- 无标题文档
查看论文信息

论文中文题名:

 Co改性MIL-101(Fe)复合材料活化PS降解有机物性能研究    

姓名:

 谢晓铃    

学号:

 19209085030    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0830    

学科名称:

 工学 - 环境科学与工程(可授工学、理学、农学学位)    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 环境科学与工程    

研究方向:

 水处理方向    

第一导师姓名:

 程爱华    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-03-14    

论文答辩日期:

 2022-12-04    

论文外文题名:

 Study on degradation performance of organic matter by activated PS of Co modified MIL-101(Fe) composite    

论文中文关键词:

 过硫酸盐 ; MIL-101(Fe) ; MIL-101(Fe ; Co) ; CoFe2O4/MIL-101(Fe ; Co) ; 甲基橙    

论文外文关键词:

 Persulfate ; MIL-101(Fe) ; MIL-101(Fe ; Co) ; CoFe2O4/MIL-101(Fe ; Co) ; Methyl Orange    

论文中文摘要:

基于硫酸根自由基的高级氧化技术,因其氧化性强,pH适用范围更广,被应用于各种有机废水治理中。具有丰富活性位点及孔道的Fe-MOFs材料,常用于活化过硫酸盐,但其催化活性有待进一步提高。为此,本文掺杂Co制备了MIL-101(Fe,Co)复合材料,提高了Fe-MOFs的催化性能;再复合具有磁性的CoFe2O4,制备了CoFe2O4/MIL-101(Fe,Co)复合材料,进一步提高了MIL-101(Fe,Co)催化剂的回收性和稳定性。采用XRD,SEM,BET,FT-IR,XPS等技术对催化剂进行表征,考察了Co改性MIL-101(Fe)复合材料活化PS降解甲基橙的性能,并探究其催化机理。具体研究结果如下:

采用溶剂热法制备了MIL-101(Fe,Co)复合材料,复合材料为八面体结构,存在Fe-O、Co-O特征峰。Co、Fe的摩尔比为1:5时,催化活性最好,常温下,当pH=3,甲基橙的浓度为10 mg/L,投加0.03 g/L的PS和0.2 g/L的MIL-101(Fe,Co)时,反应140 min,甲基橙去除率达到96.86%。主要通过非均相反应催化产生•O2-、•SO4-和•OH降解甲基橙。

将CoFe2O4加入到MIL-101(Fe,Co)前驱体中,通过溶剂热法制备的CoFe2O4/MIL-101(Fe,Co)复合材料,具有良好的介孔结构。CoFe2O4与MIL-101(Fe,Co)的质量比例为1:3时,表现出较高的催化活性。常温下,当pH=7,甲基橙的浓度为10 mg/L,投加0.09 g/L的PS和0.3 g/L的CoFe2O4/MIL-101(Fe,Co),反应140 min,甲基橙去除率达到98.57%。CoFe2O4/MIL-101(Fe,Co)复合材料既克服了CoFe2O4的团聚问题,又保持了MOFs的框架结构,通过均相与非均相催化共同作用产生•OH和•SO4-破坏偶氮键降解甲基橙。CoFe2O4/MIL-101(Fe,Co)复合材料可通过磁性回收,具有很好的重复利用性和稳定性。

论文外文摘要:

The advanced oxidation technology based on sulfate radical has been applied to the treatment of various organic wastewater because of its strong oxidizability and wider pH range. Fe-MOFs materials with abundant active sites and pores were often used to activate persulfate, but their catalytic activity needed to be further improved. Therefore, in this paper, MIL-101(Fe,Co) composites were prepared by doping Co, which improved the catalytic performance of Fe-MOFs. CoFe2O4/MIL-101(Fe,Co) composite was prepared by compounding magnetic CoFe2O4, which further improved the recoverability and stability of MIL-101(Fe,Co) catalyst. The catalysts were characterized by XRD, SEM, BET, FT-IR, XPS and other techniques. The performance of Co modified MIL-101(Fe) composite activated PS to degrade methyl orange was investigated, and its catalytic mechanism was explored. The specific research results were as follows :

MIL-101(Fe,Co) composite was prepared by solvothermal method. The composite has octahedral structure with Fe-O and Co-O characteristic peaks. When the molar ratio of Co to Fe was 1:5, the catalytic activity was the best. At room temperature, when pH=3, the concentration of methyl orange was 10 mg/L, 0.03 g/L PS and 0.2 g/L MIL-101(Fe,Co) were added, the reaction was 140 min, and the removal rate of methyl orange reached 96.86%. The degradation of methyl orange was mainly catalyzed by heterogeneous reaction to produce •O2−, •SO4- and •OH.

