题名: | 煤层高强开采卸压瓦斯运储区联动演化机理及其应用 |
作者: | |
学号: | 18120089012 |
保密级别: | 保密(4年后开放) |
语种: | chi |
学科代码: | 083700 |
学科: | 工学 - 安全科学与工程 |
学生类型: | 博士 |
学位: | 工学博士 |
学位年度: | 2022 |
学校: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 矿井瓦斯防治 |
导师姓名: | |
导师单位: | |
提交日期: | 2022-06-23 |
答辩日期: | 2022-06-02 |
外文题名: | Research on Linkage Evolution Mechanism and Application of Pressure-relief Gas Transportation and Storage Area in High-intensity Mining |
关键词: | |
外文关键词: | Linkage evolution ; Pressure-relief gas ; Mining fracture ; Transportation and storage area ; High-intensity mining |
摘要: |
我国西部作为国家煤炭资源主产区与重要能源战略承接地,近些年来随着矿山机械装备水平与生产集约化程度不断提高,以大采宽、高推速为特点的高强开采工作面数量越来越多。煤层高强开采条件下,卸压瓦斯涌出强度与涌出量加大,采空区覆岩卸压瓦斯运储区域难以辨识、形态特征更为复杂,导致卸压瓦斯抽采效率不能完全满足安全高效开采需求。论文阐述了高强开采条件下采动覆岩裂隙演化、采空区瓦斯运移及卸压瓦斯抽采等方面的规律与机理,可为高强开采工作面卸压瓦斯抽采提供一定的理论依据与工程借鉴。 论文以典型高强开采矿井为工程背景,通过物理相似模拟实验,分析了采动应力分布及变化规律,覆岩裂隙分布、岩层位移以及垮落岩体碎胀特征。基于分形理论推导了采动裂隙网络分形-渗透方程,并结合现场钻孔窥视以及抽采参数反演了覆岩渗透率的变化规律,得到理论模型计算值与现场渗透率反演值的平均误差为8.11 %。构建了以裂隙开度计算瓦斯流态的控制方程,提出了卸压瓦斯运储区的量化判别准则,并将裂隙网络划分为破断裂隙瓦斯运移优势区、破断裂隙压实瓦斯微渗区、离层裂隙瓦斯运移优势区、离层裂隙压实瓦斯微渗区及离层裂隙瓦斯富集区。 通过FLAC3D数值模拟,分析了不同推进速度与面宽条件下覆岩应力、岩层位移及塑性区分布特征,利用响应面分析方法得到了两个因素对卸压瓦斯运储区形态特征的交互作用规律。在覆岩位移及应力方面,推速加快时,应力集中在压实区显著减小,超前区域涉及范围增大;面宽增大时,采空区周边支撑压力上升,岩层位移量呈指数型增长,且达到充分采动的距离越小。亚关键层位置岩层完整性较好的“砌体梁”结构及其下方区域是卸压瓦斯抽采重点区域,推速增加时,卸压瓦斯运储区走向延伸长度呈指数增长,倾向宽度基本保持不变;面宽增加时,其走向延伸距离减小,倾向宽度增大。卸压瓦斯运储区面积决定了该区域卸压瓦斯储集空间的大小,可依据面积大小选择相对适宜的瓦斯抽采方法,对面积影响显著性主次排序为:推速线性作用、面宽线性作用、推速非线性作用、两者交互作用、面宽非线性作用。 明确了采空区破碎岩体应力恢复与破碎特征,利用破碎岩体压实-渗流试验系统,研究了不同级配、不同加载速率下破碎岩体压实变形、能量耗散以及渗流特征。发现破碎岩体的压实过程可分为初始压密、弹性压实及塑性压固三个阶段。加载速率的增大或级配的减小均会导致前两阶段的长度减小。第一阶段声发射信号强度与数量均较小,第二阶段声发射信号数量与累计能量耗散呈直线增长模式,第三阶段则表现为衰减式增长模式;加载速率增大会导致声发射累计计数及事件能量等级的提升,而级配的增大则使得事件数量减小与能量等级的增加。试验条件下破碎岩体渗透率为1.6×10-9~3.5×10-7 m2,级配与加载速率增加均会导致渗透率增加,当粒度分形接近分形极限时,各级配试验的渗透率均趋于零。建立了破碎岩体侧向约束压缩过程中能量耗散-分形方程,并得到了破碎颗粒能量耗散与空隙变化路径。 应用弹性力学与渗流力学基本原理,阐述了顶板发生“O-X”型破断过程中裂隙演化特征,发现低位岩层破断类型为纵向“O-X”型破断,高位岩层则是横向“O-X”型破断,并给出了发生两种类型破断临界条件。明确了卸压瓦斯升浮通道为“O”型裂隙与“X”型裂隙的交汇处,其储集空间为岩层间离层裂隙,且低位岩层中卸压瓦斯的运移模式以渗流与升浮为主,高位岩层中以扩散为主。揭示了在工作面持续推进情况下,卸压瓦斯运储区应力-裂隙-瓦斯运移的联动演化机理,分析了工作面宽度与推进速度对其演化的影响规律,依据此明晰了卸压瓦斯抽采系统布置原则。 以陕西黄陵二号煤矿有限公司211工作面为工程背景,应用上述理论分析与试验结果,结合FLUENT数值模拟得出了该工作面的最佳抽采位置位于煤层顶板上方23 m,距离回风巷25 m处。根据该工作面瓦斯运储区形态特征,分别设计了高、低速推进区域的常规高位钻孔、定向长钻孔及采空区埋管布置参数。通过现场观测,明确了钻孔抽采全生命周期可分为远距离抽采阶段、有效抽采阶段与近距离抽采阶段,其中高推速阶段各层位钻孔有效抽采长度及抽采浓度均有所降低。实际生产过程中,卸压瓦斯抽采率长期保持在80 %以上,工作面、回风巷、上隅角瓦斯均未发生超限现象,从瓦斯治理角度保障了工作面的安全高效生产,并为此类工作面的卸压瓦斯抽采提供了一定的理论依据与技术支持。 |
外文摘要: |
