- 无标题文档
查看论文信息

论文中文题名:

 ZnO光催化材料的改性及TiO2/ZnO@PC光催化剂的制备及性能    

姓名:

 白宁娜    

学号:

 18211203028    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 085204    

学科名称:

 工学 - 工程 - 材料工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料工程    

研究方向:

 光电信息材料    

第一导师姓名:

 刘向春    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-23    

论文答辩日期:

 2021-06-02    

论文外文题名:

 Modification of ZnO photocatalytic materials and preparation and properties of TiO2/ZnO@PC photocatalyst    

论文中文关键词:

 复合型光催化剂 ; 光催化降解 ; 碳量子点 ; TiO2/ZnO@PC ; 光稳定性     

论文外文关键词:

 Composite photocatalysts ; Photocatalytic degradation ; Carbon quantum dots ; TiO2/ZnO@PC ; Photostability     

论文中文摘要:

光催化技术作为一种可彻底降解和清洁的高级水处理方法,得到了许多学者的青睐。在众多的光催化剂中,氧化锌(ZnO)半导体材料因来源丰富、价格低廉、合成简便、形貌可控、热稳定性高和无毒等优点而备受关注。然而,ZnO带隙较宽,对太阳能的利用率低;易产生缺陷和结构不稳定,导致光稳定性降低;纳米粉体不易回收。这三方面的问题,大大限制了ZnO的工业化应用。因此,获得工艺简单、光催化活性高、光稳定性好的负载型ZnO光催化剂是解决这些问题的有效策略。本论文通过添加表面活性剂柠檬酸来调控ZnO的形貌,并将其与TiO2的复合制备TiO2/ZnO二元光催化剂;利用碳量子点(CQDs)独特的化学稳定性与TiO2/ZnO二元材料复合,制备TiO2/ZnO/CQDs三元复合型光催化剂;以多孔陶粒(Porous ceramic,简称PC)为载体,制得TiO2/ZnO@PC复合光催化剂。对上述不同工艺所得产物的物相结构、微观形貌及光催化活性进行了系统的研究,本文主要内容和结论如下:

1)采用水热法以乙酸锌和六亚甲基四胺为原料制备球形的ZnO颗粒,研究表面活性剂柠檬酸百分比对ZnO形貌和催化性能的影响,并通过XRD、SEM和光催化降解实验进行表征。结果表明,当柠檬酸的含量为20%时,可得形貌均匀,分散性好,晶体生长完整,光催化性能最优的ZnO,在90 min内,ZnO的光催化降解率为94.3%;其次,通过水热法和溶胶凝胶法结合的二步法制备TiO2/ZnO复合材料,研究TiO2的百分比对TiO2/ZnO的物相、形貌和催化性能的影响,结果表明,当TiO2的含量为4%时,得到了花椰菜状、催化性能最佳的TiO2/ZnO,在90 min内,光催化降解率为96.0%。

2)采用水热法以柠檬酸为碳源合成了3~5 nm、晶面间距为0.22 nm的石墨型的CQDs。研究水热温度和水热时间对CQDs荧光性能的影响,结果表明,水热时间为4 h,水热温度为220 ℃时,CQDs的荧光性能最好。将CQDs与ZnO和TiO2材料进行三元复合,结果表明,当CQDs的添加量为1 mL时,CQDs的光催化性能最佳,在90 min内,光催化的降解率为96.7%。经过5次循环降解实验,光降解率仍保持80.2%,说明加入CQDs提高了ZnO光催化剂的光催化稳定性。

(3)采用水热法制备负载型催化剂TiO2/ZnO@PC,研究水热次数、水热时间和羧甲基纤维素钠百分比对TiO2/ZnO@PC光催化性能的影响。结果表明,当水热次数为1次时,TiO2/ZnO@PC催化性能最优,在90 min内,光催化降解率为96.3%;水热时间会影响催化剂的表面形貌,水热时间越长,该催化剂的催化性能越好,当水热时间为10 h时,催化剂的性能最优,在90 min内光催化降解率为96.9%;羧甲基纤维素钠是一种增稠剂,引起了TiO2/ZnO@PC催化性能的下降,且含量越多,催化性能下降越明显。

