- 无标题文档
查看论文信息

论文中文题名:

 基于特征模理论的圆极化宽带螺旋天线研究与设计    

姓名:

 李治锐    

学号:

 20207223074    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085400    

学科名称:

 工学 - 电子信息    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 天线设计    

第一导师姓名:

 王树奇    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-15    

论文答辩日期:

 2023-05-31    

论文外文题名:

 Research and design of circularly polarized broadband spiral antenna based on eigenmode theory    

论文中文关键词:

 螺旋天线 ; 圆极化 ; 特征模 ; 宽带天线    

论文外文关键词:

 Spiral antenna ; Circular polarization ; Characteristic mode analysis ; Broadband Antenna    

论文中文摘要:

螺旋天线由于具有质量轻、抗多径效应能力强以及设计加工方便等优点,在卫星及
导航应用中具有重要的意义,在 5G 技术大规模商用形势下,覆盖特定工作频段的高性
能螺旋天线具有重要的实用价值。天线设计过程中,特征模理论是一种解决复杂电磁辐
射问题的有力工具,在各类高性能天线设计应用方面展现出了独特优势。本文利用特征
模理论对天线结构进行分析,设计了三款新型的小型化高增益终端螺旋天线。
通过研究阿基米德螺旋天线模式显著性与特征电流,在天线辐射臂加载正弦结构对
天线进行辐射特性的优化,设计了工作在 FR1 频段(3.21~6.68GHz)的宽带圆极化天
线,与未加载正弦结构相比,天线辐射面积减少 38%,采用弯折渐变巴伦馈电,使天线
高度降低了 22%。仿真与测试结果表明,在工作频带内增益达到 6.96dBi,天线整体设
计易于加工,且整体辐射性能良好。
通过研究方环贴片结构模式显著性与特征电流,设计了一种方形螺旋贴片结构的宽
带圆极化天线,利用方形螺旋结构,拓展阻抗带宽,改变天线的电流流动方向,实现了
圆极化;通过偶极子耦合激发新谐振点,不仅能够提高方向性能而且可以扩展天线的阻
抗带宽。仿真结果表明,该天线的阻抗带宽为 4.5~6.1GHz,圆极化带宽为
4.85~6.21GHz,峰值增益达到 7.92dBi,具有宽带圆极化性能。
研究了立体螺旋天线的模态电流和天线辐射模式,设计了双贴片四臂螺旋结构天
线,在圆柱陶瓷介质上绕制贴片,加载枝节激发天线不同模式的谐振;通过设计馈电网
络,在保持天线圆极化的基础上提升天线增益。仿真结果表明天线工作在
2.35~3.05GHz 和4.08~4.51GHz,峰值增益达到7.21dBi。
设计的三款天线分别通过优化天线的辐射阵元、加载偶极子、设计功分馈电网络的
方式来提升了天线的辐射性能,为高性能螺旋天线设计提供了方法和思路。

论文外文摘要:

Spiral antennas have important significance in satellite and navigation applications due to
their advantages of lightweight, strong anti-multipath capability, and easy design and
processing. With the large-scale commercial use of 5G technology, high-performance spiral
antennas covering specific working frequency bands have important practical value.
Characteristic mode theory is a powerful tool for solving complex electromagnetic radiation
problems, and has demonstrated unique advantages in various high-performance antenna
design applications. By using characteristic mode theory to analyze antenna structures, three
new types of miniaturized high-gain terminal spiral antennas have been designed.
(1) By studying the significance of the Archimedean spiral antenna pattern and
characteristic currents, and optimizing the radiation characteristics of the antenna by loading a
sinusoidal structure on the radiation arm, a broadband circularly polarized antenna operating in
the FR1 frequency band (3.21~6.68GHz) has been designed. Compared with the unloaded
sinusoidal structure, the antenna radiation area has been reduced by 38%, and a new type of
bending gradient feed balun has been used, which has reduced the height of the antenna feed
structure by 22%. Simulation and testing results show that the antenna gain reaches 6.96dBi
within the operating frequency band, the overall antenna design is easy to process, and the
overall radiation performance is good.
(2) By studying the significance of the square ring patch structure pattern and
characteristic currents, a broadband circularly polarized antenna with a square spiral patch
structure has been designed. By using the square spiral structure, the impedance bandwidth has
been expanded and the current flow direction of the antenna has been changed to achieve
circular polarization. By exciting new resonant points through dipole coupling, not only can the
directional performance of the antenna be improved, but the impedance bandwidth of the
antenna can also be expanded. Simulation results show that the impedance bandwidth of the
antenna is 4.5~6.1GHz, and the circular polarization band covers 4.85~6.21GHz, with a peak
gain of 7.92dBi, demonstrating broadband circular polarization performance.

Subject : Research and design of circularly polarized broadband
spiral antenna based on eigenmode theory
Specialty : Electronic Information
Name : Zhirui Li (Signature)
Instructor : Shuqi Wang (Signature)


(3) The modal current and radiation pattern of a three-dimensional spiral antenna were
studied, and a dual-patch four-arm spiral antenna structure was designed. The patches were
wound around a cylindrical ceramic substrate, and the branch joints were loaded to excite
different modes of resonance in the antenna. By designing the feed network, the antenna gain
was improved while maintaining circular polarization. Simulation results show that the antenna
operates in the frequency bands of 2.35~3.05GHz and 4.08~4.51GHz, with a peak gain of
7.21dBi.
The three designed antennas improved their radiation performance by optimizing the
radiation elements, designing power divider feed networks, and loading dipole structures.
These methods and ideas provide a way for the design of high-performance spiral antennas.