As the main production area of national coal resources and an important energy strategy in western China, in recent years, with the continuous improvement of the level of mining machinery and equipment and the degree of intensification of production, the number of high-intensity mining longwall face characterized by large mining width and high advance speed has increased. Under the condition of high-intensity mining of coal seams, the gushing intensity and gushing volume of pressure-relief gas increase, and it is difficult to identify the pressure-relief gas transportation and storage area of overlying rock in the goaf, and its morphological characteristics are more complex. As a result, the decompression gas extraction efficiency cannot fully meet the needs of safe and efficient extraction. The article expounds the laws and mechanisms of the evolution of mining overburden fracture, pressure-relief gas migration in goaf and its extraction under high-intensity mining conditions, which can provide a certain theoretical basis for pressure relief gas extraction in high-intensity mining face. Based on the engineering background of typical high-strength mining wells, this paper analyzes the distribution and variation of mining stress, the distribution of overburden fissures, the displacement of rock strata and the characteristics of collapsed rock mass through physical similarity simulation experiments. Based on the fractal theory, the fractal-permeability equation of the mining fracture network is deduced. The permeability variation law of overlying rock was inverted by combining on-site borehole observation and extraction parameters, and the average error between the theoretical model calculated value and the in-field permeability inversion value was 8.11 %. The governing equation for calculating the gas flow state based on the opening of the fissure is constructed, and the quantitative criterion for the pressure-relief gas transportation and storage area is put forward. The fracture network is divided into the predominant area for gas migration in fractured fractures, the micro-permeability area in fractured fracture compaction, the predominant area for gas migration in abscission fractures, the gas micro-permeability area in interlayer fracture compaction, and the gas enrichment area in fractured fractures. Through FLAC3D numerical simulation, the distribution characteristics of overlying rock stress, rock stratum displacement and plastic zone under the conditions of different advancing speed and face width are analyzed, and the interaction law of the two factors on