- 无标题文档
查看论文信息

论文中文题名:

 CH4/H2/CO预混体系爆炸特性研究    

姓名:

 刘荣伟    

学号:

 18220089037    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 气体与粉尘燃爆控制    

第一导师姓名:

 罗振敏    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-15    

论文答辩日期:

 2021-06-03    

论文外文题名:

 Study on Explosion Characteristics of Methane-Hydrogen- Carbon Monoxide Premixed Gas    

论文中文关键词:

 多元可燃性气体 ; 爆炸压力 ; 火焰传播特性 ; 光谱特征    

论文外文关键词:

 Multiple combustible gases ; Explosion pressure ; Flame propagation characteristics ; Spectral characteristics    

论文中文摘要:

在石油化工、天然气等行业,可燃气体在生产、储存以及使用过程中发生的爆炸事故屡见不鲜;此外,由于复杂的矿井环境条件,瓦斯爆炸事故也时有发生。为了解决工业生产生活和矿井开采存在的安全性问题,本文结合燃烧学理论和可燃气体爆炸传播机制,运用可视化球形爆炸综合性实验平台,借助高速摄影仪及光谱测试系统对甲烷-氢气-一氧化碳-空气预混体系的爆炸特性进行了实验研究,揭示了其宏观特征参数和微观基础参数之间的相互作用。获得主要结论和研究成果如下:

甲烷-氢气-一氧化碳-空气预混体系定容爆炸压力发展过程可以分为三个阶段,即:点火电极放电阶段、爆炸压力上升阶段、爆炸衰减阶段,其中爆炸压力上升阶段又可分为燃料初燃期和全面燃爆期。较小浓度的H2/CO混合气也会对甲烷爆炸压力特性规律产生影响,定义了内层含氢比,在富氧状态下,整个预混体系的最大爆炸压力和升压速率随内层含氢比表现为先上升后下降,到达最大爆炸压力的时间规律则相反;在当量浓度和贫氧状态下,H2/CO混合气的体积比成影响预混体系爆炸压力特性的主要因素。甲烷体积分数对甲烷-氢气-一氧化碳-空气预混气体爆炸压力特性的影响整体呈非线性以及波动式下降变化。

甲烷-空气预混体系爆炸过程中的火焰形态演化可分为以下四个阶段:(1)燃料初燃,出现光晕;(2)初始火焰形成,火焰锋面清晰可见;(3)火焰向四周扩展,全面爆燃;(4)火焰衰减和熄灭。不同内层含氢比的甲烷-氢气-一氧化碳-空气混合气的火焰结构发展基本相同,在内层含氢比大于50%时,火焰锋面呈现内层火焰和外层火焰两种类型。基于MATLAB和Origin软件获取了甲烷-氢气-一氧化碳-空气混合气爆炸过程中的火焰传播速度。压力的不断增大可以反映火焰亮度的强弱,初期的火焰传播速度与压力变化的相互关系较弱。

当量比、不同体积H2/CO混合气和混合气内层含氢比对甲烷-氢气-一氧化碳-空气预混体系爆炸过程中各中间产物的光谱辐射强度峰值的影响呈现复杂的非线性变化;甲烷体积分数对其的影响整体存在非线性和波动形特征。甲烷-空气混合物爆炸过程中中间产物特征光谱辐射特性与火焰强度有较好的一致性,火焰强度的明暗程度对自自由基辐射信号强度的大小有一定参考,对链式反应进程的反应速率变化有一定的指导作用。

论文外文摘要:

In petrochemical, natural gas and other industries, combustible gas in the production, storage and use of explosion accidents occur frequently; In addition, due to the complex mine environmental conditions, resulting in high gas explosion accidents. In order to solve the security problems of industrial production life and mine exploitation, combining with the theory of combustion and flammable gas explosion propagation mechanism, using visual spherical explosion comprehensive experiment platform, using high speed camera and spectrum measurement system of hydrogen and carbon monoxide - air premixed methane gas explosion characteristic has carried on the experimental study, reveals its macroscopic and microscopic characteristic parameters of interaction between basic parameters. The main conclusions and research results are as follows:

