- 无标题文档
查看论文信息

论文中文题名:

 老化作用对松木构件古建筑火灾 特性影响研究    

姓名:

 刘同双    

学号:

 19220214057    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 消防科学与工程    

第一导师姓名:

 邓军    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-20    

论文答辩日期:

 2022-06-01    

论文外文题名:

 Study on the Influence of Aging on Fire Characteristics of Ancient Buildings with Pine Components    

论文中文关键词:

 古建筑火灾 ; 老化松木 ; 氧化燃烧 ; FDS ; 火灾蔓延    

论文外文关键词:

 Ancient building fire ; Aging pine ; Combustion ; FDS ; Fire spread    

论文中文摘要:

我国多为松木构件古建筑,经过长期的自然老化作用,木材含水率降低,木质疏松,易被点燃甚至引发火灾。近年来,我国古建筑火灾频发,造成了严重的经济和文化损失,古建筑火灾的有效防控逐渐成为研究的热点。古建筑木构件是古建筑火灾的燃烧主体,其燃烧性能显著影响火灾的发展趋势。然而,目前关于木构件燃烧性能的研究主要集中在现代建筑,有关古建筑木构件材质特性、燃烧性能以及室内火灾蔓延的研究较少。因此,研究老化作用对松木构件古建筑火灾特性的影响,具有重要的现实意义和科研价值。

本文以四种老化松木为研究对象,利用工业分析仪、元素分析仪、扫描电子显微镜、激光闪射装置、傅里叶变换红外光谱仪(FTIR)以及X射线衍射仪(XRD)等实验手段,系统探究了老化作用对松木材质特性的影响。结果表明:随着老化程度的加深,松木的热传导能力增强,芳香烃、醚和羧基等基团数量和纤维素结晶度减少。自然老化导致松木的含水量降低、细胞结构破坏严重。而人工加速老化使松木的含水量增加,且老化损伤多集中于松木表层。

通过同步热分析仪(STA)研究松木氧化过程中的热行为及热动力学特征。结果表明:随着老化程度加深,松木的干裂温度提高,燃点、碳化温度降低,燃烧时的表观活化能增加,燃烧性能降低。此外,老化木材在燃烧阶段的热动力学机理函数由YM(原木)服从的Valensi方程转变为服从一级化学反应。在碳化燃烧阶段,自然老化松木和YM服从的最概然机理函数与燃烧阶段一致,但人工老化松木的最概然机理函数由一级化学反应转变为服从收缩反应。

通过锥形量热仪(CONE)对四种老化松木的燃烧特征进行测试。得出人工加速老化及自然老化松木易形成碳化层,在燃烧过程中阻滞了温度的传递和气体的交换,延缓了燃烧时的质量损失,降低了燃烧过程中的热释放速率,减少了烟气的释放以及CO2的释放。此外,人工加速老化由于自身含水量较高,导致其燃烧过程中的CO产量增加,而自然老化松木由于燃烧进程缓慢,使燃烧更为充分,减少了CO产量。

利用FDS软件(Fire Dynamics Simulator)模拟了风速为0 m/s时四种老化松木特征古建筑的室内火灾蔓延特性,得到人工加速老化一百二十循环松木(YE120)的火灾模拟结果与古建筑(CQ)的火灾模拟结果相似。由于老化木材的燃点较低,燃烧时会快速消耗氧气,使古建筑室内轰燃时间提前。最后,建立了老化损伤作用下火蔓延温度场的耦合模型。

论文外文摘要:

China is mostly pine components of ancient buildings, after a long period of natural aging effect, the wood moisture content is reduced, the wood is loose, easy to be ignited or even start a fire. In recent years, fires in ancient buildings have occurred frequently in China, causing serious economic and cultural losses, and the effective prevention and control of fire in ancient buildings have gradually become a research hotspot. Timber components of ancient buildings is the main body of burning ancient buildings fire, its burning properties significantly affect the development trend of the fire. However, the current research on the combustion performance of wood components is mainly focused on modern buildings, and there is less research on the material properties, combustion performance and indoor fire spread of wood components in ancient buildings. Therefore, it is important to research the effect of aging on the fire characteristics of pine components of ancient buildings, which has important practical significance and scientific research value.