论文外文摘要:

Photocatalytic technology, as a kind of advanced water treatment method that can be completely degraded and cleaned, has been favored by many scholars. Among many photocatalysts, zinc oxide semiconductor materials have attracted much attention due to their high abundance, low price, easy synthesis, controllable morphology, high thermal stability and non-toxicity. However, ZnO has a wide band gap and low utilization of solar energy. Second, it is easy to produce defects and structural instability, resulting in lower optical stability. Also, nano-powder is not easy to recycle. These three problems greatly limit the industrial application of ZnO. Therefore, obtaining supported ZnO photocatalyst with a simple process, high photocatalytic activity and good photostability is an effective strategy to solve these problems. In this paper, the morphology of ZnO was controlled by adding surfactant citric acid, and TiO2/ZnO binary photocatalyst was prepared by compounding with TiO2. TiO2/ZnO/CQDs ternary composite photocatalyst was prepared by using the unique chemical stability of carbon quantum dots (CQDs) and TiO2/ZnO binary material. TiO2/ZnO@PC composite photocatalyst was prepared by using porous ceramic as carrier. The phase structure, microstructure, photocatalytic activity and photocatalytic stability of the products obtained by different processes were systematically studied. The main contents and conclusions of this paper are as follows:

 Spherical ZnO particles were prepared by hydrothermal method using zinc acetate and hexamethylenetetramine as raw materials. The effect of the percentage of citric acid on the morphology and catalytic performance of ZnO was studied, and characterized by XRD, SEM and photocatalytic degradation experiments.The results showed that when the content of citric acid is 20%, ZnO with uniform morphology, good dispersion, complete crystal growth and the best photocatalytic performance can be obtained. the photocatalytic degradation rate of ZnO is 94.3% within 90 min. Secondly, the TiO2/ZnO composites were prepared by two steps of hydrothermal method and sol-gel method. The effects of the percentage of TiO2 on the phase, morphology and catalytic performance of TiO2/ZnO were studied. The results showed that when the content of TiO2 was 4%, the cauliflower like and the best catalytic TiO2/ZnO were obtained, and the photocatalytic degradation rate was 96.0% in 90 min.

(2) Graphite CQDs with 3-5 nm and 0.22 nm interplanar spacing were synthesized by hydrothermal method using citric acid as carbon source. The effects of hydrothermal temperature and time on the fluorescence properties of CQDs were studied. The results showed that when the hydrothermal time was 4 h and the hydrothermal temperature was 220 °C, the fluorescence properties of CQDs were the best. The ternary composite of CQDs with ZnO and TiO2 materials showed that when the addition amount of CQDs was 1 mL, the photocatalytic performance of CQDs was the best, and the photocatalytic degradation rate was 96.7 % within 90 min. After five cycles of degradation experiments, the degradation rate remained 80.2 %, indicating that the addition of CQDs improved the photocatalytic stability of ZnO photocatalyst.

(3) TiO2 /ZnO@PC was prepared by hydrothermal method. The effects of hydrothermal times, hydrothermal time and the percentage of sodium carboxymethyl cellulose on the photocatalytic performance of TiO2/ZnO@PC were studied. The results showed that TiO2 /ZnO@PC had the best catalytic performance when the hydrothermal number was 1 mL, and the photocatalytic degradation rate was 96.3 % within 90 min. The hydrothermal time will affect the surface morphology of the catalyst. The longer the hydrothermal time is, the better the catalytic performance of the catalyst is. When the hydrothermal time is 10 h, the performance of the catalyst is the best, and the photocatalytic degradation rate is 96.9 % within 90 min. Sodium carboxymethyl cellulose is a thickening agent, which causes the decrease of catalytic performance of TiO2/ZnO@PC, and the more the content, the more obvious the decrease of catalytic performance.