the morphological characteristics of the pressure relief gas transportation and storage area is obtained by using the response surface analysis method. In terms of the displacement and stress of the overlying rock, when the advancing speed is accelerated, the stress concentration in the compaction area is significantly reduced, and the scope of the leading area is increased. When the face width increases, the support pressure around the goaf increases, the rock stratum displacement increases exponentially, and the distance to full mining is smaller. The "masonry beam" structure with good rock integrity at the sub-key stratum and the area below are the key areas for decompression gas drainage. When the pushing speed increases, the extension length of the pressure relief gas transportation and storage area increases exponentially, and the inclination width basically remains unchanged. When the face width increases, its strike extension distance decreases, and its inclination width increases. The structural area of the pressure-relief gas transportation and storage area determines the size of the pressure-relief gas storage space in this area, and a relatively suitable gas extraction method can be selected according to the size of the area. the significant influence on the area is: linear effect of thrust, linear effect of surface width, nonlinear effect of thrust, interaction between the two, and nonlinear effect of surface width. The stress recovery and crushing characteristics of broken rock mass in goaf are clarified. Using the crushed rock mass compaction-seepage test system, the compaction deformation, energy dissipation and seepage characteristics of crushed rock mass under different gradations and loading rates were studied. It is found that the compaction process of broken rock mass can be divided into three stages: initial compaction, elastic compaction and plastic compaction. Either an increase in the loading rate or a decrease in the gradation results in a decrease in the length of the first two stages. In the first stage, the intensity and quantity of acoustic emission signals are both relatively small. In the second stage, the number of acoustic emission signals and the cumulative energy dissipation show a linear growth mode, and the third stage shows a decaying growth mode. Increasing the loading rate will lead to an increase in the accumulative count of acoustic emissions and an increase in the event energy level, while an increase in the gradation