Taking four kinds of aged pine as the research object, this paper systematically explores the influence of aging on the material characteristics of pine by means of industrial analyzer, element analyzer, scanning electron microscope, laser flash device, Fourier transform infrared spectrometer (FTIR) and X-ray diffraction (XRD). The results showed that the thermal conductivity of pine wood increased with deepening aging, and the number of groups such as aromatic hydrocarbons, ethers and carboxyl groups and cellulose crystallinity decreased. Natural aging causes a reduction in the moisture content and severe damage to the intracellular structure of pine wood. The artificial accelerated aging makes the pine wood moisture content increase, and aging damage is mostly concentrated in the surface layer of pine wood.

Research on the thermal behavior and thermodynamic characteristics of pine wood during oxidation by the simultaneous thermal analyzer (STA). The results show that with the deepening of aging, the dry cracking temperature of pine wood will increase, the ignition point and carbonization temperature will be reduced, the apparent activation energy will increase during combustion, and the combustion performance will be reduced. In addition, the thermodynamic mechanism function of aged wood in the  combustion stage was changed from YM (logs) obeying the Valensi equation to obeying a first-order chemical reaction model.     In the carbonized combustion stage, naturally aged pine and YM obeyed the same most probable mechanism function as in the combustion stage, but the most probable mechanism function of artificially aged pine shifted from the first-order chemical reaction model to obey the shrinkage reaction model.

The combustion characteristics of four kinds of pine wood were tested by cone calorimetry (CONE). It is concluded that artificially accelerated and naturally aged pine tends to form a carbonized layer, which blocks the temperature transfer and gas exchange during combustion, retards the mass loss during combustion, reduces the rate of heat release during combustion, and reduces the release of smoke as well as the release of CO2. In addition, artificially accelerated aging results in increased CO production during its combustion due to its own high water content, while naturally aged pine reduces CO production due to the slow combustion process, which results in more complete combustion.

Using FDS software (Fire Dynamics Simulator) to simulate the indoor fire spread characteristics of four kinds of aging pine characteristics of ancient buildings when the wind speed is 0 m/s, It is concluded that the fire simulation results of artificial accelerated aging of one hundred and twenty cycles of pine (YE120) can be an approximate substitute for the fire simulation results of ancient buildings (CQ). Due to the lower ignition point of aging timber, burning will quickly consume oxygen, so the ancient building interior boom combustion time in advance. Finally, the coupled model of the temperature field of underfire propagation under the effect of aging damage is established.

参考文献:

[1]姚新强,孙柏涛,杨在林,等.地震灾害农居易损性新方法研究[J].工程力学,2018,35(6):191-199.

[2]周乾.紫禁城古建筑的白蚁防治方法[J].工业建筑,2019,49(8):207-211.

[3]孟阳,陈薇.中国古代木构建筑营造如何用木[J].建筑学报,2019,6(10):41-45.

[4]鲁艳蕊,马凤华,别治明.碳纤维复合材料加固古建筑木结构技术应用研究[J].塑料科技,2020,48(4):129-134.

[5]王辉,张典,张文博,等.故宫养心殿区古建筑望板老化状况分析[J].林业机械与木工设备,2021,,49(6):59-64.

[6]王玉海,石光,杨丽庭.ABS材料人工加速老化与户外自然老化的相关性[J].工程塑料应用,2016,44(11):85-91.

[7]应灵慧,汪益龙,刘小云,等.PBO纤维自然老化与加速老化的相关性研究[J].体火箭技术,2013,36(1):107-112.

[8]鄂忠敏.关于人工加速老化试验与自然暴露试验[J].涂层与防护,2019,40(5):58-60.

[9]陈凯文,彭辉,蒋佳荔,等.热处理木材光变色机理及防治方法的研究进展[J].木材科学与技术,2022,36(2):11-17.

[10]李安鑫,吕建雄,蒋佳荔.木材细胞壁结构及其流变特性研究进展[J].林业科学,2017,53(12):136-143.