The development process of constant volume explosion pressure in the premixed gas of methane-hydrogen-carbon monoxide and air can be divided into three stages: ignition electrode discharge stage, explosion pressure rise stage and explosion attenuation stage. The explosion pressure rise stage can be divided into the initial combustion period and the full combustion and explosion period.The lower concentration of H2/CO mixture also has an effect on the characteristics of methane explosion pressure. It defines the hydrogen content of the inner layer. Under the condition of oxygen enrichment, the maximum explosion pressure and pressure increase rate of the whole premixed system first increase and then decrease with the hydrogen content ratio in the inner layer, while the law of the time to reach the maximum explosion pressure is opposite.Under the condition of equivalent concentration and oxygen deficiency, the volume ratio of H2/CO mixture is the main factor affecting the explosion pressure characteristics of the premixed system. The effect of methane volume fraction on the explosion pressure characteristics of methane-hydrogen-carbon monoxide - air premixed gas is non-linear and fluctuating.

The flame morphology evolution in the process of methane-air premixed gas detonation and explosion can be divided into the following four stages: (1) the initial combustion of fuel and halo; (2) The initial flame is formed and the flame front is clearly visible; (3) the flame expands to all sides and deflagrates comprehensively; (4) Flame attenuation and extinction. The flame structure development of the mixtures with different inner layer hydrogen content is basically the same. When the inner layer hydrogen content is greater than 50%, the flame front presents two types of inner flame and outer flame. Based on Matlab and Origin softwares, the flame propagation velocity in the explosion process of methane-hydrogen-carbon monoxide - air mixture was obtained. The constant increase of pressure can reflect the intensity of flame brightness, and the correlation between the initial flame propagation velocity and the change of pressure is weak.

The effects of equivalence ratio, H2/CO mixture of different volumes and the ratio of hydrogen in the inner layer of the mixture on the peak spectral radiation intensity of the intermediates in the explosion process of the methane-hydrogen-carbon monoxide premixed system show complex nonlinear changes. The effect of methane volume fraction on it is non-linear and wave-shaped. In the process of methane-air mixture explosion, the characteristic spectral radiation characteristics of intermediate products are in good agreement with the flame intensity. The light and shade of the flame intensity can be used as a reference for the signal intensity of free radical radiation, and can guide the reaction rate change in the chain reaction process.

参考文献:

[1] 谢和平,吴立新,郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报. 2019, 44(7): 1949-1960.

[2] 王德明. 煤矿热动力灾害及特性[J]. 煤炭学报. 2018, 43(01): 137-142.

[3] 王连聪,梁运涛,罗海珠. 我国矿井热动力灾害理论研究进展与展望[J]. 煤炭科学技术. 2018, 46(7): 1-9.

[4] 王紫嫣. 浅析煤矿死亡事故及预防对策[J]. 科技风. 2019(13): 214, 216.

[5] Dobashi R. Studies on accidental gas and dust explosions[J]. Fire Safety Journal. 2017, 91: 21-27.

[6] 高娜,张延松,胡毅亭,等. 受限空间瓦斯爆炸链式反应动力学分析[J]. 中国安全科学学报. 2014, 24(1): 60-65.

[7] 陆胤臣,陶刚,张礼敬. 球形容器内甲烷-空气爆炸特性分析与理论计算[J]. 爆炸与冲击. 2017, 37(04): 773-778.

[8] Cui G, Wang S, Liu J, et al. Explosion characteristics of a methane/air mixture at low initial temperatures[J]. Fuel. 2018, 234: 886-893.

[9] Li Z, Chen L, Yan H, et al. Gas explosions of methane-air mixtures in a large-scale tube[J]. Fuel. 2021, 285: 119239.

[10] Mitu M, Giurcan V, Razus D, et al. Propagation indices of methane-air explosions in closed vessels[J]. Journal of Loss Prevention in the Process Industries. 2017, 47: 110-119.

[11] Ye Q, Wang G G X, Jia Z, et al. Experimental study on the influence of wall heat effect on gas explosion and its propagation[J]. Applied Thermal Engineering. 2017, 118: 392-397.

[12] Sun S, Qiu Y, Xing H, et al. Effects of concentration and initial turbulence on the vented explosion characteristics of methane-air mixtures[J]. Fuel (Guildford). 2020, 267: 117103.