results in a decrease in the number of events and an increase in the energy level. Under the test conditions, the permeability of the broken rock mass is 1.6×10-9~3.5×10-7 m2, and the increase of gradation and loading rate will lead to the increase of permeability tend to zero. The energy dissipation-fractal equation in the process of lateral restraint compression of broken rock mass is established, and the energy dissipation and void change paths of broken particles are obtained. Using the basic principles of elasticity and seepage mechanics, the evolution characteristics of cracks in the process of "O-X" type fracture of the roof are expounded. It is found that the fracture type of low-level strata is vertical "O-X" type fracture, and the high-level rock layer is horizontal "O-X" type fracture, and the critical conditions for the occurrence of two types of fractures are given. It is clear that the pressure relief gas lift channel is the intersection of the "O" type fracture and the "X" type fracture, and its storage space is the interlayer fracture. The migration mode of pressure-relieving gas in low-level strata is mainly seepage and floating, while in high-level strata, diffusion is the main mode. Revealing the linkage evolution mechanism of stress-fracture-gas migration in the pressure relief gas transport and storage area under the condition of continuous advancement of the working face. The influence of working face width and advancing speed on its evolution is analyzed, and the arrangement principle of pressure relief gas drainage system is clarified according to it. Taking the 211 longwall face of Shaanxi Huangling No. 2 Coal Mine Co., Ltd. as the engineering background, applying the above theoretical analysis and test results, combined with FLUENT numerical simulation, it is concluded that the optimal extraction position of this working face is 23 m above the coal seam roof, a distance from the returning airway 25 m. According to the morphological characteristics of the gas transportation and storage area of the working face, the conventional high-level drilling, directional long drilling and the goaf buried pipe layout parameters in the high-speed and low-speed propulsion areas are designed respectively. Through on-site observation, it is clarified that the whole life cycle of drilling and extraction can be divided into long-distance extraction stage, effective extraction stage and short-range extraction stage. concentrations were decreased. In