[11]宋彦彦,金森,汪兆洋.4种草本可燃物的热解特性和动力学研究[J].中南林业科技大学学报,2012,32(11):51-55.

[12] Shiwen Fang, Zhaosheng Yu, Yan Lin, et al. Effects of additives on the co-pyrolysis of municipal solid waste and paper sludge by using thermogravimetric analysis[J]. Bioresource Technology, 2016, 2(9): 265-272.

[13]杨洋,张蕾,李能,等.户外用木材耐光老化技术研究进展[J].林产工业,2020,57(9):49-52.

[14] Xinyou Liu, Maria Cristina Timar, Anca Maria Varodi. A comparative study on the artificial UV and natural ageing of beeswax and Chinese wax and influence of wax finishing on the ageing of Chinese Ash (Fraxinus mandshurica) wood surfaces[J]. Journal of Photochemistry and Photobiology B: Biology, 2019, 201(12): 111607-111630.

[15]韩英磊,李艳云,周宇.木材光降解机理及研究进展[J].世界林业研究,2011,24(4):35-39.

[16] Ferreira P, Hernández-Ortega A, Lucas F, et al. Aromatic stacking interactions govern catalysis in aryl-alcohol oxidase[J]. FEBS Journal. 2015, 282(16): 3091-3106.

[17] Liting Cheng, Yajing Di, Peng Zhao, et al. Effects of Accelerated Weathering Test on the Properties of Larch Wood[J]. BioResources. 2021, 16(4): 7400-7415.

[18] Xinyou Liu, Mihaela Liu, Meng Qi Lv, et al. Photodegradation of Three Hardwood Species by Sunlight and Xenon Light Sources[J]. BioResources. 2019, 14(3): 6909-6922.

[19]陈孔阳.木构件腐朽和干缩裂缝的研究[D].南京市:东南大学,2019.

[20]刘一星,赵广杰.木材学[M].北京:中国林业出版社,2012:12.

[21]陈思禹.不同含水率状态下木材力学性能微观分析[D].呼和浩特市:内蒙古农业大学,2018.

[22] Li Zhu, Lu Jianxiong, Cao Jinzhen, et al. Comparative Study of the Hydrothermal Softening Characteristics of Heartwood and Sapwood[J]. Forest Products Journal, 2020, 70(3): 243-248.

[23]李坤.木构件腐朽性能试验研究[D].南京市:东南大学,2019.

[24]岳小泉,王立海,徐庆波.腐朽对木材微观结构和金属元素含量的影响[J].西北林学院学报,2017,32(6):234-239.

[25]赵博识,于志明,漆楚生,等.木材微生物变色与调控研究现状和展望[J].林产工业,2019,46(8):1-4.

[26] Skrede I. Diversity and distribution of ligninolytic fungi[J]. Advances in Botanical Research, 2021, 99: 1-36.

[27] Sánchez-Corzo L D, Lvarez-Gutiérrez P E, Meza-Gordillo R, et al. Lignocellulolytic Enzyme Production from Wood Rot Fungi Collected in Chiapas, Mexico, and Their Growth on Lignocellulosic Material[J]. Journal of Fungi — Open Access Mycology Journal, 2021, 7(6): 450-451.

[28]葛晓雯,王立海,侯捷建,等.褐腐杨木微观结构、力学性能与化学成分的关系研究[J].北京林业大学学报,2016,38(10):112-122.

[29]宋彦彦,金森,汪兆洋.4种草本可燃物的热解特性和动力学研究[J].中南林业科技大学学报,2012,32(11):51-55.

[30] Kolsoom A, Moraveji M K, Najafabadi H N. Simultaneous pyrolysis of microalgae C. vulgaris, wood and polymer: The effect of third component addition[J] Bioresource Technology, 2018, 247(7): 66-72.

[31] Luan T V, Vincent L, Frédéric J. Thermal decomposition kinetics of balsa wood: Kinetics and degradation mechanisms comparison between dry and moisturized materials[J]. Polymer Degradation and Stability, 2014, 110(12): 208-215.

[32] Somerville M, Deev A. The effect of heating rate, particle size and gas flow on the yield of charcoal during the pyrolysis of radiata pine wood[J]. Renewable Energy, 2020, 151: 419-425.