CoFe2O4/MIL-101(Fe,Co) composites with good mesoporous structure were prepared by solvothermal method by adding CoFe2O4 into MIL-101(Fe,Co) precursor. When the mass ratio of CoFe2O4 to MIL-101(Fe,Co) was 1:3, it showed higher catalytic activity. At room temperature, when pH = 7, the concentration of methyl orange was 10 mg/L, 0.09 g/L PS and 0.3 g/L CoFe2O4/MIL-101(Fe,Co) were added, the removal rate of methyl orange reached 98.57% after 140 min. The CoFe2O4/MIL-101(Fe,Co) composite material not only overcome the agglomeration problem of CoFe2O4, but also maintained the framework structure of MOFs, and degraded methyl orange by producing •SO4- and •OH through homogeneous and heterogeneous catalysis. The CoFe2O4/MIL-101(Fe,Co) composite material can be recovered by magnetic recycling, and has good reusability and stability.

参考文献:

[1] Glaze W H, Kang J W, Chapin D H. The chemistry of water treatment involving ozone, hydrogen peroxide and ultraviolet radiation[J]. Ozone Science & Engineering, 1987, 9: 335-352.

[2] 晏井春. 含铁化合物活化过硫酸盐及其在有机污染物修复中的应用[D]. 华中科技大学, 2012.

[3] Anipsitakis G P, Dionysiou D D, Gonzalez M A. Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions[J]. Environmental science & technology, 2006, 40(3): 1000-1007.

[4] Chen W, Zhang Y D, Cai J C, et al. Study on the degradation of methyl orange by persulfate catalyzed by chitosan supported cobalt phthalocyanine[J]. China Environmental Science, 2019, 39(01): 157-163.

[5] 李晨旭, 彭伟, 方振东, 等. 过渡金属氧化物非均相催化过硫酸氢盐(PMS)活化及氧化降解水中污染物的研究进展[J]. 材料导报, 2018, 32(13): 23-29.

[6] Zhao C J, Zhao L, Meng L S, et al. A Zn-MOF with 8-fold interpenetrating structure constructed with N, N′-bis(4-carbozylbenzyl)-4-aminotoluene ligands, sensors and selective adsorption of dyes[J]. Journal of Solid State Chemistry, 2019, 274: 86-91.

[7] Zorlu Y, Erbahar D, Çetinkaya A, et al. A cobalt arylphosphonate MOF–superior stability, sorption and magnetism[J]. Chemical communications, 2019, 55(21): 3053-3056.

[8] Zhao Y T, Chen X X, Jiang W L, et al. Near-infrared fluorescence MOF nanoprobe for adenosine triphosphate-guided imaging in colitis[J]. ACS Applied Materials & Interfaces, 2020, 12(42): 47840-47847.

[9] Pang X, Liu H, Yu H, et al. A metal organic framework polymer monolithic column as a novel adsorbent for on-line solid phase extraction and determination of ursolic acid in Chinese herbal medicine[J]. Journal of Chromatography B, 2019, 1125: 121715.

[10] Su Y, Zhang Y, Li C, et al. Direct hybridization of Pd on Metal–Organic Framework (MOF)@PAN(C) to catalyze suzuki reaction[J]. Catalysis Letters, 2020, 150(74): 1-10.

[11] Geng N, Chen W, Xu H, et al. Insights into the novel application of Fe-MOFs in ultrasound-assisted heterogeneous Fenton system: Efficiency, kinetics and mechanism[J]. Ultrasonics sonochemistry, 2021, 72: 105411.

