rock materials[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 117: 76-89. [99] Jin J, Cao P, Chen Y, et al. Influence of single flaw on the failure process and energy mechanics of rock-like material[J]. Computers and Geotechnics, 2017, 86: 150-162. [100] Zhang Y, Feng X, Yang C, et al. Fracturing evolution analysis of Beishan granite under true triaxial compression based on acoustic emission and strain energy[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 117: 150-161. [101] Yang Y, Ju Y, Li F, et al. The fractal characteristics and energy mechanism of crack propagation in tight reservoir sandstone subjected to triaxial stresses[J]. Journal of Natural Gas Science and Engineering, 2016, 32: 415-422. [102] 杨磊, 高富强, 王晓卿, 等. 煤岩组合体的能量演化规律与破坏机制[J]. 煤炭学报, 2019, 44(12): 3894-3902. [103] 张亮, 王桂林, 雷瑞德, 等. 单轴压缩下不同长度单裂隙岩体能量损伤演化机制[J]. 中国公路学报, 2021, 34(01): 24-34.
﹀
|
中图分类号: |
TD712
|
开放日期: |
2021-06-18
|