- 无标题文档
查看论文信息

论文中文题名:

 气相合金法制备镁锌二元合金及耐蚀性的研究    

姓名:

 张国琛    

学号:

 22211225068    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085600    

学科名称:

 工学 - 材料与化工    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料科学与工程    

研究方向:

 轻金属合金化    

第一导师姓名:

 牛立斌    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-21    

论文答辩日期:

 2025-05-30    

论文外文题名:

 Synthesis of Mg-Zn Binary Alloys by Gas-Phase Alloying and Investigation of Corrosion Resistance Properties    

论文中文关键词:

 Mg-Zn合金 ; 气相合金化 ; 固溶处理 ; 热压 ; 耐蚀性    

论文外文关键词:

 Mg-Zn alloy ; Vapor phase alloying ; Solution treatment ; Hot pressing ; Corrosion resistance    

论文中文摘要:

镁合金由于密度小、比强度高及优越的可成型性等优点,具有很广阔的应用前景。然而镁合金耐蚀性较差,极大地制约了镁合金的推广使用,也带来了巨大的经济损失。针对镁合金腐蚀严重的问题,本文通过气相合金化技术制备高纯Mg-Zn二元合金,并系统地对热处理、热压工艺对合金显微组织演变、机械性能及在Ringer's液中耐腐蚀行为影响机理进行了探究。

(1) 通过理论计算与实验验证相结合,确定了气相合金化的较佳工艺参数:镁蒸发温度1000 ℃、锌蒸发温度800 ℃、混合室温度600 ℃,在此条件下成功制备出纯度极高、杂质元素Fe、Ni、Cu含量极低的Mg-Zn合金。

(2) 冷凝态合金呈现典型的分层结构,由α-Mg基体与共晶混合物MgZn+Mg7Zn3组成,共晶组织呈两种形态;经360 ℃固溶5 h后,Mg7Zn3相部分分解为MgZn相,晶粒尺寸增大,Zn在α-Mg中的固溶度提升;而160 ℃,10 h的时效处理促使Zn原子析出,形成弥散分布的Mg7Zn3相。对冷凝态合金进行420 ℃,10 MPa热压6小时后,合金组织显著细化,共晶相含量减少,并形成沿压力方向的扁平状组织。

(3) 经电化学测试,固溶处理使合金在Ringer's液中的自腐蚀电位从冷凝态的-1388.6 mV正移至-1154.2 mV,腐蚀电流密度降低至117.39 μA/cm2;而时效处理态试样因Mg7Zn3相增多导致微电偶腐蚀加剧,腐蚀电流密度提升至596.00 μA/cm2。热压态合金的耐蚀性呈现温度依赖性,440 ℃热压2 h的腐蚀电流密度较420 ℃处理降低18 %,归因于第二相MgZn2的弥散分布对腐蚀的抑制作用。

(4) 浸泡实验发现,固溶态合金表面形成致密的CaCO3/Mg(OH)2复合腐蚀产物膜,使腐蚀形态从局部点蚀转变为均匀腐蚀;而热压态合金因晶界处残余应力集中,腐蚀沿织构方向扩展。失重率分析进一步证实,固溶处理使合金在72 h内累计腐蚀的质量损失明显降低,显著优于时效处理和热压处理的合金试样。

论文外文摘要:

Magnesium alloy possesses significant potential for various applications due to its low density, high specific strength, and excellent formability. Nevertheless, the inadequate corrosion resistance of magnesium alloys considerably hampers their widespread adoption and utilization, resulting in substantial economic losses. To address the issue of pronounced corrosion in magnesium alloys, high-purity Mg-Zn binary alloys were synthesized using gas phase alloying technology. Furthermore, a systematic investigation was conducted to explore the influence mechanisms of heat treatment and hot pressing processes on the microstructural evolution, mechanical properties, and corrosion resistance behavior of the alloys when immersed in Ringer's solution.

(1) By integrating theoretical calculations with experimental validations, the optimal process parameters for gas-phase alloying were established: the magnesium evaporation temperature of 1000°C, the zinc evaporation temperature of 800°C, and the mixing chamber temperature of 600°C.

(2) The condensed state alloy displays a typical layered architecture, consisting of an α-Mg matrix alongside an eutectic composition of MgZn and Mg7Zn3. The eutectic structure manifests in two variations; following a solid solution treatment at 360°C for a duration of 5 hours, the Mg7Zn3 phase partially disintegrates into the MgZn phase, which results in an enlargement of grain size and an increase in Zn solubility within α-Mg. Simultaneously, an aging treatment conducted at 160°C for 10 hours facilitates the precipitation of Zn atoms, thereby producing a dispersed distribution of the Mg7Zn3 phase. Subsequent thermal pressing of the condensed state alloy at 420°C under a pressure of 10 MPa for 6 hours significantly refines the alloy structure, reduces the amount of the eutectic phase, and leads to the formation of a flattened structure oriented in alignment with the direction of pressure.

