- 无标题文档
查看论文信息

论文中文题名:

 煤矿老采空区CO2物理储存量估算 模型研究    

姓名:

 朱冰    

学号:

 19220089032    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 煤系CO2地质安全封存    

第一导师姓名:

 丁洋    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-21    

论文答辩日期:

 2022-06-01    

论文外文题名:

 Research on estimation model of CO2 physical storage in coal mine old goaf    

论文中文关键词:

 煤矿老采空区 ; 裂隙空间 ; 采/落遗煤 ; CO2储存 ; 物理储存 ; 储量模型    

论文外文关键词:

 Coal mine old goaf ; Fissure space ; Residual coal from fallen coal ; CO2 storage ; Physical storage ; Storage model    

论文中文摘要:

我国是世界煤炭第一生产大国,地下煤炭资源经长壁法开采、自然垮落管理顶板后形成大量的采动空间(采空区),这些地下采动空间资源开发少、利用率低。同时,在“双碳”背景下,我国CO2地质储存技术需大力发展,煤矿老采空区作为一种潜在的非常规CO2储存地质体,对其CO2储存潜力评估具有非常重要的意义,而储层CO2储存量估算是其关键部分。为了准确估算煤矿老采空区CO2储存量,此课题以陕西黄陵某矿老采空区为研究对象,以游离态和吸附态两种储存机制为出发点,对老采空区分别以这两种物理储存机制CO2储存量开展一系列实验研究。

针对案例老采空区裂隙空间CO2储存可行性,搭建试验工作面地层二维物理相似模型,明确了老采空区进行CO2储存的裂隙圈闭结构,根据盖层厚度及渗透特性分析案例老采空区CO2储存可行性。发现采空区发育稳定后,盖层具有厚度大和渗透性低的特点;盖层下“连通裂隙”、“封闭裂隙”和“微小裂隙”面积分别占总面积的85.5%、8.5%和6%。表明案例老采空区内至少有85.5%的裂隙空间可储存CO2,说明其储存CO2可行性较好。

基于物理相似模拟试验结果,提取连通裂隙网络开展CO2试注数值模拟试验,构建了CO2注入有效性模型,揭示了CO2注入过程中老采空区CO2/CH4运移扩散规律。发现CO2在注入后首先快速向连通裂隙底部运移,抵达底部后开始水平扩散,充满整个连通裂隙底部后才开始缓慢的纵向扩散,但注入完成后CO2并不能完全充满连通裂隙,当注入完成时,注入CO2体积仅占总连通裂隙体积的59%。该模型能准确地量化老采空区注入有效性对游离态CO2储存量的影响。

提出井下拍照+取样筛分的老采空区采落遗煤全粒径统计方法,明确了老采空区采落遗煤粒径分布特征。统计样品中煤粒径级配良好,粒径范围在0~130mm之间,其中不同粒径颗粒质量占比差别较大,70%质量占比的粒径大于20.19mm。考虑到老采空区压实区采落遗煤再破碎情况,开展模拟实际压实作用下煤颗粒的破碎试验,发现混合粒径(现场采样)压缩后试样的相对破碎率为29%,压缩后新增的0~5mm范围粒径增加较多。为构建煤矿老采空区全粒径段煤体吸附态储存CO2估算模型奠定了基础。

针对老采空区内采落遗煤CO2吸附储存量估算问题,开展煤CO2吸附-解吸实验,明确了采落遗煤粒径、环境温度和注气压力对老采空区采落遗煤以吸附态储存CO2量的影响,发现煤中CO2常压吸附量与先加压后解吸至常压CO2存留量相对误差小于3%,煤粒径和环境温度对老采空区CO2吸附储存量影响较大,而注气压力影响较小。为构建温度、注气压力和粒径影响下遗煤以吸附态储存CO2估算模型奠定了基础。

基于CO2地质储存金字塔理论和体积守恒理论,构建了老采空区游离态和吸附态CO2储存量估算模型,并对案例老空区CO2物理储存量进行估算。得出案例老采空区常温常压游离态CO2理论储存量为9423t,吸附态CO2理论储存量为10393t;案例老采空区常温常压游离态CO2有效储存量为4035t,吸附态CO2有效储存量为7228t;案例井田待全部开采后老采空区游离态CO2有效储存量为91221t,吸附态CO2有效储存量为164525t。实现了老采空区CO2物理储存量的准确计算。