[12] Duan M J, Guan Z Y, Ma Y W, et al. A novel catalyst of MIL-101(Fe) doped with Co and Cu as persulfate activator: synthesis, characterization, and catalytic performance[J]. Chemical Papers, 2018, 72(1): 235-250.

[13] 岳馨馨. Fe-MOFs复合催化剂的制备及催化性能研究[D]. 济南大学, 2016.

[14] Yang S, Wang P, Yang X, et al. A novel advanced oxidation process to degrade organic pollutants in wastewater: Microwave-activated persulfate oxidation[J]. Journal of Environmental Sciences, 2009, 21(09): 1175-1180.

[15] Li X, Zhou M, Pan Y, et al. Highly efficient advanced oxidation processes (AOPs) based on pre-magnetization Fe0 for wastewater treatment[J]. Separation and Purification Technology, 2017, 178: 49-55.

[16] Zhou Z A, Xi A, Ke S A, et al. Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review[J]. Chemical Engineering Journal, 2019, 372: 836-851.

[17] Li Y, Qian Z, Jun M H, et al. Degradation of bisphenol A by persulfate activation via oxygen vacancy-rich CoFe2O4-x. [J]. Chemosphere, 2019, 221: 412-422.

[18] 张翩翩. 基于硫酸根自由基的高级氧化法深度处理印染和焦化废水初步研究[D]. 合肥工业大学, 2015.

[19] Sabri M, Habibi-Yangjeh A, Chand H, et al. Heterogeneous photocatalytic activation of persulfate ions with novel ZnO/AgFeO2 nanocomposite for contaminants degradation under visible light[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(4): 4272-4289.

[20] He P, Zhu J, Chen Y, et al. Pyrite-activated persulfate for simultaneous 2,4-DCP oxidation and Cr(VI) reduction[J]. Chemical Engineering Journal, 2021, 406: 126758.

[21] 王兵, 李娟, 莫正平, 等. 基于硫酸自由基的高级氧化技术研究及应用进展[J]. 环境工程, 2012, 30(04): 53-57.

[22] Myla D, Wlwa B, Ye D, et al. Applications of UV/H2O2, UV/persulfate, and UV/persulfate/Cu2+ for the elimination of reverse osmosis concentrate generated from municipal wastewater reclamation treatment plant: Toxicity, transformation products, and disinfection byproducts[J]. Science of the Total Environment, 2021, 762: 144161.

[23] 安帅, 李海松. NaHSO3强化Fe2+/过硫酸盐体系处理铬黑T废水的优化[J]. 工业水处理, 2021, 41(07): 112-116.

[24] Dos Santos A J, Sirés I, Brillas E. Removal of bisphenol A from acidic sulfate medium and urban wastewater using persulfate activated with electroregenerated Fe2+[J]. Chemosphere, 2021, 263: 128271.

[25] 饶秋林. Fe-MIL-101、Fe-MIL-53及Fe/MIL-125(Ti)非均相Fenton反应降解罗丹明B溶液[D]. 云南大学, 2015.

[26] Huang L, Zhang H, Zeng T, et al. Synergistically enhanced heterogeneous activation of persulfate for aqueous carbamazepine degradation using Fe3O4@SBA-15[J]. Science of The Total Environment, 2021, 760: 144027.

[27] Yang J Y. Efficient removal of levofloxacin by activated persulfate with magnetic CuFe2O4/MMT-k10 nanocomposite: Characterization, response rurface methodology, and degradation mechanism[J]. Water, 2020, 12(12): 3583-3583.

[28] 张启萌. CoFe2O4/AA协同活化过硫酸盐处理苯酚废水的研究[D]. 吉林大学, 2020.

[29] Qin F X, Jia S Y, Liu Y, et al. Metal-organic framework as a template for synthesis of magnetic CoFe2O4 nanocomposites for phenol degradation[J]. Materials Letters, 2013, 101: 93-95.

[30] 凌良雄, 陆建, 周易, 等. 铁基材料活化过硫酸盐降解水中抗生素的研究进展[J]. 环境科学研究, 2022, 35(01): 290-298.