[33]邓军,刘同双,宋佳佳,等.自然老化作用对杨木热行为特征影响试验研究[J].中国安全科学学报,2021,31(12):17-23.

[34] Jiacong Chen, Jingyong Liu. Yao He, et al. Investigation of co-combustion characteristics of sewage sludge and coffee grounds mixtures using thermogravimetric analysis coupled to artificial neural networks modeling[J]. Bioresource Technology, 2017, 225(2): 234-245.

[35]王玉杰,丁毅飞,张欢等.污泥与木屑共热解特性研究[J].可再生能源,2019,37(1):26-33.

[36] Antonio S V, Marco T M, Hartmut M, et al. Comparison of wood pyrolysis kinetic data derived from thermogravimetric experiments by model-fitting and model-free methods[J]. Energy Conversion and Management, 2020, 212: 112818-112830.

[37] Nardella F, Mattonai M, Ribechini E. Evolved gas analysis-mass spectrometry and isoconversional methods for the estimation of component-specific kinetic data in wood pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2020, 145: 1615-1624.

[38]怀超平,刘芳,董佩文,等.木材热重试验及动力学分析[J].消防科学与技术,2020,39(6):757-760.

[39]王慧,贾娜,辛颖.木材的热重分析实验及动力学分析[J].消防科学与技术,2017,36(9):1209-1212.

[40]邢东,李坚,王思群.基于CONE法的热处理杨木燃烧特性研究[J].林产工业,2020,57(3):15-18.

[41]陈咏军,祁忆青.木结构建筑用多种木材燃烧性能研究[J].林业工程学报,2016,1(4):51-57.

[42]刘杰,陆守香,陈潇.常用木板材料的燃烧特性研究[J].消防科学与技术,2016,35(9):1197-1200.

[43]尚健雄,胡进波,长姗姗,等.基于CONE的速生人工林杨树木材热释放特性研究[J].林产工业,2020,57(6):7-11.

[44]杜安磊,李健男,黄彦慧,等.基于锥形量热仪的不同形态木质材料的燃烧特性分析[J].东北林业大学学报,2016,44(4):74-76.

[45]陈帅,王振师,陶骏骏,等.基于锥形量热仪测试的树叶燃烧碳排放研究[J].燃烧科学与技术,2016,22(4):370-376.

[46] Zhan Yang, Aihua Yi, Jianyong Liu, et al. Study of Fire Hazard of Flooring Materials on Data of Cone Calorimeter[J]. Procedia Engineering, 2016, 135(2): 584-587.

[47] Leonelli L, Barboni T, Santoni P A, et al. Characterization of aerosols emissions from the combustion of dead shrub twigs and leaves using a cone calorimeter[J]. Fire Safety Journal, 2017, 91(3): 800-810.

[48] Qingfeng Xu, Lingzhu Chen, Kent A. Harries, et al. Combustion and charring properties of five common constructional wood species from cone calorimeter tests[J]. Construction and Building Materials, 2015, 96(3): 416-427.

[49]李德,黄冬梅,何理辉,等.贴面工艺对合成板材燃烧性能的影响[J].中国安全生产科学技术,2019,15(12):23-28.

[50] Xiansheng Zhang, Yanzhi Xia, Meiwu Shi, et al. The flame retardancy of alginate/flame retardant viscose fibers investigated by vertical burning test and cone calorimeter[J]. Chinese Chemical Letters, 2018, 29(3): 489-492.

[51] Jin E, Chung Y J. Combustion Characteristics of Wood Panels Treated with Phosphorus-Nitrogen Additives[J]. BioResources. 2016, 11(2): 4319-4331.

[52]赵娟娟,刘刚,高明.脒基脲磷酸盐和硅酸钠对木材的阻燃作用[J].河北大学学报(自然科学版),2019,39(3):264-269.

[53]张青松,戚瀚鹏,杨彩红,等.飞机客舱性能化防火设计方法研究[J].科学技术与工程,2014,14(28):311-315.

[54]濮凡,李杰,李贤斌.数值模拟在我国火灾研究中的应用[J].安全,2019,40(6):54-59.