参考文献:

[1] 肖培源. 基于二维材料的纳米光催化剂: 制备及光催化降解有机污染物性能研究[D].

浙江师范大学, 2018.

[2] Zhang Y, Wu B, Xu H, et al. Nanomaterials-enabled water and wastewater treatment[J]. NanoImpact, 2016, 3: 22-39.

[3] 李焕. 易回收的氧化锌基和氧化铋基复合光催化剂的制备及光催化性能[D]. 东华大学, 2013.

[4] Houas A, Lachheb H, Ksibi M, et al. Photocatalytic degradation pathway of methylene blue in water [J]. Applied Catalysis B: Environmental, 2001, 31(2): 145-157.

[5] Den Besten I E, Qasim M. Photocatalytic oxidation of ammonia on zinc oxide catalysts [J]. Journal of Catalysis, 1964, 3(4): 387-389.

[6] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37-38.

[7] Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions [J]. Bulletin of Environmental Contamination and Toxicology, 1976, 16(6): 697-701.

[8] Cheng M, Liu Y, Huang D, et al. Prussian blue analogue derived magnetic Cu-Fe oxide as a recyclable photo-Fenton catalyst for the efficient removal of sulfamethazine at near neutral pH values [J]. Chemical Engineering Journal, 2019, 362: 865-876.

[9] Chen X, Peng X, Jiang L, et al. Recent advances in titanium metal-organic frameworks and their derived materials: Features, fabrication, and photocatalytic applications [J]. Chemical Engineering Journal, 2020: 125080.

[10] Liu Y, Cheng H, Cheng M, et al. The application of Zeolitic imidazolate frameworks (ZIFs) and their derivatives based materials for photocatalytic hydrogen evolution and pollutants treatment [J]. Chemical Engineering Journal, 2020: 127914.

[11] Yang S, Li X, Zeng G, et al. Materials Institute Lavoisier (MIL) based materials for photocatalytic applications [J]. Coordination Chemistry Reviews, 2021, 438: 213874.

[12] Huang H, Yuan H, Janssen K P F, et al. Efficient and selective photocatalytic oxidation of benzylic alcohols with hybrid organic-inorganic perovskite materials [J]. ACS Energy Letters, 2018, 3(4): 755-759.

[13] Xiong J, Song P, Di J, et al. Freestanding ultrathin bismuth-based materials for diversified photocatalytic applications [J]. Journal of Materials Chemistry A, 2019, 7(44): 25203-25226.

[14] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.

[15] Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis [J]. Chemical reviews, 1995, 95(1): 69-96.

[16] Tong H, Ouyang S, Bi Y, et al. Nano-photocatalytic materials: possibilities and challenges [J]. Advanced materials, 2012, 24(2): 229-251.

[17] Fujishima A, Zhang X, Tryk D A. TiO2 photocatalysis and related surface phenomena [J]. Surface science reports, 2008, 63(12): 515-582.

[18] Xia Y, Zhang L, Hu B, et al. Design of highly-active photocatalytic materials for solar fuel production [J]. Chemical Engineering Journal, 2020: 127732.

[19] Özgür Ü, Avrutin V, Morkoç H. Zinc oxide materials and devices grown by molecular beam Epitaxy [M]//.Molecular Beam Epitaxy. Elsevier, 2018: 343-375.

[20] Sudrajat H, Babel S. Comparison and mechanism of photocatalytic activities of N-ZnO and N-ZrO2 for the degradation of rhodamine 6G [J]. Environmental Science and Pollution, 2016, 23(10): 10177-10188.

[21] Lee K M, Lai C W, Ngai K S, et al. Recent developments of zinc oxide based photocatalyst in water treatment technology: a review [J]. Water research, 2016, 88: 428-448.