(3) Electrochemical tests revealed that the solution treatment elevated the self-corrosion potential of the alloy in Ringer's solution from -1388.6 mV in the condensed state to -1154.2 mV, while simultaneously reducing the corrosion current density to 117.39 μA/cm². Conversely, the samples subjected to aging treatment exhibited heightened localized corrosion, attributed to a greater volume fraction of the Mg7Zn3 phase, resulting in an increase in corrosion current density to 596.00 μA/cm². The corrosion resistance of hot-pressed alloys displayed dependence on temperature; specifically, the corrosion current density recorded at 440°C for 2 hours was 18% lower than that measured at 420°C, a phenomenon attributed to the suppressive effect of the dispersed MgZn2 secondary phase on corrosion.

(4) The immersion experiments demonstrated the formation of dense CaCO3/Mg(OH)2 composite corrosion product film on the surface of the solution-treated alloy, leading to transition in the corrosion mode from localized pitting to uniform corrosion. Conversely, the hot-pressed alloy displays corrosion propagation along the texture direction, attributable to the accumulation of residual stresses at the grain boundaries. Additional weight loss analysis substantiated that solution treatment substantially mitigates cumulative mass loss due to corrosion over a period of 72 hours, thereby showing a significant enhancement compared to specimens that underwent aging treatment and hot pressing.

参考文献:

[1] Kumaresh D, S V. Mechanical and Microstructural Characterization of the effect of increasing the tool rotational speed on submerged friction stir welded dissimilar Al-Mg alloy[J]. Engineering Research Express, 2025, 7 (2): 025545-025545.

[2] Marakini V, P C, P P S, et al. Cryogenic machining induced corrosion resistance of magnesium alloy AZ91[J]. Next Materials, 2025, 8 100600-100600.

[3] 徐鹏. 镁合金消能支撑的应用研究[D]. 重庆大学,2017.

[4] 郭旭, 卢贤文, 张钰雯茜, 等. Mg-xZn-0.3Ca-0.5Mn-0.3La合金的导热及力学性能[J]. 材料热处理学报,2023,44(1): 77-86.

[5] Yang W, 1, Chon S, et al. Materials Selection Method Combined with Different MADM Methods[J]. Journal on Artificial Intelligence, 2019, 1 (2): 89-99.

[6] 程刘进. 镁合金及其合金相的晶体学研究[D]. 重庆大学,2009.

[7] 董天宇. 高性能稀土镁合金研究与应用进展[J]. 世界有色金属,2018, 33(19): 156-157.

[8] 易爱华, 祝闻, 雷华, 等. AZ91D镁合金表面钼-钛-锰导电膜化学转化工艺及其性能研究[J]. 电镀与涂饰, 2024, 43(3):55-63.

[9] Vago G, Giorgio V, Tetsuo O. Material testing of magnesium alloy AZ31B using a finite element polycrystal method based on a rate independent crystal plasticity model[J]. IOP Conference Series: Materials Science and Engineering, 2020, 967 (1): 012057.

[10] 宋佩维. 耐热镁合金的研究现状与发展趋势[J]. 陕西理工大学学报(自然科学版)2017, 33(4): 5-11.

[11] 王硕, 许道奎, 王东亮, 等. 超轻镁锂合金强化方法的研究现状[J]. 机械工程材料, 2023, 47(5): 94-101.

[12] Lv H, Tan J, Yuan Q, et al. Recent advancements in thermal conductivity of magnesium alloys[J]. Journal of Magnesium and Alloys, 2024, 12 (5): 1687-1708.

[13] 任泽祺, 陆钰璞, 夏丹丹, 等. 医用镁合金及器械研究现状与展望[J]. 中国科学:技术科学, 2025, 55 (04): 575-598.

[14] Dinesh K, Rakesh K, Lalit T. A review on environment friendly and light weight magnesium-based metal matrix composites and alloys[J]. Materials Today, 2021,38.

[15] 朱阳林. 镁基固态储氢系统充氢过程产热分析与应用展望[J]. 上海节能, 2025, (04): 553-558.