the actual production process, the pressure relief gas extraction rate has been maintained at more than 80% for a long time, and the gas in the working face, return air lane and upper corner has not exceeded the limit. From the perspective of gas control, the safe and efficient production of the working face is guaranteed. It provides a certain theoretical basis and technical support for the pressure relief gas extraction of this kind of working face. |
参考文献: |
袁亮.深部采动响应与灾害防控研究进展[J].煤炭学报,2021,46(03):716-725. [2] 刘峰,曹文君,张建明,等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报, 2021, 46(01): 1-15. [3] 谢和平,吴立新,郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(07): 1949-1960. [4] 袁亮.废弃矿井资源综合开发利用助力实现“碳达峰、碳中和”目标[J].科技导报,2021,39(13):1. [6] 郭文兵,白二虎,赵高博. 高强度开采覆岩地表破坏及防控技术现状与进展[J]. 煤炭学报, 2020, 45(02): 509-523. [7] 中华人民共和国自然资源部.中国矿产资源报告[M].北京:地质出版社,2021 [8] 郭文兵,王云广. 基于绿色开采的高强度开采定义及其指标体系研究[J]. 采矿与安全工程学报, 2017, 34(04): 616-623. [9] 范立民,张晓团,向茂西,等. 浅埋煤层高强度开采区地裂缝发育特征——以陕西榆神府矿区为例[J]. 煤炭学报, 2015, 40(06): 1442-1447. [10] 范立民. 榆神府区煤炭开采强度与地质灾害研究[J]. 中国煤炭, 2014, 40(05): 52-55. [11] 龚选平,武建军,李树刚,等. 低瓦斯煤层高强开采覆岩卸压瓦斯抽采合理布置研究[J]. 采矿与安全工程学报, 2020, 37(02): 419-428. [12] 龚选平,陈龙,陈善文,等. 高强度开采低瓦斯煤层时瓦斯涌出的时空分布特征及关键影响因素[J]. 矿业安全与环保, 2020, 47(04): 17-23. [13] 李树刚,林海飞,赵鹏翔,等. 采动裂隙椭抛带动态演化及煤与甲烷共采[J]. 煤炭学报, 2014, 39(08): 1455-1462. [14] 李树刚,李生彩,林海飞,等. 卸压瓦斯抽取及煤与瓦斯共采技术研究[J]. 西安科技学院学报, 2002, (03): 247-249. [15] 李树刚,钱鸣高. 我国煤层与甲烷安全共采技术的可行性[J]. 科技导报, 2000, (06): 39-41. [16] 鞠金峰,许家林,王庆雄. 大采高采场关键层“悬臂梁”结构运动型式及对矿压的影响[J]. 煤炭学报, 2011, 36(12): 2115-2120. [17] 冯军发,周英,张开智,等. 浅埋近距离多煤层采空区下厚关键层破断特征及支架工作阻力确定[J]. 采矿与安全工程学报, 2018, 35(02): 332-338. [18] 黄庆享,周金龙. 浅埋煤层大采高工作面矿压规律及顶板结构研究[J]. 煤炭学报, 2016, 41(S2): 279-286. [19] 刘天泉. 煤矿地表移动与覆岩破坏规律及其应用[M]. 煤矿地表移动与覆岩破坏规律及其应用, 1981. [20] 高延法. 岩移“四带”模型与动态位移反分析[J]. 煤炭学报, 1996, (01): 51-56. [21] 钱鸣高,许家林. 覆岩采动裂隙分布的“O”形圈特征研究[J]. 煤炭学报, 1998, (05): 20-23. [22] 许家林,钱鸣高. 覆岩采动裂隙分布特征的研究[J]. 矿山压力与顶板管理, 1997, (Z1): 213-215. [23] 袁亮,郭华,沈宝堂,等. 低透气性煤层群煤与瓦斯共采中的高位环形裂隙体[J]. 煤炭学报, 2011, 36(03): 357-365. [24] 袁亮. 卸压开采抽采瓦斯理论及煤与瓦斯共采技术体系[J]. 煤炭学报, 2009, 34(01): 1-8. [25] 袁亮. 低透高瓦斯煤层群安全开采关键技术研究[J]. 岩石力学与工程学报, 2008, (07): 1370-1379. [26] 李树刚,徐培耘,赵鹏翔,等. 采动裂隙椭抛带时效诱导作用及卸压瓦斯抽采技术[J]. 煤炭科学技术, 2018, 46(09): 146-152. [27] 丁洋,朱冰,李树刚,林海飞,魏宗勇,李磊明,龙航,宜艳.高突矿井采空区卸压瓦斯精准辨识及高效抽采[J].煤炭学报,2021,46(11):3565-3577. [28] 李树刚,石平五,钱鸣高. 覆岩采动裂隙椭抛带动态分布特征研究[J]. 矿山压力与顶板管理, 1999, (Z1): 44-46. [29] 谢和平,于广明,杨伦,等. 采动岩体分形裂隙网络研究[J]. 岩石力学与工程学报, 1999, (02): 29-33. [30] 于广明,谢和平,周宏伟,等. 结构化岩体采动裂隙分布规律与分形性实验研究[J]. 实验力学, 1998, (02): 14-23. [31] 杨伦,于广明,王旭春,等. 