[22] Slama R, El Ghoul J, Ghiloufi I, et al. Synthesis and physico-chemical studies of vanadium doped zinc oxide nanoparticles and its photocatalysis [J]. Journal of Materials Science: Materials in Electronics, 2016, 27(8): 8146-8153.

[23] J Z, Dillert R, Bahnemann D W. Transition metal-modified zinc oxides for UV and visible light photocatalysis [J]. Environmental Science and Pollution Research, 2012, 19(9): 3688-3695.

[24] 常勇刚. 不同贵金属修饰的氧化锌复合物性能研究 [D]. 华东师范大学, 2010.

[25] 戴健, 肖瑞晗, 雷瑞盈, 等. 氧化锌氧化钛复合光催化剂的制备及活性研究 [J]. 化学与黏合, 2014, 3 (36):170-172.

[26] Guo Z, Huo W, Cao T, et al. Heterojunction interface of zinc oxide and zinc sulfide promoting reactive molecules activation and carrier separation toward efficient photocatalysis [J]. Journal of Colloid and Interface Science, 2021, 588: 826-837.

[27] Wang K, Xing Z, Du M, et al. Zinc sulfide quantum dots / zinc oxide nanospheres / bismuth-enriched bismuth oxyiodides as Z-scheme/type-II tandem heterojunctions for an efficient charge separation and boost solar-driven photocatalytic performance [J]. Journal of Colloid and Interface Science, 2021, 592: 259-270.

[28] 毛洪凯. 改性氧化锌纳米光催化材料的制备及光催化性能研究[D]. 江苏大学, 2016.

[29] Zhang X L, Qiao R, Qiu R, et al. Fabrication of hierarchical ZnO nanostructures via a surfactant-directed process [J]. Crystal Growth and Design, 2009, 9(6): 2906-2910.

[30] Ding Q, Miao Y E, Liu T. Morphology and photocatalytic property of hierarchical polyimide/ZnO fibers prepared via a direct ion-exchange process [J]. ACS applied materials & interfaces, 2013, 5(12): 5617-5622.

[31] Liu J, Ma J, Bao Y, et al. Nanoparticle morphology and film-forming behavior of polyacrylate/ZnO nanocomposite [J]. Composites science and technology, 2014, 98: 64-71.

[32] Baruah S, Dutta J. Hydrothermal growth of ZnO nanostructures [J]. Science and technology of advanced materials, 2009, 10(10):10031.

[33] Hu C, Lu L, Zhu Y, et al. Morphological controlled preparation and photocatalytic activity of zinc oxide [J]. Materials Chemistry and Physics, 2018, 217: 182-191.

[34] Kilic B, Günes T, Besirli I, et al. Construction of 3-dimensional ZnO-nanoflower structures for high quantum and photocurrent efficiency in dye sensitized solar cell [J]. Applied Surface Science, 2014, 318: 32-36.

[35] Boppella R, Anjaneyulu K, Basak P, et al. Facile synthesis of face oriented ZnO crystals: tunable polar facets and shape induced enhanced photocatalytic performance [J]. The Journal of Physical Chemistry C, 2013, 117(9): 4597-4605.

[36] Lv Y, Yao W, Ma X, et al. The surface oxygen vacancy induced visible activity and enhanced UV activity of a ZnO1- x photocatalyst [J]. Catalysis Science & Technology, 2013, 3 (12): 3136-3146.

[37] Liu J, Wang P, Qu W, et al. Nanodiamond-decorated ZnO catalysts with enhanced photocorrosion-resistance for photocatalytic degradation of gaseous toluene [J]. Applied Catalysis B: Environmental, 2019, 257: 117880.

[38] Kim H, Oh M H, Yang B L. Photocorrosion of polyaniline-ZnS-ZnO photoelectrode for water splitting [J]. Thin Solid Films, 2020, 693: 137678.