[31] Li J, Yang L, Lai B, et al. Recent progress on heterogeneous Fe-based materials induced persulfate activation for organics removal[J]. Chemical Engineering Journal, 2021, 414(2019): 128674.

[32] 冯俊生, 刘康齐, 张郓, 等. 零价铁活化过硫酸盐降解分散剂木质素磺酸钠研究[J]. 安全与环境学报, 2021, 21(03): 1225-1232.

[33] 李欢旋, 万金泉, 马邕文, 等. 不同粒径零价铁活化过硫酸钠氧化降解酸性橙7的影响及动力学研究[J]. 环境科学, 2014, 35(09): 3422-3429.

[34] 胡明玥, 王玉如, 范家慧, 等. 纳米零价铁活化过硫酸盐降解新兴污染物咖啡因[J]. 工业水处理, 2022, 42(01): 100-107.

[35] Wang J, Tang J. Fe-based Fenton-like catalysts for water treatment: Preparation, characterization and modification[J]. Chemosphere, 2021, 276: 130177.

[36] 安继斌, 夏春秋, 陈红宇, 等. UVA/Fe3O4活化过硫酸盐降解阿特拉津[J]. 环境科学研究, 2018, 31(01): 130-135.

[37] 刘翠英, 郑今今, 宋丽莹, 等. 纳米Fe3O4/生物炭活化过硫酸盐降解盐酸四环素[J]. 农业环境科学学报, 2022: 1-16.

[38] Tucek J, Zboril R, Namai A, et al. ε-Fe2O3: An advanced nanomaterial exhibiting giant coercive field, millimeter-wave ferromagnetic resonance, and magnetoelectric coupling[J]. Chemistry of Materials, 2010, 22(24): 6483–6505.

[39] 李强. α-Fe2O3砂芯微球制备及紫外辅助下活化PMS降解有机污染物的研究[D]. 安徽工程大学, 2020.

[40] 李永杰. 碳量子点(CQDs)负载磁赤铁矿(γ-Fe2O3)光化学催化氧化降解磺胺甲恶唑及机理研究[D]. 华中科技大学, 2020.

[41] 刘玉洋. α-FeOOH@GCA气凝胶光助芬顿体系或催化过硫酸盐体系降解橙黄Ⅱ的研究[D]. 华东师范大学, 2017.

[42] 余小玉, 郭家华, 孙建良. 工业废铁屑活化过硫酸盐降解水中环丙沙星的研究[J]. 环境污染与防治, 2020, 42(08): 999-1004.

[43] 万东锦, 孙一淑, 李进松, 等. FeOOH/g-C3N4异质光催化剂耦合过硫酸盐降解环丙沙星[J]. 环境工程学报, 2022, 16(01): 112-120.

[44] Fan J, Gu L, Wu D, et al. Mackinawite (FeS) activation of persulfate for the degradation of p-chloroaniline: surface reaction mechanism and sulfur-mediated cycling of iron species[J]. Chemical Engineering Journal, 2018, 333: 657-664.

[45] Furman O S, Teel A L, Watts R J. Mechanism of base activation of persulfate[J]. Environmental Science & Technology, 2010, 44(16): 6423-6428.

[46] 马国峰, 鲁志颖, 贺春林. 硫化亚铁活化过硫酸钠降解酸性橙Ⅱ[J]. 沈阳大学学报(自然科学版), 2018, 30(01): 1-5.

[47] 陈平, 王晨, 王瑶. 羟胺强化FeS/过硫酸盐体系处理甲基橙废水[J]. 化学工程师, 2018, 32(02): 38-40+48.

[48] Azfar S M, Sen A K, Dutta R K. Alternate use of sulphur rich coals as solar photo-Fenton agent for degradation of toxic azo dyes[J]. Journal of Cleaner Production, 2018, 195(SEP. 10): 1003-1014.

[49] Zhou Y, Wang X, Zhu C, et al. New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: Role of sulfur conversion in sulfate radical generation. [J]. Water Research, 2018, 142(oct. 1): 208-216.