煤矿覆岩采动离层位置的计算[J]. 煤炭学报, 1997, (05): 31-34 [32] 李增琪. 计算矿山压力和岩层移动的三维层体模型[J]. 煤炭学报, 1994, (02): 109-121. [33] 李增琪. 使用富氏积分变换计算开挖引起的地表移动[J]. 煤炭学报, 1983, (02): 18-28. [34] 张玉卓,仲惟林,姚建国. 岩层移动的位错理论解及边界元法计算[J]. 煤炭学报, 1987, (02): 21-31. [36] D-L Turcotte. Fractals and fragmentation[J]. John Wiley & Sons, Ltd, 1986, 91(B2). [37] 谢和平,高峰. 岩石类材料损伤演化的分形特征[J]. 岩石力学与工程学报, 1991, (01): 74-82 [38] 康天合,赵阳升,靳钟铭. 煤体裂隙尺度分布的分形研究[J]. 煤炭学报, 1995, (04): 393-395. [39] 靳钟铭,康天合,弓培林,等. 煤体裂隙分形与顶煤冒放性的相关研究[J]. 岩石力学与工程学报, 1996, (02): 48-54. [40] 赵阳升,马宇,段康廉. 岩层裂缝分形分布相关规律研究[J]. 岩石力学与工程学报, 2002, (02): 219-222. [41] 薛东杰,周宏伟,唐咸力,等. 采动煤岩体瓦斯渗透率分布规律与演化过程[J]. 煤炭学报, 2013, 38(06): 930-935. [42] 薛东杰,周宏伟,王超圣,等. 上覆岩层裂隙演化逾渗模型研究[J]. 中国矿业大学学报, 2013, 42(06): 917-922. [43] 周宏伟,张涛,薛东杰,等. 长壁工作面覆岩采动裂隙网络演化特征[J]. 煤炭学报, 2011, 36(12): 1957-1962. [44] 薛东杰,唐麒淳,王傲,等. 煤岩微观相态FCN智能识别与分形重构[J]. 岩石力学与工程学报, 2020, 39(06): 1203-1221. [45] 李宏艳,王维华,齐庆新,等. 基于分形理论的采动裂隙时空演化规律研究[J]. 煤炭学报, 2014, 39(06): 1023-1030. [46] 许兴亮,张农,田素川. 采场覆岩裂隙演化分区与渗透性研究[J]. 采矿与安全工程学报, 2014, 31(04): 564-568. [47] 黄庆享,曹健,杜君武,李雄峰.浅埋近距煤层开采三场演化规律与合理煤柱错距研究[J].煤炭学报,2019,44(03):681-689. [48] 夏小刚,黄庆享. 基于空隙率的冒落带动态高度研究[J]. 采矿与安全工程学报, 2014, 31(01): 102-107. [49] 张勇,张春雷,赵甫. 近距离煤层群开采底板不同分区采动裂隙动态演化规律[J]. 煤炭学报, 2015, 40(04): 786-792. [50] 付玉平,宋选民,邢平伟,等. 浅埋厚煤层大采高工作面顶板岩层断裂演化规律的模拟研究[J]. 煤炭学报, 2012, 37(03): 366-371. [51] 付玉平,宋选民,邢平伟. 浅埋煤层大采高超长工作面垮落带高度的研究[J]. 采矿与安全工程学报, 2010, 27(02): 190-194. [52] 付玉平,宋选民,邢平伟,等. 大采高采场顶板断裂关键块稳定性分析[J]. 煤炭学报, 2009, 34(08): 1027-1031. [53] 杨敬虎,孙少龙,孔德中.高强度开采工作面矿压显现的面长和推进速度效应[J].岩土力学,2015,36(S2):333-339+350. [54] 杨敬虎. 高强度开采工作面矿压显现的推进速度效应分析[D].中国矿业大学(北京),2016. [55] 杨敬虎. 工作面推进速度与矿山压力显现关系研究[J]. 煤炭与化工, 2014, 37(01): 27-29. [56] 王晓振,许家林,朱卫兵,等. 浅埋综采面高速推进对周期来压特征的影响[J]. 中国矿业大学学报, 2012, 41(03): 349-354. [57] 柴蕊. 综采工作面周期来压步距受回采速率影响研究[J]. 煤田地质与勘探, 2016, 44(04): 119-124. [58] 夏永学,康立军,齐庆新. 大采高综放工作面煤壁稳定性分析[J]. 煤炭科技, 2008, (04): 30-32. [59] 谢广祥,常聚才,华心祝. 开采速度对综放面围岩力学特征影响研究[J]. 岩土工程学报, 2007, (07): 963-967. [60] 赵德深,朱广轶,刘文生,等. 覆岩离层分布时空规律的实验研究[J]. 辽宁工程技术大学学报(自然科学版), 2002, (01): 4-7. [62] 李西蒙. 快速推进长壁工作面覆岩失稳运动的动态时空规律研究[D]. 中国矿业大学, 2015. [64] 赵鹏翔,卓日升,李树刚,等. 综采工作面推进速度对瓦斯运移优势通道演化的影响[J]. 煤炭科学技术, 2018, 46(07): 99-108. [66] 缪协兴,刘卫群,陈占清. 采动岩体渗流与煤矿灾害防治[J]. 西安石油大学学报(自然科学版), 2007, (02): 74-77. [67] 李顺才,缪协兴,陈占清. 破碎岩体非达西渗流的非线性动力学分析[J]. 煤炭学报, 2005, (05): 15-19. [69] 马占国,缪协兴,陈占清,等. 破碎煤体渗透特性的试验研究[J]. 岩土力学, 2009, 30(04): 985-988. [72] M-D Pappas, Mark C. Load Deformation Behavior of Simulated Longwall Gob Material[J]. 1993. [73] 姜振泉,季梁军,左如松. 煤矸石的破碎压密作用机制研究[J]. 