论文中文题名: | ZnO光催化材料的改性及TiO2/ZnO@PC光催化剂的制备及性能 |
姓名: | |
学号: | 18211203028 |
保密级别: | 保密(2年后开放) |
论文语种: | chi |
学科代码: | 085204 |
学科名称: | 工学 - 工程 - 材料工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 光电信息材料 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2021-06-23 |
论文答辩日期: | 2021-06-02 |
论文外文题名: | Modification of ZnO photocatalytic materials and preparation and properties of TiO2/ZnO@PC photocatalyst |
论文中文关键词: | 复合型光催化剂 ; 光催化降解 ; 碳量子点 ; TiO2/ZnO@PC ; 光稳定性 |
论文外文关键词: | Composite photocatalysts ; Photocatalytic degradation ; Carbon quantum dots ; TiO2/ZnO@PC ; Photostability |
论文中文摘要: |
光催化技术作为一种可彻底降解和清洁的高级水处理方法,得到了许多学者的青睐。在众多的光催化剂中,氧化锌(ZnO)半导体材料因来源丰富、价格低廉、合成简便、形貌可控、热稳定性高和无毒等优点而备受关注。然而,ZnO带隙较宽,对太阳能的利用率低;易产生缺陷和结构不稳定,导致光稳定性降低;纳米粉体不易回收。这三方面的问题,大大限制了ZnO的工业化应用。因此,获得工艺简单、光催化活性高、光稳定性好的负载型ZnO光催化剂是解决这些问题的有效策略。本论文通过添加表面活性剂柠檬酸来调控ZnO的形貌,并将其与TiO2的复合制备TiO2/ZnO二元光催化剂;利用碳量子点(CQDs)独特的化学稳定性与TiO2/ZnO二元材料复合,制备TiO2/ZnO/CQDs三元复合型光催化剂;以多孔陶粒(Porous ceramic,简称PC)为载体,制得TiO2/ZnO@PC复合光催化剂。对上述不同工艺所得产物的物相结构、微观形貌及光催化活性进行了系统的研究,本文主要内容和结论如下: 1)采用水热法以乙酸锌和六亚甲基四胺为原料制备球形的ZnO颗粒,研究表面活性剂柠檬酸百分比对ZnO形貌和催化性能的影响,并通过XRD、SEM和光催化降解实验进行表征。结果表明,当柠檬酸的含量为20%时,可得形貌均匀,分散性好,晶体生长完整,光催化性能最优的ZnO,在90 min内,ZnO的光催化降解率为94.3%;其次,通过水热法和溶胶凝胶法结合的二步法制备TiO2/ZnO复合材料,研究TiO2的百分比对TiO2/ZnO的物相、形貌和催化性能的影响,结果表明,当TiO2的含量为4%时,得到了花椰菜状、催化性能最佳的TiO2/ZnO,在90 min内,光催化降解率为96.0%。 2)采用水热法以柠檬酸为碳源合成了3~5 nm、晶面间距为0.22 nm的石墨型的CQDs。研究水热温度和水热时间对CQDs荧光性能的影响,结果表明,水热时间为4 h,水热温度为220 ℃时,CQDs的荧光性能最好。将CQDs与ZnO和TiO2材料进行三元复合,结果表明,当CQDs的添加量为1 mL时,CQDs的光催化性能最佳,在90 min内,光催化的降解率为96.7%。经过5次循环降解实验,光降解率仍保持80.2%,说明加入CQDs提高了ZnO光催化剂的光催化稳定性。 (3)采用水热法制备负载型催化剂TiO2/ZnO@PC,研究水热次数、水热时间和羧甲基纤维素钠百分比对TiO2/ZnO@PC光催化性能的影响。结果表明,当水热次数为1次时,TiO2/ZnO@PC催化性能最优,在90 min内,光催化降解率为96.3%;水热时间会影响催化剂的表面形貌,水热时间越长,该催化剂的催化性能越好,当水热时间为10 h时,催化剂的性能最优,在90 min内光催化降解率为96.9%;羧甲基纤维素钠是一种增稠剂,引起了TiO2/ZnO@PC催化性能的下降,且含量越多,催化性能下降越明显。 |
论文外文摘要: |
Photocatalytic technology, as a kind of advanced water treatment method that can be completely degraded and cleaned, has been favored by many scholars. Among many photocatalysts, zinc oxide semiconductor materials have attracted much attention due to their high abundance, low price, easy synthesis, controllable morphology, high thermal stability and non-toxicity. However, ZnO has a wide band gap and low utilization of solar energy. Second, it is easy to produce defects and structural instability, resulting in lower optical stability. Also, nano-powder is not easy to recycle. These three problems greatly limit the industrial application of ZnO. Therefore, obtaining supported ZnO photocatalyst with a simple process, high photocatalytic activity and good photostability is an effective strategy to solve these problems. In this paper, the morphology of ZnO was controlled by adding surfactant citric acid, and TiO2/ZnO binary photocatalyst was prepared by compounding with TiO2. TiO2/ZnO/CQDs ternary composite photocatalyst was prepared by using the unique chemical stability of carbon quantum dots (CQDs) and TiO2/ZnO binary material. TiO2/ZnO@PC composite photocatalyst was prepared by using porous ceramic as carrier. The phase structure, microstructure, photocatalytic activity and photocatalytic stability of the products obtained by different processes were systematically studied. The main contents and conclusions of this paper are as follows: Spherical ZnO particles were prepared by hydrothermal method using zinc acetate and hexamethylenetetramine as raw materials. The effect of the percentage of citric acid on the morphology and catalytic performance of ZnO