[50] 连文洁, 李秋月, 黄开波, 等. 黄铁矿活化过硫酸盐降解磷酸三(2-氯乙基)酯的性能及影响因素[J]. 环境科学学报, 2019, 39(08): 2517-2524.

[51] 陈玉山, 张永清, 陈宪方, 等. 黄铁矿活化过硫酸钠降解对氯苯胺的研究[J]. 广东化工, 2014, 41(022): 1-2.

[52] Liang R, Shen L, Jing F, et al. Preparation of MIL-53 (Fe)-reduced graphene oxide nanocomposites by a simple self-assembly strategy for increasing interfacial contact: efficient visible-light photocatalysts[J]. ACS applied materials & interfaces, 2015, 7(18): 9507-9515.

[53] 林嘉薇. MIL-88B可见光催化活化过硫酸盐降解双酚A的研究[D]. 华南理工大学, 2020.

[54] Zhang X D, Yang S L, Wang Y X,et al. High and stable catalytic activity of Ag/Fe2O3 catalysts derived from MOFs for CO oxidation[J]. Molecular Catalysis, 2018, 447: 80-89.

[55] 段美娟. 应用金属离子掺杂MIL-101(Fe)催化剂活化过硫酸盐技术降解水中有机污染物的研究[D]. 华南理工大学, 2017.

[56] Du P D, Hoai P N. Synthesis of MIL-53(Fe) metal-organic framework material and its application as a catalyst for fenton-type oxidation of organic pollutants[J]. Advances in Materials Science and Engineering, 2021, 2021.

[57] Tella A C, Bamgbose J T, Adimula V O, et al. Synthesis of metal–organic frameworks (MOFs) MIL-100 (Fe) functionalized with thioglycolic acid and ethylenediamine for removal of eosin B dye from aqueous solution[J]. SN Applied Sciences, 2021, 3(01): 1-15.

[58] Wang R Q, Guo W L, Liu Z H, et al. Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation[J]. Applied Surface Science, 2016, 369: 130-136.

[59] Amdeha E, Mohamed R S. A green synthesized recyclable ZnO/MIL-101(Fe) for Rhodamine B dye removal via adsorption and photo-degradation under UV and visible light irradiation[J]. Environmental Technology, 2021, 42(6): 842-859.

[60] Zhang H, Zhou L, Li J, et al. Photocatalytic Degradation of Tetracycline by a Novel (CMC)/MIL-101(Fe)/β-CDP Composite Hydrogel[J]. Frontiers in Chemistry, 2021: 1201.

[61] Yang Y N, Park S J, Zhang Y F, et al. One-step synthesis of Mn-doped MIL-53(Fe) for synergistically enhanced generation of sulfate radicals towards tetracycline degradation[J]. Journal of Colloid and Interface Science, 2020, 580: 470-479.

[62] Andrew L K, Chang H A, Hsu C J. Iron-based metal organic framework, MIL-88A, as a heterogeneous persulfate catalyst for decolorization of Rhodamine B in water[J]. Rsc Advances, 2015, 5(41): 32520-32530.

[63] 韩合坤. 金属有机骨架复合催化剂的制备及光催化性能研究[D]. 江苏大学, 2017.

[64] 刘梦雪, 高立娣, 秦世丽, 等. 微波法制备MIL-100(Fe)及其吸附性能研究[J]. 高师理科学刊, 2020, 40(03): 73-76+86.

[65] Wang S, Li X M, Zhao Z X, et al. Competitive adsorption of carbon monoxide and water vapour on MIL-100(Fe) prepared using a microwave method[J]. Adsorption Science & Technology, 2015, 33(3): 279-296.

[66] 夏玥. 金属有机骨架的制备及其对染料的吸附性能[D]. 湖北大学, 2016.

[67] 刘晓微. Fe-MOFs及Mn-MOFs的制备及其催化NH3-SCR反应的研究[D]. 大连理工大学, 2014.

[68] 池海远. Fe基金属有机骨架及其衍生物活化过硫酸盐降解有机微污染物的研究[D]. 华南理工大学, 2020.