中国矿业大学学报, 2001, (02): 31-34. [74] 刘松玉,邱钰,童立元,等. 煤矸石的强度特征试验研究[J]. 岩石力学与工程学报, 2006, (01): 199-205. [75] 樊秀娟,茅献彪. 破碎砂岩承压变形时间相关性试验[J]. 采矿与安全工程学报, 2007, (04): 486-489. [76] 苏承东,顾明,唐旭,等. 煤层顶板破碎岩石压实特征的试验研究[J]. 岩石力学与工程学报, 2012, 31(01): 18-26. [77] 陈晓祥,苏承东,唐旭,等. 饱水对煤层顶板碎石压实特征影响的试验研究[J]. 岩石力学与工程学报, 2014, 33(S1): 3318-3326. [78] 冯梅梅,吴疆宇,陈占清,等. 连续级配饱和破碎岩石压实特性试验研究[J]. 煤炭学报, 2016, 41(09): 2195-2202. [79] 张天军,陈佳伟,包若羽,等. 不同浸水时间级配破碎煤样的粒度分布分形特征[J]. 采矿与安全工程学报, 2018, 35(03): 598-604. [80] 张天军,郭毅,庞明坤,等. 不同环境湿度下承压破碎煤岩蠕变分形特征研究[J]. 采矿与安全工程学报, 2020, 37(05): 1037-1044. [81] 张天军,彭文清,庞明坤,等. 基于雷诺数的级配结构破碎煤样渗流失稳特征研究[J]. 采矿与安全工程学报, 2019, 36(06): 1273-1280. [82] 潘红宇,周敖,石涛,等. 不同级配破碎煤岩体分形特性试验研究[J]. 西安科技大学学报, 2017, 37(06): 795-800. [83] 褚廷湘,李品,晁江坤,等. 承压破碎煤体碎胀系数演变特征与机制[J]. 煤炭学报, 2017, 42(12): 3182-3188. [86] 胜山邦久. 声发射(AE)技术的应用[M]. 声发射(AE)技术的应用, 1996. [87] 秦四清. 岩石声发射技术概论[M]. 岩石声发射技术概论, 1993. [88] M Ohtsu. Acoustic emission testing[M]. Acoustic emission testing, 2008. [99] 秦尚林,杨兰强,高惠,等. 不同应力路径下绢云母片岩粗粒料声发射特征[J]. 岩土力学, 2015, 36(01): 89-96. [100] 王宁,李树刚,王世斌,张天军,郭毅.煤体破碎过程中分形特征与能量耗散规律研究[J].煤矿安全,2021,52(04):1-6. [102] 刘享华,张科,吴文远.裂隙砂岩破坏过程中的能量耗散与破碎分形特征研究[J/OL].重庆大学学报:1-11[2022-03-09]. [107] 斯蒂芬森,李开运,周家苞. 堆石工程水力计算[M]. 堆石工程水力计算, 1984. [109] 李广悦,丁德馨,张志军,等. 松散破碎介质中气体渗流规律试验研究[J]. 岩石力学与工程学报, 2009, 28(04): 791-798. [110] 李广悦. 松散破碎射气介质中氡运移的气液两相耦合模型及其工程应用[D]. 中南大学, 2012. [112] 张超,宋卫东,李腾,付建新,李杨.破碎岩体应力-渗流耦合模型及数值模拟研究[J].采矿与安全工程学报,2021,38(06):1220-1230. [113] 王伟,张村,吴山西,贾胜,杨永松,焦耀晨,何流.垮落带破碎煤岩样循环加卸载渗流特征实验研究[J].矿业科学学报,2020,5(04):374-381. [114] 黄先伍,唐平,缪协兴,等. 破碎砂岩渗透特性与孔隙率关系的试验研究[J]. 岩土力学, 2005, (09): 1385-1388. [115] 李顺才,缪协兴,陈占清,等. 承压破碎岩石非Darcy渗流的渗透特性试验研究[J]. 工程力学, 2008, (04): 85-92. [116] 张建营.采动破碎岩体非线性渗流规律研究[D].徐州:中国矿业大学,2019. [117] 张东,刘晓丽,王恩志.非均匀多孔介质等效渗透率的普适表达式[J].水文地质工程地质,2020,47(4):35-42. [118] 徐树媛,张永波,时红,相兴华.采空区冒落带内破碎岩体的渗流特征与渗透性试验 研究[J].安全与环境工程,2022,29(01):128-134. [119] 郁邦永.胶结破碎岩石非Darcy流渗透特性试验研究[D].徐州:中国矿业大学,2017. [120] 郁邦永,潘书才,魏建军,岳翎,郭静那.承压饱和破碎岩石颗粒破碎及渗透率演化特征研究[J].采矿与安全工程学报,2020,37(03):632-638. [121] 张培森,孙亚楠,颜伟,闫奋前,吴俊达.饱和破碎砂岩承压变形及渗流特性试验研究[J].采矿与安全工程学报,2019,36(05):1016-1024. [122] 张天军,尚宏波,李树刚,等.三轴应力下不同粒径破碎砂岩渗透特性试验[J].岩土力学,2018,39(7):2361-2370. [126] 张天军,任金虎,陈占清,等. 混合破碎岩样渗透特性试验研究[J]. 湖南科技大学学报(自然科学版), 2014, 29(03): 1-5. [127] 张天军,尚宏波,李树刚,等. 分级加载下破碎砂岩渗透特性试验及其稳定性分析[J]. 煤炭学报, 2016, 41(05): 1129-1136. [130] 余明高,晁江坤,褚廷湘,等. 承压破碎煤体渗透特性参数演化实验研究[J]. 煤炭学报, 2017, 42(04): 916-922. [131] 章梦涛,王景琰. 采场空气流动状况的数学模型和数值方法[J]. 煤炭学报, 1983, (03): 46-54. [132] 蒋曙光,王省身. 综放采场流场及瓦斯运移三维模型试验[J]. 中国矿业大学学报, 1995, (04): 85-91 [133] 蒋曙光,张人伟. 综放采场流场数学模型及数值计算[J]. 