[39] Fu H, Xu T, Zhu S, et al. Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C60 [J]. Environmental science & technology, 2008, 42(21): 8064-8069.

[40] Zhang Y, Chen Z, Liu S, et al. Size effect induced activity enhancement and anti-photocorrosion of reduced graphene oxide/ZnO composites for degradation of organic dyes and reduction of Cr (VI) in water [J]. Applied Catalysis B: Environmental, 2013, 140: 598-607.

[41] Mu J, Shao C, Guo Z, et al. High photocatalytic activity of ZnO-carbon nanofiber heteroarchitectures [J]. ACS applied materials & interfaces, 2011, 3(2): 590-596.

[42] Bu Y, Chen Z, Li W, et al. Highly efficient photocatalytic performance of graphene-ZnO quasi-shell-core composite material [J]. ACS applied materials & interfaces, 2013, 5(23): 12361-12368.

[43] Chen Q, Wang Y, Wang Y, et al. Nitrogen-doped carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced visible light driven photocatalytic activity and stability [J]. Journal of colloid and interface science, 2017, 491: 238-245.

[44] Yu H, Zhang H, Huang H, et al. ZnO/carbon quantum dots nanocomposites: one-step fabrication and superior photocatalytic ability for toxic gas degradation under visible light at room temperature [J]. New Journal of Chemistry, 2012, 36(4): 1031-1035.

[45] Rokesh K, Pandikumar A, Mohan S C, et al. Aminosilicate sol-gel supported zinc oxide-silver nanocomposite material for photoelectrocatalytic oxidation of methanol [J]. Journal of Alloys and Compounds, 2016, 680: 633-641.

[46] 何德良,傅莉群,冯勇,等.泡沫镍/硅烷膜/ZnO复合材料的制备及其光催化性能 [J].中南大学学报,2013,44(4):1344-1350.

[47] Sudrajat H. Superior photocatalytic activity of polyester fabrics coated with zinc oxide from waste hot dipping zinc [J]. Journal of Cleaner Production, 2018, 172: 1722-1729.

[48] Navidpour A H, Kalantari Y, Salehi M, et al. Plasma-sprayed photocatalytic zinc oxide coatings [J]. Journal of Thermal Spray Technology, 2017, 26(4): 717-727.

[49] Sacco O, Vaiano V, Matarangolo M. ZnO supported on zeolite pellets as efficient catalytic system for the removal of caffeine by adsorption and photocatalysis [J]. Separation and Purification Technology, 2018, 193: 303-310.

[50] Feng X, Lou X. The effect of surfactants-bound magnetite (Fe3O4) on the photocatalytic properties of the heterogeneous magnetic zinc oxides nanoparticles [J]. Separation and Purification Technology, 2015, 147: 266-275.

[51] Song Y, Zhu S, Yang B. Bioimaging based on fluorescent carbon dots [J]. Rsc Advances, 2014, 4(52): 27184-27200.

[52] Shen J, Zhu Y, Chen C, et al. Facile preparation and upconversion luminescence of graphene quantum dots [J]. Chemical communications, 2011, 47(9): 2580-2582.

[53] Wang R, Lu K Q, Tang Z R, et al. Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis [J]. Journal of Materials Chemistry A, 2017, 5(8): 3717-3734.

[54] Yu H, Li X, Zeng X, et al. Preparation of carbon dots by non-focusing pulsed laser irradiation in toluene [J]. Chemical Communications, 2015, 52(4): 819-822.

[55] Li X, Wang H, Shimizu Y, et al. Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents [J]. Chemical Communications, 2010, 47(3): 932-934.

[56] Sun Y P, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence [J]. Journal of the American Chemical Society, 2006, 128(24): 7756-7757.

[57] Zhou J, Booker C, Li R, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs) [J]. Journal of the American Chemical Society, 2007, 129(4): 744-745.

[58] Li F, Li T, Sun C, et al. Selenium-Doped Carbon Quantum Dots for Free-Radical Scavenging [J]. Angewandte Chemie International Edition, 2017, 56(33): 9910-9914.