论文外文摘要:

China is the world's largest coal producer, and the underground coal resources have formed a large amount of mining space (goafs) after long-wall mining and natural collapse management of the roof, and these underground mining space resources are less developed and less utilized. At the same time, in the context of "double carbon", China's CO2 geological storage technology needs to be vigorously developed. As a potential unconventional CO2 storage geological body, it is very important to evaluate the CO2 storage potential of old goaf, and the estimation of reservoir CO2 storage capacity is a key part. To accurately estimate the CO2 storage capacity of old goaf, this project takes an old goaf in Huangling, Shaanxi Province as the research object, and carries out a series of experimental studies on the CO2 storage capacity of these two storage mechanisms, respectively, taking the free and adsorption state as the starting point.

For the feasibility of CO2 storage in the fracture space of the old goaf, a two-dimensional physical similarity model of the stratum at the test working face was built to clarify the fracture trap structure of the old goaf for CO2 storage. The feasibility of CO2 storage in the old goaf was analyzed according to the thickness and permeability of the cover layer. The area of "connected fissures", "closed fissures" and "micro fissures" under the cover accounted for 85.5%, 8.5% and 6% of the total area, respectively. It shows that at least 85.5% of the fissures space in the old goaf can store CO2, which indicates that the feasibility of storing CO2 is good.

Based on the results of physically similar simulation tests, a numerical simulation test of CO2 trial injection was conducted by extracting the connected fracture network, and a CO2 injection effectiveness model was constructed to reveal the CO2/CH4 transport and diffusion law in the old goaf during CO2 injection. It is found that CO2 first moves rapidly to the bottom of the connected fracture after injection, and then starts to diffuse horizontally after reaching the bottom, and only starts to diffuse slowly longitudinally after filling the whole bottom of the connected fracture, but CO2 does not completely fill the connected fracture after injection is completed, and when injection is completed, the volume of injected CO2 only accounts for 59% of the total connected fracture volume. This model can accurately quantify the effect of injection effectiveness on the free CO2 storage volume in the old goaf.

The whole particle size statistics method of downhole photography + sampling and sieving in the old goaf is proposed, and the particle size distribution characteristics of the old goaf are clarified. Considering the re-crushing of the coal mined in the compaction area of the old goaf, the crushing test was carried out to simulate the crushing of coal particles under the actual compaction, and it was found that the relative crushing rate of the specimen after the compression of the mixed particle size (field sampling) was 29%. The relative fragmentation rate of the mixed grain size (field sampling) specimens after compression was found to be 29%, and the new particle size in the range of 0~5mm increased more after compression. It is found that the relative fragmentation rate is 29%, and the increase of 0~5mm particle size is more.

In order to estimate the amount of CO2 adsorption and storage in the old goaf, CO2 adsorption-desorption experiments were conducted to clarify the effects of coal particle size, ambient temperature and gas injection pressure on the amount of CO2 storage in the old goaf in the adsorption state, and it was found that the relative error of CO2 adsorption in coal at atmospheric pressure and the amount of CO2 stored in coal after desorption to atmospheric pressure is less than 3%. The influence of coal particle size and ambient temperature on the amount of CO2 adsorbed and stored in the old goaf is larger, while the influence of gas injection pressure is smaller. It is the basis for the estimation model of CO2 storage by adsorption of legacy coal under the influence of temperature, gas injection pressure and particle size.

Based on the CO2 geological storage pyramid theory and volume conservation theory, a model was constructed to estimate the storage capacity of free and adsorbed CO2 in the old goaf, and the CO2 storage capacity in the old goaf of the case was estimated. The theoretical storage capacity of free CO2 in the old goaf is 9423t and the theoretical storage capacity of adsorbed CO2 is 10,393t; the effective storage capacity of free CO2 in the old goaf is 4035t and the effective storage capacity of adsorbed CO2 is 7228t; the effective storage capacity of free CO2 in the old goaf is 91,221t and the effective storage capacity of adsorbed CO2 in the old goaf is 91,221t after all the well in the case field are mined. The physical storage capacity of CO2 in the old goaf has been accurately calculated.