[55] Yang W, Parker T. Ladouceur D H al. The interaction of thermal radiation and water mist in fire suppression[J]. Fire Safety Journal, 2003, 39(1): 41-66.

[56] Tung S F, Su H C, Tzeng C T, et al. Experimental and Numerical Investigation of a Room Fire in a Wooden-Frame Historical Building[J]. International Journal of Architectural Heritage, 2020, 14(1): 106-118.

[57] Li K, Hostikka S. Embedded flame heat flux method for simulation of quasi-steady state vertical flame spread [J]. Fire Safety Journal, 2019, 104(3): 117-129.

[58] Peng Wei, Longhua Hu, Ruixin Yang, et al. Full Scale Test on Fire Spread and Control of Wooden Buildings[J]. Procedia Engineering, 2011,11: 355-359.

[59]高先占.云南省木结构民居火灾蔓延研究[D].昆明市:昆明理工大学,2015.

[60]刘芳,怀超平,李竞岌.木结构古建筑室内火灾发展的数值分析[J].科学技术与工程,2019,19(9):299-304.

[61]怀超平.木结构文物建筑火灾蔓延特性研究[D].北京市:北京建筑大学,2020.

[62]袁春燕,郑高凯,郎雨佳,等.考虑不同场景的砖木结构古建筑火灾特征研究[J].中国安全生产科学技术,2019,15(10):158-164.

[63]刘兴.砖木结构古建筑火灾模拟分析与轰燃预测[D].西安市:长安大学,2021.

[64]王耀麟.古建筑火焰蔓延动态变化规律及影响因素的研究[D].西安市:长安大学,2020.

[65]龙玟蒽.古商业街木结构建筑防火间距的数值模拟研究[D].合肥市:中国科学技术大学,2020.

[66]曹静,汪娟丽,李玉虎,等.西安含光门城墙遗址的木构件材种研究[J].西北林学院学报,2015,30(3):234-236.

[67]于而立,于旻,王少康,等.木塑复合材料老化影响因子研究进展[J].农业开发与装备,2020,(3):153-158.

[68]季慧.基于低温等离子处理对花生分离蛋白溶解行为的研究[J].中国粮油学报,2020,35(3):60-66.

[69] D. Cowan R N. Pulse Method of Measuring Thermal Diffusivity at High Temperatures[J]. Journal of Applied Physics, 1963, 34(4): 926-927.

[70]李能,陈玉和,包永洁,等.竹木材料耐紫外光老化性能研究进展[J].浙江林业科技,2011,31(6):70-73.

[71]王伟安,李小明,吴浩,等.转炉除尘灰与纳米催化剂对不同煤阶燃料燃烧特性的影响[J].煤炭转化,2020,43(3):8-16.

[72] Jun Deng, Bei Li, Yang Xiao, et al. Combustion properties of coal gangue using thermogravimetry–Fourier transform infrared spectroscopy[J]. Applied Thermal Engineering, 2017, 116(4): 244-252.

[73]王德明.煤氧化动力学理论及应用[M].北京市:科学出版社,2012:101.

[74] Jun Deng, Lifeng Ren, Li Ma, et al. Effect of oxygen concentration on low-temperature exothermic oxidation of pulverized coal[J]. Thermochimica Acta, 2018, 667: 102-110.

[75] DaJiang Li, Yang Xiao, HuiFei Lü, et al. Thermokinetic behaviour and functional group variation during spontaneous combustion of raw coal and its preoxidised form[J]. Royal Society of Chemistry, 2020, 10: 24472-24482.

[76]王展光,王婷婷,邵建华.高温后西南民居旧松木枋剩余受弯承载力性能研究[J].四川建筑科学研究,2020,46(3):46-51.

[77]张时,邱榕.火焰撞击受限顶棚条件下顶棚最高温度数值模拟研究[J].火灾科学,2019,28(1):1-10.

[78]邓军,宋佳佳,赵婧昱,等.自然老化木材燃烧过程热行为特性研究[J].中国安全科学学报,2022,32(2):83-89.

中图分类号:

 X928.7    

开放日期:

 2022-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式