was studied, and characterized by XRD, SEM and photocatalytic degradation experiments.The results showed that when the content of citric acid is 20%, ZnO with uniform morphology, good dispersion, complete crystal growth and the best photocatalytic performance can be obtained. the photocatalytic degradation rate of ZnO is 94.3% within 90 min. Secondly, the TiO2/ZnO composites were prepared by two steps of hydrothermal method and sol-gel method. The effects of the percentage of TiO2 on the phase, morphology and catalytic performance of TiO2/ZnO were studied. The results showed that when the content of TiO2 was 4%, the cauliflower like and the best catalytic TiO2/ZnO were obtained, and the photocatalytic degradation rate was 96.0% in 90 min. (2) Graphite CQDs with 3-5 nm and 0.22 nm interplanar spacing were synthesized by hydrothermal method using citric acid as carbon source. The effects of hydrothermal temperature and time on the fluorescence properties of CQDs were studied. The results showed that when the hydrothermal time was 4 h and the hydrothermal temperature was 220 °C, the fluorescence properties of CQDs were the best. The ternary composite of CQDs with ZnO and TiO2 materials showed that when the addition amount of CQDs was 1 mL, the photocatalytic performance of CQDs was the best, and the photocatalytic degradation rate was 96.7 % within 90 min. After five cycles of degradation experiments, the degradation rate remained 80.2 %, indicating that the addition of CQDs improved the photocatalytic stability of ZnO photocatalyst. (3) TiO2 /ZnO@PC was prepared by hydrothermal method. The effects of hydrothermal times, hydrothermal time and the percentage of sodium carboxymethyl cellulose on the photocatalytic performance of TiO2/ZnO@PC were studied. The results showed that TiO2 /ZnO@PC had the best catalytic performance when the hydrothermal number was 1 mL, and the photocatalytic degradation rate was 96.3 % within 90 min. The hydrothermal time will affect the surface morphology of the catalyst. The longer the hydrothermal time is, the better the catalytic performance of the catalyst is. When the hydrothermal time is 10 h, the performance of the catalyst is the best, and the photocatalytic degradation rate is 96.9 % within 90 min. Sodium carboxymethyl cellulose is a thickening agent, which causes the decrease of catalytic performance of TiO2/ZnO@PC, and the more the content, the more obvious the decrease of catalytic performance. |
参考文献: |
[1] 肖培源. 基于二维材料的纳米光催化剂: 制备及光催化降解有机污染物性能研究[D]. [3] 李焕. 易回收的氧化锌基和氧化铋基复合光催化剂的制备及光催化性能[D]. 东华大学, 2013. [14] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549. [24] 常勇刚. 不同贵金属修饰的氧化锌复合物性能研究 [D]. 华东师范大学, 2010. [25] 戴健, 肖瑞晗, 雷瑞盈, 等. 氧化锌氧化钛复合光催化剂的制备及活性研究 [J]. 化学与黏合, 2014, 3 (36):170-172. [28] 毛洪凯. 改性氧化锌纳米光催化材料的制备及光催化性能研究[D]. 江苏大学, 2016. [46] 何德良,傅莉群,冯勇,等.泡沫镍/硅烷膜/ZnO复合材料的制备及其光催化性能 [J].中南大学学报,2013,44(4):1344-1350. [66] 闫文, 刘向春. 熔盐热法制备 ZnWO4 纳米晶及其光催化性能[J].人工晶体学报, 2018, 10 (47):2035-2043. [87] 孙思佳, 潘磊, 丁浩, 等. CaCO3 负载纳米 TiO2 复合光催化剂制备及性能研究 [J]. 非金属矿, 2020, 43(3): 17-21. [88] 黄强, 王毓德, 胡剑巧, 等. 生物炭负载 ZnO 光催化剂的合成及其催化降解有机染料实验设计 [J]. 实验室研究与探索, 2020, 39(8): 18-21. [89] 李家科, 张雅欣, 刘欣, 等. ZnO/SiOC 负载光催化剂制备及其光催化性能研究 [J]. 陶瓷学报, 2020, 1.(41):93-98. [90] 陈芳, 黄圣超, 殷晓岩, 等. 陶瓷负载 TiO2 光催化降解印染废水的研究 [J]. 上海化工, 2016, 5(14):14-17. [93] Sun H, Yu Y, Luo J, et al. Morphology-controlled synthesis of ZnO 3D hierarchical structures and their photocatalytic performance[J].CrystEngComm, 2012, 14 (24): 8626-8632. |
中图分类号: | TB321 |
开放日期: | 2023-06-24 |