参考文献:

[1] International Energy Agency. Global Energy Review CO2 Emissions in 2021[R]. 2021.

[2] Manabe S, Bryan K, Spelman M J. A Global Ocean-Atmosphere Climate Model. Part I. The Atmospheric Circulation[J]. Journal of Physical Oceanography, 1975, 5(1): 3-29.

[3] Manabe S, Bryan K. Climate Calculations with a Combined Ocean-Atmosphere Model[J]. Journal of the Atmospheric Sciences, 1969, 26(4): 786-789.

[4] 陈浮,于昊辰,卞正富,尹登玉.碳中和愿景下煤炭行业发展的危机与应对[J].煤炭学报,2021,46(06):1808-1820.

[5] 清华大学气候变化与可持续发展研究院. 中国长期低碳发展战略与转型路径研究 综合报告[M]. 中国环境出版集团有限公司, 2021.

[6] 丁仲礼. 中国碳中和框架路线图研究[J]. 中国工业和信息化, 2021(8): 54-61.

[7] 杜祥琬. 碳达峰与碳中和引领能源革命[J]. 科学大观园, 2021(19): 78.

[8] 谢和平, 任世华, 谢亚辰, 等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报, 2021, 46(7): 2197-2211.

[9] Sun L, Dou H, Li Z, et al. Assessment of CO2 storage potential and carbon capture, utilization and storage prospect in China[J]. Journal of the Energy Institute, 2018, 91(6): 970-977.

[10] Li P, Zhou D, Zhang C, et al. Assessment of the effective CO2 storage capacity in the Beibuwan Basin, offshore of southwestern P. R. China[J]. International Journal of Greenhouse Gas Control, 2015, 37: 325-339.

[11] 申建, 秦勇, 张春杰, 等. 沁水盆地深煤层注入CO2提高煤层气采收率可行性分析[J]. 煤炭学报, 2016, 41(1): 156-161.

[12] 李光. 废弃油层封存CO2的渗流-应力-损伤耦合机理及对CO2埋存安全性的影响[D]. 西南石油大学, 2016.

[13] Aminu M D, Nabavi S A, Rochelle C A, et al. A review of developments in carbon dioxide storage[J]. Applied Energy, 2017, 208: 1389-1419.

[14] 袁亮. 废弃矿井资源综合开发利用助力实现“碳达峰、碳中和”目标[J]. 科技导报, 2021, 39(13): 1.

[15] 王双明, 申艳军, 孙强, 等. “双碳”目标下煤炭开采扰动空间CO2地下封存途径与技术难题探索[J]. 煤炭学报, 2022, 47(1): 45-60.

[16] 黄定国, 侯兴武, 吴玉敏. 煤矿废弃矿井采空区封存CO2的机理分析和能力评价[J]. 环境工程, 2014, 32(1): 1076-1080.

[17] Li W, Ren T W, Su E L, et al. Is the long-term sequestration of CO2 in and around deep, abandoned coal mines feasible?[J]. Proceedings of the Institution of Mechanical Engineers, 2018, 232(1): 27-38.

[18] International Energy Agency. Energy Technology Perspectives 2020: Special Report on Carbon Capture Utilisation and Storage[R]. 2020.

[19] Global CCS Institute. Global Status of Carbon Capture and Storage 2021[R]. 2021.

[20] 张妍, 池晓彤, 康蓉. 全球CCS技术的研究、发展与应用动态[J]. 中外能源, 2020, 25(4): 1-10.

[21] Akono A T, Druhan J L, Dávila G, et al. A review of geochemical-mechanical impacts in geological carbon storage reservoirs[J]. Greenhouse Gases: Science and Technology, 2019, 9(3): 474-504.

[22] Williams L O, El-Mahallawy F, Habik S E D, et al. Carbon Dioxide Capture for Storage in Deep Geologic Formations[M]. 2005.

[23] Yan J, Zhang Z. Carbon Capture, Utilization and Storage (CCUS)[J]. Applied Energy, 2019, 235: 1289-1299.