[69] 梁贺, 刘锐平, 安晓强, 等. 铁铜双金属有机骨架MIL-101(Fe,Cu)活化双氧水降解染料性能[J]. 环境科学, 2020, 41(10): 4607-4614.

[70] 方明泽. MIL-100(Fe,Mn)衍生物催化H2O2去除水中甲硝唑和尼泊金丁酯的研究[D]. 华侨大学, 2020.

[71] Xie M, Ma Y, Lin D, et al. Bimetal–organic framework MIL-53(Co–Fe): an efficient and robust electrocatalyst for the oxygen evolution reaction[J]. Nanoscale, 2020, 12(1): 67-71.

[72] 冯丹, 隗翠香, 夏炎. 功能化金属有机骨架材料去除饮用水污染物的研究进展[J]. 色谱, 2017, 35(03): 237-244.

[73] 陈吉冲. 氨基修饰的金属有机框架材料NH2-MIL88B(Fe)活化过硫酸氢盐降解酸性橙Ⅱ[D]. 武汉纺织大学, 2020.

[74] 张翼. 2-氨基对苯二甲酸及其MOFs材料在荧光检测和吸附污染物上的研究[D]. 闽南师范大学, 2016.

[75] Zhong Z, Li M, Fu J, et al. Construction of Cu-bridged Cu2O/MIL(Fe/Cu) catalyst with enhanced interfacial contact for the synergistic photo-Fenton degradation of thiacloprid[J]. Chemical Engineering Journal, 2020, 395: 125184.

[76] 刘俊, 范思萌, 惠倩, 等. 磁性纤维负载MIL-100(Fe)的制备及光催化性能[J]. 西安科技大学学报, 020, 40(06): 1064-1070.

[77] Liang D, Liang C, Meng L, et al. Polyoxometalate@ MIL-101/MoS2: a composite material based on the MIL-101 platform with enhanced performances[J]. New Journal of Chemistry, 2019, 43(8): 3432-3438.

[78] Patel R V, Yadav A. Sustainable adsorptive removal of antibiotics from aqueous streams using Fe3O4-functionalized MIL101(Fe) chitosan composite beads[J]. Environmental Science and Pollution Research, 2022: 1-4.

[79] Zhang Q, Guo D, Tian X. Ferrum-based metal organic framework for methyl orange removal from aqueous solution[J]. World Scientific Research Journal, 2020, 6(2): 49-56.

[80] 董亚楠. 微波辅助合成Fe基MOF材料及其吸附四环素性能研究[D]. 昆明理工大学, 2019.

[81] 连丽丽, 姜鑫浩, 邓艺辉, 等. 金属有机框架MIL-101(Fe)对水中微囊藻毒素-LR的吸附[J]. 分析测试学报, 2019, 38(09): 1073-1078.

[82] 高聪, 全燮, 陈硕. Cu掺杂MIL-88B-Fe活化双氧水降解有机污染物性能研究[J]. 大连理工大学学报, 2019, 59(01): 1-7.

[83] 何茜, 汪乐利, 易川, 等. MoS2@MIL-53(Fe)的制备及其可见光催化降解抗生素的研究[J]. 环境科学与技术, 2020, 43(08): 13-19.

[84] 王九妹, 关泽宇, 万金泉, 等. MIL-88A@MIP催化活化过硫酸盐靶向降解邻苯二甲酸二丁酯[J]. 环境科学, 2017, 38(12): 5124-5131.

[85] 李艳. 磁性壳聚糖生物炭复合材料的制备及其吸附/降解甲基橙的研究[D]. 兰州大学, 2018.

[86] Basavaiah K, Ramakrishna V, Kumar U. Use of ceric ammonium sulphate and two dyes, methyl orange and indigo carmine, in the determination of lansoprazole in pharmaceuticals[J]. Acta Pharmaceutica, 2007, 57(2): 211-220.

[87] 杨生浛. 基于硫酸根自由基的高级氧化技术对甲基橙的降解研究[D]. 山西农业大学, 2019.

[88] 温玲宁, 李刚, 都林娜. 染料废水污染现状及其处理方法研究进展[J]. 温州农业科技, 2012.