[59] Huang P, Xu S, Zhang M, et al. Carbon quantum dots improving photovoltaic performance of CdS quantum dot-sensitized solar cells [J]. Optical Materials, 2020, 110: 110535.

[60] Sheng Y, Yi D, Qingsong H, et al. CQDs modified PbBiO2Cl nanosheets with improved molecular oxygen activation ability for photodegradation of organic contaminants [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 382: 111921.

[61] Huang C, Hong Y, Yan X, et al. Carbon quantum dot decorated hollow In2S3 microspheres with efficient visible-light-driven photocatalytic activities [J]. RSC advances, 2016, 6(46): 40137-40146.

[62] Jia X, Li J, Wang E. One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence [J]. Nanoscale, 2012, 4(18): 5572-5575.

[63] Bourlinos A B, Stassinopoulos A, Anglos D, et al. Surface functionalized carbogenic quantum dots [J]. Small, 2008, 4(4): 455-458.

[64] Lim H, Liu Y, Kim H Y, et al. Facile synthesis and characterization of carbon quantum dots and photovoltaic applications[J]. Thin Solid Films, 2018, 660: 672-677.

[65] Sun Z, Yang Z, Zhao L, et al. Microwave-assisted fabrication of multicolor photoluminescent carbon dots as a ratiometric fluorescence sensor for iron ions [J]. New Journal of Chemistry, 2019, 43(2): 853-861.

[66] 闫文, 刘向春. 熔盐热法制备 ZnWO4 纳米晶及其光催化性能[J].人工晶体学报, 2018, 10 (47):2035-2043.

[67] Lin L, Yang Y, Men L, et al. A highly efficient TiO2@ ZnO n-p-n heterojunction nanorod photocatalyst [J]. Nanoscale, 2013, 5(2): 588-593.

[68] Li J, Yan L, Wang Y, et al. Fabrication of TiO2/ZnO composite nanofibers with enhanced photocatalytic activity [J]. Journal of Materials Science: Materials in Electronics, 2016, 27(8): 7834-7838.

[69] Zhao L, Xia M, Liu Y, et al. Structure and photocatalysis of TiO2/ZnO double-layer film prepared by pulsed laser deposition [J]. Materials Transactions, 2012, 53(3): 463-468.

[70] Zha R, Nadimicherla R, Guo X. Ultraviolet photocatalytic degradation of methyl orange by nanostructured TiO2/ZnO heterojunctions[J]. Journal of Materials Chemistry A, 2015, 3(12): 6565-6574.

[71] Feng W, Lin L, Li H, et al. Hydrogenated TiO2/ZnO heterojunction nanorod arrays with enhanced performance for photoelectrochemical water splitting [J]. International Journal of Hydrogen Energy, 2017, 42(7): 3938-3946.

[72] Upadhyay G K, Rajput J K, Pathak T K, et al. Synthesis of ZnO: TiO2 nanocomposites for photocatalyst application in visible light[J]. Vacuum, 2019, 160: 154-163.

[73] Huang Z, Maness P C, Blake D M, et al. Bactericidal mode of titanium dioxide photocatalysis[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 130(2-3): 163-170.

[74] Jiang Y, Yan Y, Zhang W, et al. Synthesis of cauliflower-like ZnO-TiO2 composite porous film and photoelectrical properties[J]. Applied surface science, 2011, 257(15): 6583-6589.

[75] Pérez-González M, Tomás S A, Morales-Luna M, et al. Optical, structural, and morphological properties of photocatalytic TiO2-ZnO thin films synthesized by the sol–gel process[J]. Thin Solid Films, 2015, 594: 304-309.

[76] Butler M A, Ginley D S. Prediction of flatband potentials at semiconductor-electrolyte interfaces from atomic electronegativities [J]. Journal of the Electrochemical Society, 1978, 125(2): 228-232.