[24] 叶云云, 廖海燕, 王鹏, 等. 我国燃煤发电CCS/CCUS技术发展方向及发展路线图研究[J]. 中国工程科学, 2018, 20(3): 80-89.

[25] 蔡博峰, 李琦, 张贤. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)-中国CCUS路径研究[R]. 生态环境部环境研究院,中国科学院武汉岩土力学研究所,中国21世纪议程管理中心, 2021.

[26] 米剑锋, 马晓芳. 中国CCUS技术发展趋势分析[J]. 中国电机工程学报, 2019, 39(9): 2537-2544.

[27] Tang R, Zhao J, Liu Y, et al. Air quality and health co-benefits of China’s carbon dioxide emissions peaking before 2030[J]. Nature Communications, 2022, 13(1): 1-9.

[28] 秦积舜, 李永亮, 吴德彬, 等. CCUS全球进展与中国对策建议[J]. 油气地质与采收率, 2020, 27(1): 20-28.

[29] Ma J, Yang Y, Wang H, et al. How much CO2 is stored and verified through CCS/CCUS in China? [J]. Energy Procedia, 2018, 154: 60-65.

[30] 邓军, 习红军, 翟小伟, 等. 煤矿采空区液态CO2灌注防灭火关键参数研究[J]. 西安科技大学学报, 2017, 37(5): 605-609.

[31] 翟小伟, 徐宇, 于志金, 等. 松散煤体内CO2渗流规律试验[J]. 西安科技大学学报, 2018, 38(3): 375-382.

[32] 于志金, 杨淞, 谷雨, 等. 松散煤体内液态二氧化碳相变换热试验研究[J]. 中国安全科学学报, 2020, 30(6): 98-105.

[33] 李宗翔, 刘宇, 王政, 等. 九道岭矿采空区注CO2防灭火技术数值模拟研究[J]. 煤炭科学技术, 2018, 46(9): 153-157.

[34] 姜奎, 王怡, 任广意, 等. 姚桥煤矿8059工作面采空区注CO2防灭火技术参数优化模拟与应用研究[J]. 矿业安全与环保, 2021, 48(3): 74-78+84.

[35] 王继仁, 张英, 郝朝瑜. 半“O”型冒落采空区注CO2防灭火的数值模拟[J]. 中国安全科学学报, 2015, 25(7): 48-54.

[36] 牛振磊. 采空区压注二氧化碳的分布规律及工艺参数优化[D]. 华北科技学院, 2018.

[37] 孙可明, 罗国年, 王传绳. 采空区注超临界CO2防灭火试验研究[J]. 中国安全生产科学技术, 2019, 15(5): 117-122.

[38] Liu M X, Shi G Q, Guo Z X, et al. 3-D simulation of gases transport under condition of inert gas injection into goaf[J]. Heat & Mass Transfer, 2016, 52(12):2723-2734.

[39] Si J, Li L, Cheng G, et al. Characteristics and Safety of CO2 for the Fire Prevention Technology with Gob-Side Entry Retaining in Goaf[J]. ACS Omega, 2021, 6(28): 18518-18526.

[40] Hu S, Li Z, Feng G, et al. Changes on methane concentration after CO2 injection in a longwall gob: A case study[J]. Journal of Natural Gas Science and Engineering, 2016, 29: 550-558.

[41] Cao Z, Deng J, Zhou S, et al. Research on the feasibility of compressed carbon dioxide energy storage system with underground sequestration in antiquated mine goaf[J]. Energy Conversion and Management, 2020, 211: 112788.

[42] 高飞, 邓存宝, 王雪峰, 等. 电厂烟气对采空区防火效果实验研究[J]. 中国安全生产科学技术, 2016, 12(11): 36-40.

[43] 高飞, 邓存宝, 王雪峰, 等. 烟气注入采空区封存的可行性与安全性分析[J]. 中国安全生产科学技术, 2016, 12(7): 60-64.

[44] Gao F, Deng C B, Wang X F, et al. Experimental study on adsorbing of flue gas and its application in preventing spontaneous combustion of coal[J]. Adsorption Science & Technology, 2018, 36(9-10): 1744-1754.