[13] Wang C, Zhao Y, Addai E K. Investigation on propagation mechanism of large scale mine gas explosions[J]. Journal of Loss Prevention in the Process Industries. 2017, 49: 342-347.

[14] 尹彬,陆卫东,贾宝山,等. 采空区煤自然发火与瓦斯爆炸耦合机理研究[J]. 矿业安全与环保. 2017, 44(2): 35-38, 44.

[15] 苟宝洋,吴兵,马一飞,等. 基于Simtec的近球体瓦斯爆炸数值模拟[J]. 矿业安全与环保. 2020, 47(02): 11-15.

[16] 谭迎新,于硕,韩意. 密闭空间甲烷-空气混合物爆炸传播过程研究[J]. 中北大学学报(自然科学版). 2017, 38(05): 605-608.

[17] 梁运涛,王连聪,罗海珠,等. 定容燃烧反应器中瓦斯爆炸反应动力学计算模型[J]. 煤炭学报. 2015, 40(8): 1853-1858.

[18] 李艳红,贾宝山,曾文,等. 受限空间初始压力对瓦斯爆炸反应动力学特性的影响[J]. 辽宁工程技术大学学报(自然科学版). 2011, 30(05): 697-701.

[19] Nie B, Yang L, Ge B, et al. Chemical kinetic characteristics of methane/air mixture explosion and its affecting factors[J]. Journal of loss prevention in the process industries. 2017, 49: 675-682.

[20] Emami S D, Rajabi M, Che Hassan C R, et al. Experimental study on premixed hydrogen/air and hydrogen–methane/air mixtures explosion in 90 degree bend pipeline[J]. International Journal of Hydrogen Energy. 2013, 38(32): 14115-14120.

[21] Ilbas M, Crayford A P, Yılmaz O, et al. Laminar-burning velocities of hydrogen–air and hydrogen–methane–air mixtures: An experimental study[J]. International Journal of Hydrogen Energy. 2006, 31(12): 1768-1779.

[22] Deng J, Cheng F, Song Y, et al. Experimental and simulation studies on the influence of carbon monoxide on explosion characteristics of methane[J]. Journal of Loss Prevention in the Process Industries. 2015, 36: 45-53.

[23] Li Y, Bi M, Li B, et al. Effects of hydrogen and initial pressure on flame characteristics and explosion pressure of methane/hydrogen fuels[J]. Fuel. 2018, 233: 269-282.

[24] Shen X, Xiu G, Wu S. Experimental study on the explosion characteristics of methane/air mixtures with hydrogen addition[J]. Applied Thermal Engineering. 2017, 120: 741-747.

[25] Shen X, Zhang B, Zhang X, et al. Explosion characteristics of methane-ethane mixtures in air[J]. Journal of Loss Prevention in the Process Industries. 2017, 45: 102-107.

[26] Liang W, Liu Z, Law C K. Explosion limits of H2/CH4/O2 mixtures: Analyticity and dominant kinetics[J]. Proceedings of the Combustion Institute. 2019, 37(1): 493-500.

[27] Zhang S, Ma H, Huang X, et al. Numerical simulation on methane-hydrogen explosion in gas compartment in utility tunnel[J]. Process Safety and Environmental Protection. 2020, 140: 100-110.

[28] Wang T, Luo Z, Wen H, et al. Effects of flammable gases on the explosion characteristics of CH4 in air[J]. Journal of Loss Prevention in the Process Industries. 2017, 49: 183-190.

[29] 孙巧群,王义德,高建民,等. H2S对CH4着火延迟及还原NO影响的数值模拟[J]. 哈尔滨工业大学学报. 2019, 51(07): 49-55.

[30] Ivanov I, Baranov A M, Akbari S, et al. Methodology for estimating potential explosion hazard of hydrocarbon with hydrogen mixtures without identifying gas composition[J]. Sensors and Actuators B: Chemical. 2019, 293: 273-280.

[31] Jiang B, Lin B, Shi S, et al. Theoretical Analysis on the Attenuation Characteristics of Strong Shock Wave of Gas Explosion[J]. Procedia Engineering. 2011, 24: 422-425.