[77] Vaizoğullar A İ. TiO2/ZnO supported on sepiolite: preparation, structural characterization, and photocatalytic degradation of flumequine antibiotic in aqueous solution [J]. Chemical Engineering Communications, 2017, 204(6): 689-697.

[78] Li H, He X, Kang Z, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design [J]. Angewandte Chemie, 2010, 122(26): 4532-4536.

[79] Duo F, Wang Y, Fan C, et al. Enhanced visible light photocatalytic activity and stability of CQDs/BiOBr composites: The upconversion effect of CQDs [J]. Journal of Alloys and Compounds, 2016, 685: 34-41.

[80] Lin X, Liu C, Wang J, et al. Graphitic carbon nitride quantum dots and nitrogen-doped carbon quantum dots co-decorated with BiVO4 microspheres: a ternary heterostructure photocatalyst for water purification [J]. Separation and Purification Technology, 2019, 226: 117-127.

[81] Liu J, Liu X, Luo H, et al. One-step preparation of nitrogen-doped and surface-passivated carbon quantum dots with high quantum yield and excellent optical properties [J]. Rsc Advances, 2014, 4(15): 7648-7654.

[82] Wei Y, Liu Y, Li H, et al. Carbon nanoparticle ionic liquid hybrids and their photoluminescence properties [J]. Journal of colloid and interface science, 2011, 358(1): 146-150.

[83] Liu J, Liu X, Luo H, et al. One-step preparation of nitrogen-doped and surface-passivated carbon quantum dots with high quantum yield and excellent optical properties [J]. Rsc Advances, 2014, 4(15): 7648-7654.

[84] Nguyen C H, Tran M L, Van Tran T T, et al. Enhanced removal of various dyes from aqueous solutions by UV and simulated solar photocatalysis over TiO2/ZnO/rGO composites [J]. Separation and Purification Technology, 2020, 232: 115962.

[85] Liu Z, Liu Z, Cui T, et al. Photocatalysis of two-dimensional honeycomb-like ZnO nanowalls on zeolite [J]. Chemical Engineering Journal, 2014, 235: 257-263.

[86] Anandan S, Yoon M. Photocatalytic activities of the nano-sized TiO2-supported Y-zeolites [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003, 4(1): 5-18.

[87] 孙思佳, 潘磊, 丁浩, 等. CaCO3 负载纳米 TiO2 复合光催化剂制备及性能研究 [J]. 非金属矿, 2020, 43(3): 17-21.

[88] 黄强, 王毓德, 胡剑巧, 等. 生物炭负载 ZnO 光催化剂的合成及其催化降解有机染料实验设计 [J]. 实验室研究与探索, 2020, 39(8): 18-21.

[89] 李家科, 张雅欣, 刘欣, 等. ZnO/SiOC 负载光催化剂制备及其光催化性能研究 [J]. 陶瓷学报, 2020, 1.(41):93-98.

[90] 陈芳, 黄圣超, 殷晓岩, 等. 陶瓷负载 TiO2 光催化降解印染废水的研究 [J]. 上海化工, 2016, 5(14):14-17.

[91] Danwittayakul S, Jaisai M, Dutta J. Efficient solar photocatalytic degradation of textile wastewater using ZnO/ZTO composites [J]. Applied Catalysis B: Environmental, 2015, 163: 1-8.

[92] Sun C, Xu Q, Xie Y, et al. Designed synthesis of anatase-TiO2 (B) biphase nanowire/ZnO nanoparticle heterojunction for enhanced photocatalysis [J]. Journal of Materials Chemistry A, 2018, 6(18): 8289-8298.

[93] Sun H, Yu Y, Luo J, et al. Morphology-controlled synthesis of ZnO 3D hierarchical

structures and their photocatalytic performance[J].CrystEngComm, 2012, 14 (24): 8626-8632.

中图分类号:

 TB321    

开放日期:

 2023-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式