[45] 马东民, 高正, 陈跃, 张辉, 邵凯, 张治仓, 吴讯, 杨甫. 不同温度下低、中、高阶煤储层甲烷吸附解吸特征差异[J]. 油气藏评价与开发, 2020, 10(4):17-24+38.

[46] 陈铭. 采空区煤岩对CO2的吸附特性实验研究[D]. 辽宁工程技术大学, 2009.

[47] 邓军, 任立峰, 吴明明, 等. 煤对CO2的解吸实验及热力学参数研究[J]. 西安科技大学学报, 2018, 38(5): 697-704.

[48] Li W, Liu H F, Song X X. Influence of Fluid Exposure on Surface Chemistry and Pore-Fracture Morphology of Various Rank Coals: Implications for Methane Recovery and CO2 Storage [J]. Energy & Fuels, 2017, 31: 12552-12569.

[49] 袁瑞甫, 魏晓, 刘银先. 高温条件下煤对CO2的吸附解吸特性实验研究[J]. 中国科技论文, 2017, 12(21): 2457-2463.

[50] 雷景冲. 温度对不同变质程度煤吸附CH4/CO2特性的实验研究[D]. 中国矿业大学, 2018.

[51] 王瑞雪. 不同变质程度煤对CH4和CO2吸附特征差异的实验研究[D]. 中国矿业大学, 2020.

[52] Xing W L, Song Y C, Zhang Y, Liu W G, Jiang L L, Li Y H, Zhao Y C. Adsorption isotherms and kinetic characteristics of methane on block anthracite over a wide pressure range[J]. Journal of Energy Chemistry, 2015, 24(2):245-256.

[53] 吕乾龙, 刘伟, 宋奕澎, 等. 无烟煤对CO2和CH4的吸附解吸特性研究[J]. 煤矿安全, 2019, 50(5): 27-30.

[54] 王向浩, 王延忠, 张磊, 等. 高、低煤阶CO2与CH4竞争吸附解吸置换效果分析[J]. 非常规油气, 2018, 5(3): 46-51.

[55] 李树刚, 白杨, 林海飞, 等. CH4,CO2和N2多组分气体在煤分子中吸附热力学特性的分子模拟[J]. 煤炭学报, 2018, 43(9): 2476-2483.

[56] You J, Tian L, Zhang C, Yao H X, Dou W, Fan B, Hu S Q. Adsorption behavior of carbon dioxide and methane in bituminous coal: A molecular simulation study[J]. Chinese Journal of Chemical Engineering, 2016, 24(9):1275-1282.

[57] Zhou W, Wang H, Zhang Z, et al. Molecular simulation of CO2/CH4/H2O competitive adsorption and diffusion in brown coal[J]. RSC Advances, 2019, 9(6): 3004-3011.

[58] 董夔. 太原西山西铭8号煤大分子结构构建及甲烷吸附机理研究[D]. 太原理工大学, 2015.

[59] Han, S., Sang, S., Liang, J., Zhang, J. Supercritical CO2 adsorption in a simulated deep coal reservoir environment, implications for geological storage of CO2 in deep coals inthe southern Qinshui Basin, China[J]. Energy Science & Engineering, 2019, 7: 488-503.

[60] Bradshaw J, Bachu S, Bonijoly D, et al. Task Force for Review and Identification of Standards for CO2 Storage Capacity Measurement. Phase I Final report[C]. Carbon Sequestration Leadership Forum. 2005.

[61] Bradshaw J, Bachu S, Bonijoly D, et al. CO2 storage capacity estimation: Issues and development of standards[J]. International Journal of Greenhouse Gas Control, 2007, 1(1): 62-68.

[62] Bachu S, Bonijoly D, Bradshaw J, et al. CO2 storage capacity estimation: Methodology and gaps[J]. International Journal of Greenhouse Gas Control, 2007, 1(4): 430-443.

[63] 刘廷, 马鑫, 刁玉杰, 等. 国内外CO2地质封存潜力评价方法研究现状[J]. 中国地质调查, 2021, 8(4): 101-108.

[64] Wei N, Li X, Fang Z, et al. Regional resource distribution of onshore carbon geological utilization in China[J]. Journal of CO2 Utilization, 2015, 11: 20-30.