[16] Deshpande B K. Numerical modeling of micro-galvanic corrosion[J]. Electrochimica Acta, 2011, 56 (4): 1737-1745.

[17] Song Y, Shan D, Han E. Pitting Corrosion of a Rare Earth Mg Alloy GW93[J]. Journal of Materials Science & Technology, 2017, 33 (9): 954-960.

[18] 谢沛桐. 镁合金腐蚀机理方面的研究进展[J]. 冶金与材料, 2022, 42(04)7-9.

[19] Raman S, Harandi E. Resistance of Magnesium Alloys to Corrosion Fatigue for Biodegradable Implant Applications: Current Status and Challenges [J]. Materials, 2017, 10 (11): 1316.

[20] Williams G, Grace R. Chloride-induced filiform corrosion of organic-coated magnesium[J]. Electrochimica Acta, 2010, 56 (4): 1894-1903.

[21] 谢丽丽. 镁合金防腐耐磨复合膜层的原位制备及性能研究[D]. 北京化工大学, 2024.

[22] 李智, 周世杰, 赵炯. 生物医用纯镁的腐蚀性能研究[J]. 热加工工艺,2012, 41(16):53-56.

[23] Cao F, Shi Z, Hofstetter J, et al. Corrosion of ultra-high-purity Mg in 3.5% NaCl solution saturated with Mg(OH) 2[J]. Corrosion Science, 2013, 75: 78-99.

[24] Liu J, Schlesinger M. Corrosion studies of magnesium and its alloys[J]. Corrosion Science, 1942, 147;273-299.

[25] 任伊宾, 黄品晶, 杨柯, 等. 纯镁的生物腐蚀研究[J]. 金属学报,2005, 41(11): 1228-1232.

[26] Johnston S, Shi Z, Atrens A. The influence of pH on the corrosion rate of high-purity Mg, AZ91 and ZE41 in bicarbonate buffered Hanks' solution[J]. Corrosion Science, 2015, 101: 182-192.

[27] Abidin Z, Rolfe B, Owen H, et al. Theinvivo andin vitro corrosion of high-purity magnesium and magnesium alloys WZ21 and AZ91[J]. Corrosion Science, 2013, 75: 354-366.

[28] Qiao Z, Shi Z, Hort N, et al. Corrosion behaviour of a nominally high purity Mg ingot produced by permanent mould direct chill casting[J]. Corrosion Science, 2012, 61: 185-207.

[29] Peng Q, Huang Y, Zhou L, et al. Preparation and properties of high purity Mg–Y biomaterials[J]. Biomate-rials, 2009, 31(3): 398-403.

[30] 杨春喜, 郑玉峰, 顾雪楠, 等. 二元镁合金在细胞培养基中的耐腐蚀能力及其生物相容性[J]. 中国组织工程研究与临床康复, 2011, 15 (08): 1397-1401.

[31] 吴佳佳. 活性元素对镁合金高温氧化及腐蚀行为的影响[D]. 重庆大学, 2022.

[32] Umar M, Jayasathyakawin S, Jackson M A, et al. Additive Processes for Biodegradable Mg Alloys: A Review[J]. Metals and Materials International, 2025, (prepublish): 1-31.

[33] 孔令华, 贺迎坤, 李天晓, 等. 镁基合金可生物降解支架血管内应用研究进展[J]. 介入放射学杂志, 2020, 29 (06): 626-630.

[34] Zakiyuddin A, Lee K. Effect of a small addition of zinc and manganese to Mg–Ca based alloys on degradation behavior in physiological media[J]. Journal of Alloys and Compounds, 2015, 629: 274-283.

[35] Kavyani M, Ebrahimi G.R, H.R. Ezatpour, et al. Microstructure, mechanical and biocorrosion properties of Mg-Zn-Zr alloys with minor Ca addition[J]. Journal of Magnesium and Alloys, 2017, 33(1): 9-16.

[36] Wang Y, Liao Z, Song C, et al. Influence of Nd on Microstructure and Bio-corrosion Rsistance of Mg-Zn-Mn-Ca Alloy[J]. Rare Metal Materials and Engineering, 2013, 42 (4): 661-666.

[37] 郭涛. 稀土元素钇对镁合金扩散行为与力学性能影响的研究[D]. 西安石油大学, 2024.

[38] Cheng M, Chen J, Yan H, et al. Effects of minor Sr addition on microstructure, mechanical and bio-corrosion properties of the Mg-5Zn based alloy system[J]. Journal of Alloys and Compounds, 2017, 691: 95-102.