[89] 郭一舟. 基于硫酸根自由基高级氧化技术处理染料废水效能及机理研究[D]. 华中科技大学, 2016.

[90] 肖亚威, 刘崇, 邢子鹏. 玉米秸秆资源化的生物多孔碳吸附染料废水研究[J]. 黑龙江大学工程学报, 2020, 11(01): 48-55.

[91] Lacin D, Aroguz A Z. Kinetic studies on adsorption behavior of methyl orange using modified halloysite, as an eco-friendly adsorbent[J]. SN Applied Sciences, 2020, 2(12): 1-12.

[92] Zhao Y, Jing Z, Hong L, et al. Fouling and regeneration of ceramic microfiltration membranes in processing acid wastewater containing fine TiO2 particles[J]. 2002, 208(1-2): 331-341.

[93] 吴文军. 用超声波气振技术处理染料废水[J]. 污染防治技术, 1994, 7(01): 2.

[94] 李静红, 张艳. 超声强化Fenton法处理碱性品蓝染料废水[J]. 东北电力大学学报, 2008, 28(06): 62-67.

[95] 王世铭, 谢展, 张海斌, 等. 臭氧氧化深度处理染料废水的探讨[J]. 上海染料, 2018, 46(03): 10-12.

[96] 孟丽平, 李纳纳. Fe3O4/CuO催化剂非均相Fenton深度处理染料废水[J]. 印染, 2021, 47(09): 61-65.

[97] 杨纯, 李玥, 陈国峰, 等. 纳米介孔TiO2光催化剂对染料污水的去除研究[J]. 化工新型材料, 2021, 49(08): 210-214.

[98] 王宇静. 钛基PbO2电极电催化氧化模拟染料废水的实验研究[D]. 哈尔滨工程大学, 2016.

[99] Dong T N, Hoang X D, Trang T T, et al. Application of Extracellular Polymeric Substances Extracted from Wastewater Sludge for Reactive Dye Removal[J]. Environmental Processes, 2022, 9(1): 1-17.

[100] 刘兴旺, 戴友芝. 厌氧生物法处理活性染料废水的研究[J]. 湘潭大学自然科学学报, 2005, 27(02): 116-119.

[101] 张旭. 移动床生物膜反应器处理染料废水的研究[D]. 北京林业大学, 2010.

[102] Wang D, Jia F, Wang H, et al. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs[J]. Journal of colloid and interface science, 2018, 519: 273-284.

[103] 桑林凤, 苏珊珊, 高紫崴, 等. 光助MIL-101(Fe)活化过氧化氢氧化洛克沙胂及同步吸附生成的砷酸根[J]. 中国环境科学, 2022, 42(01): 203-212.

[104] Li X, Guo W, Liu Z, et al. Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation[J]. Applied Surface Science, 2016, 369: 130-136.

[105] 袁熙. MIL-101(Fe)类芬顿催化降解选矿废水中浮选药剂研究[D]. 江西理工大学, 2021.

[106] 李彦成, 刘彦禧, 刘叶芳, 等. MnO2/CoFe2O4活化过一硫酸盐降解酸性大红3R[J]. 中国给水排水, 2021, 37(17): 78-85.

[107] 谢建新, 陈文静, 吴云英, 等. MIL-53(Fe)金属有机骨架材料对刚果红的高效吸附[J]. 工业水处理, 2017, 37(01): 27-30.

[108] 王蒙. 铁锰铜复合空心材料活化过硫酸盐降解水中磺胺甲恶唑的性能与机制[D]. 西安建筑科技大学, 2021.

[109] Li P, Liu Z, Wang X, et al. Enhanced decolorization of methyl orange in aqueous solution using iron-carbon micro-electrolysis activation of sodium persulfate[J]. Chemosphere, 2017, 180: 100-107.

[110] 张凯, 韦秀丽, 王冰, 等. Fe3O4改性水热炭活化过硫酸钠降解罗丹明B[J]. 化工进展, 2020, 39(07): 2867-2875.

[111] 程爱华, 张燕妮. Co/Fe类水滑石活化过硫酸钠降解苯酚特性[J]. 精细化工, 2020, 37(06): 1253-1258.