[65] Zhao X, Liao X, Wang W, et al. The CO2 storage capacity evaluation: Methodology and determination of key factors[J]. Journal of the Energy Institute, 2014, 87(4): 297-305.

[66] Sanguinito S, Goodman A L, Sams J I. CO2-SCREEN tool: Application to the oriskany sandstone to estimate prospective CO2 storage resource[J]. International Journal of Greenhouse Gas Control, 2018, 75: 180-188.

[67] Li Y, Pang Z. Quantitative assessment of CO2 storage capacity by using of hydrogeochemical and isotope data for deep saline aquifers: Modeling and Analysis: Quantitative assessment of CO2 storage capacity by using of hydrogeochemical[J]. Greenhouse Gases: Science and Technology, 2015, 5(5): 592-602.

[68] Ghanbarnezhad Moghanloo R, Dadmohammadi Y, Bin Y, et al. Applying fractional flow theory to evaluate CO2 storage capacity of an aquifer[J]. Journal of Petroleum Science and Engineering, 2015, 125: 154-161.

[69] 杨红, 赵习森, 康宇龙, 等. 鄂尔多斯盆地CO2地质封存适宜性与潜力评价[J]. 气候变化研究进展, 2019, 15(1): 95-102.

[70] Ding S, Xi Y, Jiang H, et al. CO2 storage capacity estimation in oil reservoirs by solubility and mineral trapping[J]. Applied Geochemistry, 2018, 89: 121-128.

[71] 路萍. 鄂尔多斯盆地陕北斜坡马家沟组深部盐水层二氧化碳封存潜力评估[D]. 西北大学, 2013.

[72] 韩保山, 张新民, 张群. 废弃矿井煤层气资源量计算范围研究[J]. 煤田地质与勘探, 2004(1): 29-31.

[73] 韩保山, 李健武, 董敏涛. 用下降曲线估算废弃矿井煤层气资源量[J]. 中国煤田地质, 2005(5):37-39+46.

[74] 秦伟, 许家林, 彭小亚, 胡国忠. 老采空区瓦斯抽采地面钻井的井网布置方法[J]. 采矿与安全工程学报, 2013, 30(2): 289-295.

[75] 秦伟, 许家林, 胡国忠, 等. 老采空区瓦斯储量预测方法研究[J]. 煤炭学报, 2013, 38(6): 948-953.

[76] 郝元伟, 杨洋, 涂辉, 等. 煤矿封闭采空区瓦斯发电气源储量预测方法研究[J]. 煤炭科学技术, 2019, 47(6): 151-157.

[77] 谢克昌. 煤的结构与反应性[M]. 北京: 科学出版社, 2002.

[78] 林海飞, 李树刚, 成连华, 等. 覆岩采动裂隙带动态演化模型的实验分析[J]. 采矿与安全工程学报, 2011, 28(2): 298-303.

[79] 李树刚, 林海飞, 赵鹏翔, 等. 采动裂隙椭抛带动态演化及煤与甲烷共采[J]. 煤炭学报, 2014, 39(8): 1455-1462.

[80] Hu S, Zhang A, Feng G, et al. Methane Extraction from Abandoned Mines by Surface Vertical Wells: A Case Study in China[J]. Geofluids, 2018, 2018: 1-9.

[81] 丁洋, 朱冰, 李树刚, 等. 高突矿井采空区卸压瓦斯精准辨识及高效抽采[J]. 煤炭学报, 2021, 46(11): 3565-3577.

[82] Huppert H E, Neufeld J A. The Fluid Mechanics of Carbon Dioxide Sequestration [J]. Annual Review of Fluid Mechanics, 2014, 46(1): 255-272.

[83] 李玉彬. 多孔介质内CO2-水两相流动的CFD数值模拟研究[D]. 大连理工大学, 2015.

[84] 姜海纳, 徐乐华, 程远平. 粉煤粒径对瓦斯吸附平衡时间的影响机制[J]. 煤矿安全, 2021, 52(6): 6-11.

[85] 张天军, 许鸿杰, 李树刚, 等. 粒径大小对煤吸附甲烷的影响[J]. 湖南科技大学学报(自然科学版), 2009, 24(1): 9-12.