[32] Li R, Luo Z, Wang T. Effect of initial temperature and H2 addition on explosion characteristics of H2 -poor/CH4 /air mixtures[J]. Energy. 2020, 118979(213).

[33] 马秋菊,邵俊程,王众山,等. 氢气比例和点火能量对CH4-H2混合气体爆炸强度影响的实验研究[J]. 高压物理学报. 2020, 34(01): 131-136.

[34] Wang T, Luo Z, Wen H, et al. Experimental study on the explosion and flame emission behaviors of methane-ethylene-air mixtures[J]. Journal of Loss Prevention in the Process Industries. 2019, 60: 183-194.

[35] 贾进章,朱金超,甄纹浩. 乙炔对瓦斯爆炸的化学动力学影响模拟研究[J]. 中国安全科学学报. 2020, 30(09): 29-36.

[36] 贾宝山,李春苗,彬尹. 基于CHEMKIN-PRO的多元混合气体瓦斯燃烧模拟研究[J]. 煤炭学报. 2017, 42(03): 646-652.

[37] 罗振敏,刘利涛. 以氢气为主要成分的其他可燃气体对低浓度甲烷爆炸特性的影响[J]. 安全与环境学报. 2019, 19(01): 167-172.

[38] 罗振敏,苏彬,王涛,等. C2H6/C3H8影响CH4爆炸极限参数及动力学特性研究[J]. 化工学报. 2019, 70(09): 3601-3610.

[39] 罗振敏,林京京,郭正超,等. 煤矿其他可燃气体对空气中甲烷爆炸极限的影响[J]. 中国安全科学学报. 2015, 25(01): 91-97.

[40] 罗振敏,高帅帅,李逵,等. 多元可燃性气体爆炸压力与中间产物发射光谱特性的耦合研究[J]. 中国安全生产科学技术. 2020, 16(01): 11-17.

[41] 秦毅,陈小伟,黄维. 密闭空间可燃气体爆炸超压预测[J]. 爆炸与冲击. 2020, 40(3): 39-50.

[42] 陈晓坤,刘著,王秋红. 瓦斯爆炸CH/CHO/C2自由基光谱特征研究[J]. 西安科技大学学报. 2019, 39(05): 745-752.

[43] 李孝斌,崔沥巍,张瑞杰,等. 甲烷爆炸初期关键自由基化学发光与爆炸压力的耦合关系分析[J]. 含能材料. 2020, 28(8): 779-785.

[44] Jiang X, Yu B, Xu J, et al. Study on the deflagration reaction process of oil gas in long-narrow confined space based on PLIF and flame spectra[J]. Journal of loss prevention in the process industries. 2020, 64: 104088.

[45] Oliveira G P, Sbampato M E, Martins C A, et al. Experimental laminar burning velocity of syngas from fixed-bed downdraft biomass gasifiers[J]. Renewable Energy. 2020, 153: 1251-1260.

[46] He Y, Wang Z, Yang L, et al. Investigation of laminar flame speeds of typical syngas using laser based Bunsen method and kinetic simulation[J]. Fuel. 2012, 95: 206-213.

[47] Rosell J, Bai X, Sjoholm J, et al. Multi-species PLIF study of the structures of turbulent premixed methane/air jet flames in the flamelet and thin-reaction zones regimes[J]. Combustion and Flame. 2017, 182: 324-338.

[48] 罗振敏,王涛,文虎,等. CO对CH4爆炸及自由基发射光谱特性的影响[J]. 煤炭学报. 2019, 44(7): 2167-2177.

[49] 田照华,董美蓉,陆继东,等. LIBS应用于甲烷层流扩散火焰空间分布研究[J]. 激光技术. 2018, 42(1): 60-65.

[50] 张传钊,李萍,赵岩,等. 二甲苯点火延迟时间和燃烧发射光谱测量[J]. 推进技术. 2014, 35(03): 392-396.

[51] 刘奎,李孝斌,郑丹. 甲烷爆炸感应期内火焰光谱特征分析方法研究[J]. 光谱学与光谱分析. 2015(8): 2067-2072.

[52] 宋旭东,郭庆华,张婷,等. 甲烷同轴射流扩散火焰中自由基的辐射特性[J]. 中国电机工程学报. 2013(35): 50-57.