[39] 卫嘉莉. Mg-6Zn-2X(Fe/Cu/Ni)合金显微组织、腐蚀行为和力学性能的研究[D]. 太原科技大学, 2024.

[40] 黄丽颖. 搅拌摩擦加工AZ80镁合金组织、力学性能及腐蚀行为研究[D]. 西安建筑科技大学, 2019.

[41] Bornapour M, Celikin M, Pekguleryuz M. Thermal exposure effects on the in vitro degradation and mechanical properties of Mg–Sr and Mg–Ca–Sr biodegradable implant alloys and the role of the microstructure[J]. Materials Science & Engineering C, 2015, 46: 16-24.

[42] 李伟莉, 刘涛, 赵春博, 等. 锻后热处理对Mg-6.5Gd-3.5Y-1Zn-0.5Zr合金显微组织和力学性能的影响[J]. 锻压装备与制造技术, 2024, 59 (06): 90-94.

[43] Hui J, Song I, Kyoung Y, et al. Influence of Heat Treatment on Biocorrosion and Hemocompatibility of Biodegradable Mg-35Zn-3Ca Alloy[J]. Advances in Materials Science and Engineering, 2015, 2015: 1-10.

[44] Zhou W, Shen T, Aung N. Effect of heat treatment on corrosion behaviour of magnesium alloy AZ91D in simulated body fluid [J]. Corrosion Science, 2009, 52 (3): 1035-1041.

[45] Lu Y, Bradshaw A, Chiu I, et al. The role of precipitates in the bio-corrosion performance of Mg-3Zn in simulated body fluid[J]. Journal of Alloys and Compounds, 2014, 614: 345-352.

[46] Choi H, Kim W. Effect of thermal treatment on the biocorrosion and mechanical properties of ultrafine grained ZK60 magnesium alloy[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 51: 291-301.

[47] 贾晨曦. 镁合金耐蚀膜层的制备及其性能研究[D]. 桂林理工大学, 2023.

[48] 张志杰. 材料物理化学[M]. 北京: 化学工业出版社, 2006.

[49] Ma J, Niu L B, Yan Y T, et al. Influence of heat treatment on microstructure and electrochemical behaviors of Mg-Zn binary alloys prepared by gas-phase alloying technique[J]. Journal of Central South University: Science & Technology of Mining and Metallurgy, 2020, 27 (5): 762-771.

[50] 雷路. 真空碳热法炼镁过程中镁蒸气冷凝的实验研究[D]. 昆明理工大学, 2013.

[51] 周亚栋. 无机材料物理化学[M]. 武汉: 武汉工业大学出版社, 1994.

[52] Yan T Y, Niu B L, Long X Y, et al. Study on the Mg-Zn binary alloys fabricated by gas-phase alloying[J]. IOP Conference Series: Materials Science and Engineering, 2019, 474 (1).

[53] 刘智思. 材料科学基础[M]. 西安: 西北工业大学出版社, 2012.

[54] Alina S, Rafał N, Grzegorz B, et al. High temperature wettability and corrosion of ZrO2, Al2O3, Al2O3-C, MgO and MgAlON ceramic substrates by an AZ91 magnesium alloy melt[J]. Journal of the European Ceramic Society, 2022, 42 (6): 3023-3035.

[55] 石玉君. 纳米多孔金属的液/气相合金化-脱合金制备及结构调控[D]. 山东大学, 2023.

[56] 黄辅钰. 生物医用镁锌合金丝材的显微组织、力学性能与腐蚀性研究[D]. 扬州大学, 2021.

[57] Gao X, Nie J. Structure and thermal stability of primary intermetallic particles in an Mg–Zn casting alloy[J]. Scripta Materialia, 2007, 57 (7): 655-658.

[58] Blanco R, Rodríguez A, Risueño E. Thermophysica characteriza- tion of Mg-51%Zn eutectic metal alloy: a phase change material for thermal energy storage in direct steam generation applications[J]. Energy, 2014. (74): 414-420.

[59] Jamesh M, Kumar S, Narayanan S T . Corrosion behavior of commercially pure Mg and ZM21 Mg alloy in Ringer's solution - Long term evaluation by EIS[J]. Corrosion Science: The Journal on Environmental Degradation of Materials and its Control, 2011, 53 (2): 645-654.

[60] 白鹏飞. 脊柱固定系统用钛合金组织性能研究[D]. 大连: 大连理工大学, 2017.

[61] 宋光玲. 镁合金腐蚀与防护[M]. 北京: 北京化学工业出版社, 2006.

中图分类号:

 TG146.22    

开放日期:

 2025-06-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式