[86] Zhang S, Liu H, Wu C, et al. Influence of particle size on pore structure and multifractal characteristics in coal using low-pressure gas adsorption[J]. Journal of Petroleum Science and Engineering, 2022, 212: 110273.

[87] GB/T 31089-2014,煤矿回采率计算方法及要求[S].

[88] 霍昱名. 厚煤层综放开采顶煤破碎机理及智能化放煤控制研究[D]. 太原理工大学, 2021.

[89] 贾华华, 常小峰. 综放工作面丢煤的计算及提高回采率的措施[J]. 江西煤炭科技, 2020(4): 127-128+131.

[90] 林海飞, 李树刚, 成连华, 王红胜. 覆岩采动裂隙演化形态的相似材料模拟实验[J]. 西安科技大学学报, 2010, 30(5): 507-512.

[91] 袁伦. 粒状土颗粒破碎机理的试验研究[D]. 武汉理工大学, 2010.

[92] 刘楠. 级配破碎煤岩体压实特征及其再破碎机理研究[D]. 西安科技大学, 2021.

[93] 唐建新, 王育林, 王艳磊, 等. 约束型压缩条件下破碎煤岩体的承载特性[J]. 地下空间与工程学报, 2021, 17(5): 1399-1407.

[94] 张天军, 刘楠, 庞明坤, 等. 级配破碎煤岩体压实过程中再破碎特征研究[J]. 采矿与安全工程学报, 2021, 38(2): 380-387.

[95] 赵正军, 田取珍, 李兰秀. 煤岩体的损伤断裂机理研究[J]. 太原理工大学学报, 2005(3):260-263.

[96] 褚廷湘, 姜德义, 余明高. 承压颗粒煤逐级加载下渗透特性实验研究[J]. 中国矿业大学学报, 2017, 46(5): 1058-1065.

[97] 梁军, 刘汉龙, 高玉峰. 堆石蠕变机理分析与颗粒破碎特性研究[J]. 岩土力学, 2003(3): 479-483.

[98] 潘红宇, 周敖, 石涛, 等. 不同级配破碎煤岩体分形特性试验研究[J]. 西安科技大学学报, 2017, 37(6): 795-800.

[99] 张村, 赵毅鑫, 屠世浩, 等. 颗粒粒径对采空区破碎煤体压实破碎特征影响机制[J]. 煤炭学报, 2020, 45(S2): 660-670.

[100]None. Crushing of soil particles: Hardin, B O J Geotech Engng Div ASCEV111, N10, Oct 1985, P1177–1192[J]. 1986, 23(3): 101-110.

[101]Einav I. Breakage mechanics—Part I: Theory[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(6): 1274-1297.

[102]Einav I. Breakage mechanics—Part II: Modelling granular materials[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(6): 1298-1320.

[103]李菁华, 张磊, 薛俊华, 张村, 黄梦牵. 注气驱替中CO2置换煤体CH4行为特性[J].煤炭学报, 2021, 46(S1):385-395.

[104]贾彦楠, 温志辉, 魏建平. 不同粒度煤样的瓦斯解吸规律实验研究[J]. 煤矿安全, 2013, 44(7): 1-3.

[105]张遵国, 赵丹, 张春华, 陈毅, 唐朝. 不同温度下软煤等温吸附/解吸特性[J]. 辽宁工程技术大学学报(自然科学版), 2021, 40(6):510-517.

[106]郑司建, 桑树勋, 姚艳斌, 等. 基于核磁共振的煤岩注CO2吸附置换CH4实验研究[J]. 煤炭学报: 1-12[2022-04-05].

[107]彭斌, 聂百胜, 申杰升, 等. 低瓦斯矿井封闭采空区“呼吸”现象特征及防控技术[J]. 煤炭学报, 2019, 44(2): 490-501.

[108]高飞, 邓存宝, 王雪峰, 等. 电厂烟气注入采空区封存的可行性[J]. 环境科学研究, 2016, 29(7): 1096-1100.

[109]司俊鸿, 程根银, 朱建芳, 褚廷湘. 采空区非均质多孔介质渗透特性三维建模及应用[J]. 煤炭科学技术, 2019, 47(5):220-224.

中图分类号:

 TD989;X701.7    

开放日期:

 2023-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式