[112] 马萌. 太阳能热活化过硫酸盐降解有机物的效能研究[D]. 西安建筑科技大学, 2021.

[113] 陈佳. 二价铁离子活化过硫酸盐降解依布硒林的效能与机制[D]. 哈尔滨工业大学, 2021.

[114] 洪克. TNTs-N-Mo催化剂的制备及其可见光下催化降解甲基橙的研究[D]. 南京大学, 2021.

[115] 岳文清, 倪月, 孙则朋, 等. 改性钛基PbO2电极对有机污染物的降解性能——以甲基橙和4-硝基苯酚为例[J]. 中国环境科学, 2022, 42(02): 706-716.

[116] 阮丽琴, 沈韦. 侧柏叶改性类芬顿法降解甲基橙的实验研究[J]. 岭南师范学院学报, 2017.

[117] 王龙. 炭基催化剂在类芬顿体系下强化降解结晶紫和甲基橙的实验研究[D]. 北京化工大学, 2021.

[118] 王晨. FeS活化过硫酸盐处理甲基橙模拟废水[D]. 东北石油大学, 2018.

[119] 桑林凤, 苏珊珊, 高紫崴, 等. 光助MIL-101(Fe)活化过氧化氢氧化洛克沙胂及同步吸附生成的砷酸根[J]. 中国环境科学, 2022, 42(01): 203-212.

[120] 唐荣, 茅苏楠. 普鲁士蓝衍生制得的C-Co活化过一硫酸盐处理亚甲基蓝废水的研究[J]. 生态与农村环境学报, 2020, 36(06): 811-818.

[121] 谢士礼. 钴基金属有机框架材料的制备及其电催化析氧性能研究[D]. 大连理工大学, 2019.

[122] 陈婷婷. 钒铁精矿活化过一硫酸盐降解阿特拉津的效果与机理研究[D]. 长安大学, 2021.

[123] 李如. Fe3O4-CuO@活性焦活化过硫酸盐深度处理煤化工含酚废水[D]. 哈尔滨工业大学, 2021.

[124] 郭枭杰, 方志勇, 周鑫, 等. NC-PC锚定微量Fe活化PMS降解水中2, 4-二氯苯氧乙酸[J]. 中国环境科学, 2021, 41(07): 3238-3246.

[125] 王乐心, 李亚男, 张国凯, 等. Fe(Ⅱ)、Fe(Ⅲ)和Fe(Ⅵ)活化过硫酸盐氧化降解水中的菲[J]. 化工环保, 2022, 42(01): 36-42.

[126] 邓方鑫. 钴铁双金属单原子催化剂活化过硫酸盐处理含酚废水的研究[D]. 湘潭大学, 2020.

[127] 吴阳, 刘振中, 徐志威, 等. CoFe2O4的制备及活化过氧乙酸降解诺氟沙星[J]. 南昌大学学报(工科版), 2021, 43(04): 367-373.

[128] 李彦成, 刘彦禧, 刘叶芳, 等. MnO2/CoFe2O4活化过一硫酸盐降解酸性大红3R[J]. 中国给水排水, 2021, 37(17): 78-85.

[129] 吴首昂. CoFe2O4与CoFe2O4/Fe3+/PAA磁性水凝胶的制备及性能研究[D]. 湖北工业大学, 2021.

[130] 滕月, 王海玲, 闫波涛, 等. 响应面法优化凹凸棒土-CoFe2O4磁性复合材料的制备工艺[J]. 工业用水与废水, 2019, 50(01): 58-64.

[131] 刘馨琳, 朱健, 秦莹莹, 等. CoFe2O4磁性光催化材料的制备及其对四环素废水的降解[J]. 材料科学与工程学报, 2017, 35(06): 892-896+969.

[132] 王羽中, 姬跃国, 王嘉琪, 等. EC/CoFe2O4/HAP催化过一硫酸盐处理老龄垃圾渗滤液[J]. 水处理技术, 2022, 48(05): 34-38+43.

中图分类号:

 X703    

开放日期:

 2023-03-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式