煤炭学报, 1998, (03): 36-39. [134] 何启林. 采空区瓦斯弥散流场的研究[J]. 焦作工学院学报, 1997, (03): 74-80. [135] 孙培德,鲜学福. 煤层气越流的固气耦合理论及其应用[J]. 煤炭学报, 1999, (01): 62-66. [136] 孙培德,万华根. 煤层气越流固-气耦合模型及可视化模拟研究[J]. 岩石力学与工程学报, 2004, (07): 1179-1185. [137] 梁运培. 采用岩石水平长钻孔抽放邻近层瓦斯[J]. 煤矿安全, 2001, (05): 28-29. [138] 李宗翔. 综放工作面采空区瓦斯涌出规律的数值模拟研究[J]. 煤炭学报, 2002, (02): 173-178. [139] 李宗翔,孟宪臣,赵国忱. 任意形冒落非均质采空区流场流态数值模拟[J]. 力学与实践, 2005, (06): 26-28. [140] 丁广骧,杨胜强,张吉禄. 采场复杂流场的流体动力相似与模化问题[J]. 中国矿业大学学报, 1995, (01): 47-51. [141] 丁广骧.三维采空区内瓦斯、氮气的扩散运动及有限元解法[J].煤炭学报,1996(04):77-80. [142] 柏发松. 采空区瓦斯上浮问题的实验研究[J]. 阜新矿业学院学报(自然科学版), 1997, (04): 412-416. [143] 柏发松,丁广骧. 二维煤层瓦斯渗透率的反演[J]. 煤炭学报, 1999, (04): 54-57. [144] 梁运涛,张腾飞,王树刚,等. 采空区孔隙率非均质模型及其流场分布模拟[J]. 煤炭学报, 2009, 34(09): 1203-1207. [145] 胡千庭,梁运培,刘见中. 采空区瓦斯流动规律的CFD模拟[J]. 煤炭学报, 2007, (07): 719-723. [146] 洛锋,曹树刚,李国栋,等. 采动应力集中壳和卸压体空间形态演化及瓦斯运移规律研究[J]. 采矿与安全工程学报, 2018, 35(01): 155-162. [147] 高建良,李星星,崔亚凯. 综采工作面采空区风流及瓦斯分布规律的数值模拟[J]. 安全与环境学报, 2013, 13(02): 164-168. [148] 高建良,孙望望. J型通风工作面采空区漏风与瓦斯浓度分布规律研究[J]. 煤炭工程, 2018, 50(01): 132-136. [150] 孙庆先,牟义,杨新亮. 红柳煤矿大采高综采覆岩“两带”高度的综合探测[J]. 煤炭学报, 2013, 38(S2): 283-286. [151] 张军,王建鹏. 采动覆岩“三带”高度相似模拟及实证研究[J]. 采矿与安全工程学报, 2014, 31(02): 249-254. [152] 张拥军,于广明,路世豹,等. 近距离上保护层开采瓦斯运移规律数值分析[J]. 岩土力学, 2010, 31(S1): 398-404. [153] 高建良,王海生. 采空区渗透率分布对流场的影响[J]. 中国安全科学学报, 2010, 20(03): 81-85. [154] 尹光志,李铭辉,李生舟,等. 基于含瓦斯煤岩固气耦合模型的钻孔抽采瓦斯三维数值模拟[J]. 煤炭学报, 2013, 38(04): 535-541. [160] 王宏图,黄光利,袁志刚,等. 急倾斜上保护层开采瓦斯越流固-气耦合模型及保护范围[J]. 岩土力学, 2014, 35(05): 1377-1382. [161] 李晓红. 岩石力学实验模拟技术[M]. 岩石力学实验模拟技术, 2007. [164] C-E Neuzil, Tracy James-V. Flow through fractures[J]. John Wiley & Sons, Ltd, 1981, 17(1). [167] 赵鹏翔,王超,李树刚,等.巨厚煤层综放开采上覆临近采空区裂隙二次演化特征分析[J].采矿与安全工程学报,2022,39(01):13-24. [168] 刘洪永,程远平,陈海栋,等.高强度开采覆岩离层瓦斯通道特征及瓦斯渗流特性研究[J].煤炭学报,2012,37(09):1437-1443. [169] 贝尔.多孔介质流体动力学[M].李竞生,陈崇希,译.北京:中国建筑工业出版社,1983 [170] 张村. 高瓦斯煤层群应力—裂隙—渗流耦合作用机理及其对卸压抽采的影响[D]. 中国矿业大学, 2017. [171] 蔺亚兵,申小龙,刘军,马东民,陈龙.黄陇侏罗纪煤田地应力特征及其地质意义[J].采矿与安全工程学报,2020,37(04):819-827. [173] 蒋力帅,武泉森,李小裕,等.采动应力与采空区压实承载耦合分析方法研究[J].煤炭学报,2017,42(08):1951-1959. [174] 梁冰,汪北方,姜利国,李刚,李长玉.浅埋采空区垮落岩体碎胀特性研究[J].中国矿业大学学报,2016,45(03):475-482. [175] 缪协兴,茅献彪,胡光伟,等.岩石(煤)的碎胀与压实特性研究[J].实验力学,1997(03):64-70. [177] 蒋金泉,张培鹏,聂礼生,等.高位硬厚岩层破断规律及其动力响应分析[J].岩石力学与工程学报,2014,33(07):1366-1374. [180] 林海飞,李树刚,成连华,等.覆岩采动裂隙带动态演化模型的实验分析[J].采矿与安全工程学报,2011,28(02):298-303. [181] 林海飞,李树刚,索亮,等.走向高抽巷合理层位的FLUENT数值模拟[J].辽宁工程技术大学学报(自然科学版),2014,33(02):172-176. [182] 林海飞,李树刚,赵鹏翔,等.我国煤矿覆岩采动裂隙带卸压瓦斯抽采技术研究进展[J].煤炭科学技术,2018,46(01):28-35. |
中图分类号: | TD712 |
开放日期: | 2026-06-22 |