[53] 高爱华,苏斌,井波,等. 甲烷在直流放电等离子体中形成自由基研究[J]. 西安石油大学学报(自然科学版). 2010, 25(1): 68-70, 76.

[54] 李迎,李萍,肖海波,等. 瞬态光谱法测量环氧丙烷爆轰温度[J]. 光谱学与光谱分析. 2008, 28(3): 490-493.

[55] 叶彬,李萍,张昌华,等. 正庚烷燃烧反应中间自由基的光谱测量[J]. 光谱学与光谱分析. 2012, 32(04): 898-901.

[56] 王利东,李萍,张昌华,等. 正癸烷燃烧反应中OH,CH和C2自由基的瞬态发射光谱[J]. 光谱学与光谱分析. 2012, 32(05): 1166-1169.

[57] Salamandra G D, Bazhenova T V, Naboko I M. Formation of detonation wave during combustion of gas in combustion tube.[J]. Proc Combust Inst. 1958(07): 851-855.

[58] Clanet C, Searby G. On the “ Tulip Flame ” Phenomenon[J]. Combust Flame. 1996, 105: 225-238.

[59] 汪泉,沈兆武,郭子如,等. 基于高速摄像的半开口管道内瓦斯预混火焰传播特征的分析[J]. 爆破器材. 2013, 42(05): 18-22.

[60] Liu Q, Zhang Y, Niu F, et al. Study on the flame propagation and gas explosion in propane/air mixtures[J]. Fuel. 2015, 140: 677-684.

[61] Ai Y, Zhou Z, Chen Z, et al. Laminar flame speed and Markstein length of syngas at normal and elevated pressures and temperatures[J]. Fuel. 2014, 137: 339-345.

[62] Li M, Liu Z, Chen L, et al. Flame propagation characteristics and overpressure prediction of unconfined gas deflagration[J]. Fuel. 2021, 284: 119022.

[63] Jeon J, Choi W, Kim S J. A flammability limit model for hydrogen-air-diluent mixtures based on heat transfer characteristics in flame propagation[J]. Nuclear Engineering and Technology. 2019, 51: 1749-1757.

[64] Wang J, Wu Y, Zheng L, et al. Study on the propagation characteristics of hydrogen/methane/air premixed flames in variable cross-section ducts[J]. Process safety and environmental protection. 2020, 135: 135-143.

[65] 李国庆,张笈玮,武军,等. 方管内汽油-空气混合气体密闭爆炸和泄爆特性研究[J]. 爆炸与冲击. 2020, 40(10): 4-17.

[66] 解北京,杜玉晶,王亮. 分岔管道内瓦斯爆炸火焰传播规律实验及数值模拟[J]. 重庆大学学报. 2019, 42(06): 69-77.

[67] 刘学,刘剑,曲敏. 高海拔矿井掘进巷道瓦斯爆炸火焰传播规律数值模拟[J]. 中国安全生产科学技术. 2020, 16(12): 67-71.

[68] 王秋红,王二飞,陈晓坤,等. 管道内瓦斯爆炸火焰传播压力与温度特性[J]. 中南大学学报(自然科学版). 2020, 51(01): 239-247.

[69] 蔡定根,李会荣,李孝斌,等. 汽油蒸气爆炸火焰光学特征的实验研究[J]. 消防科学与技术. 2019, 38(8): 1187-1189.

[70] 王开民,毕海普,雷伟刚,等. 三通管支管位置对爆炸火焰传播影响分析[J]. 中国安全生产科学技术. 2020, 16(10): 65-70.

[71] 时高龙,温小萍,王发辉,等. 预混气体爆炸火焰与压力的耦合振荡特性[J]. 化工学报. 2019(7): 2811-2818.

[72] 郭子如,方琦,汪泉,等. 障碍物形态对瓦斯爆燃火焰传播影响研究[J]. 煤炭工程. 2019, 51(12): 146-149.

[73] Dahoe A E, de Goey L P H. On the determination of the laminar burning velocity from closed vessel gas explosions[J]. Journal of Loss Prevention in the Process Industries. 2003, 16(6): 457-478.

中图分类号:

 TD712.7    

开放日期:

 2023-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式