参考文献:

[1]Deng Hao, Mi Baoli, Chen Qinwen, Zhang Rui, Jing Huihui, Wei Yiqing, Duan Junping, Wang Jiayun,Qu Zeng, Zhang Binzhen. Design of multimode broadband circularly polarized antenna using characteristics mode analysis[J]. International Journal of RF and Microwave Computer‐Aided Engineering,2022,32(12):145-156.

[2]Wang Lei, Yao Bin, Fang Wenxiao, Huang Chuangmian, Huang Yun, En Yunfei. New Circular-Slot Circularly Polarized Antenna with Modified Characteristic[J]. International Journal of Antennas and Propagation,2022:5458069.

[3]Spurek Jan, Raida Zbynek. SIW-Based Circularly Polarized Antenna Array for 60 GHz 5G Band: Feasibility Study[J]. Sensors,2022,22(8):2945.

[4]Liu Xiaoming, Wang Haiyang, Yang Xiaofan, Wang Jinhong. Quad-Band Circular Polarized Antenna for GNSS, 5G and WIFI-6E Applications[J]. Electronics,2022,11(7):1133.

[5]Grigoor Feghi Narek, Masoumi Reza, Kazemi Robab. Development of a fully planar logarithmic spiral antenna with integrated balun in UWB GPR systems for landmines detection[J]. Electromagnetics,2022,42(8):559-570.

[6]Chen Zichong, Ma Chen, Chu Hongbo, Deng Zhuolin, Chen Songmin, Li Gaosheng. An inflatable axial-mode helical antenna with retractability and releasability for satellite navigation and positioning system[J]. AEUE - International Journal of Electronics and Communications,2022,156:154345.

[7]Akkaya Eren, Güneş Filiz. Ultrawideband, high performance, cavity-backed Archimedean spiral antenna with Phelan balun for direction finding and radar warning receiver applications[J]. International Journal of RF and Microwave Computer-Aided Engineering,2021,31(5):22596.

[8]Zengpei Zhong, Xiao Zhang, Yujian Zhu, Shumin Liao, Chengzhi Lu, Xiaokun Bi,Tao Yuan. Compact dual‐band printed quadrifilar helix antenna for practical ha-nd-held devices[J]. International Journal of RF and Microwave Computer-Aided E-ngineering,2020,30(11):e22384.

[9]Masahiro Tanabe, Hisamatsu Nakano. Light-weight Wideband Spiral Antenna with a Two-layer Circular HIS Reflector:TL-CirHISR Spiral Antenna[J]. IET Microwaves Antennas & Propagation,2020,14(14):1895-1901.

[10]R. Harrington, Mautz. Theory of characteristic modes for conducting bodies[J]. IEEE Transactions on Antennas and Propagation,1971,19(5):622-628.

[11]Knorr J. Consequences of symmetry in the computation of characteristic modes for conducting bodies[J]. IEEE Transactions on Antennas and Propagation,1973,21(6):899-902.

[12]Yoon Seunghwan, Besoli Alfred Grau, De Flaviis Franco, Alexopoulos Nicolaos G.. Poly-spiral shapes and applications: the Celtic-Archimedean spiral antenna[J]. Journal of Electromagnetic Waves and Applications,2021,35(4):466-484.

[13]Elmansouri Mohamed A, Etellisi Ehab A, Filipovic Dejan S. Simultaneous Transmit and Receive Spiral Antenna With Improved Isolation[J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS,2020,19(12):2145-2148.

[14]Jingru Geng, Xueguan Liu, Changrong Liu, Huiping Guo.A unidirectional ultra-wi-deband circularly polarized spiral antenna array[J]. Microwave and Optical Technol-ogy Letters,2020,62(7):2569-2575.

[15]Liang Yuan, Liu Qingxiang, Wang Bangji, Zhou Liang. Investigation on the Mutu-al Coupling of High-Power Dual-Branch Helical Antennas[J]. IEEE Transactions onAntennas and Propagation,2019,67(6):3641-3648.

[16]Huy Hung Tran, Nghia Nguyen‐Trong. Simple design of broadband circularly po-larized two-arm Archimedean spiral antenna[J]. International Journal of RF and Mi-crowave Computer‐Aided Engineering,2019,29(9):e21813.

[17]Xue Kai, Liao Shaowei, Zhu Ruilong, Xue Quan, Ding Liqin, Wang Yang, Guo Qing. Spaceborne miniaturized UHF dual band helix antenna with a small frequency ratio[J]. Microwave and Optical Technology Letters,2021,63(6):1767-1733.

[18]Baard Charl, Liu Yulang, Nikolova Natalia. Ultra-Wideband Low-Cost High-Efficie-ncy Cavity-Backed Compound Spiral Antenna[J]. Electronics,2020,9(9):1399.

[19]梁志毅,张霄霖,刘磊等. 加载介质透镜的超宽带平面螺旋天线设计[J].微波学报,2022,38(03):33-35+41.

[20]袁家德, 陈圳鹏, 邱凯翔. 宽频带圆极化缝隙螺旋天线的设计[J].微波学报,2022,38(02):24-27+32.

[21]何晴, 黄文. 片上自卷曲太赫兹三维螺旋阵列天线仿真设计[J].微波学报,2020,36(S1):302-305.

[22]Cao Xia, Xia Yingqing, Wu Ling, WuXiao Lin. Tri-band MIMO antenna design based on characteristic modes manipulation[J]. AEUE International Journal of Electro-nics and Communications,2022,155.

[23]Sumithra P, Kannadassan D. Bandwidth enhancement of low-profile slot antennas using theory of characteristic modes[J]. AEUE - International Journal of Electronics and Communications,2021,138.

[24]Mahrukh Khan, Masud Chowdhury. Analysis of Modal Excitation in Wideband Slot-loaded Microstrip Patch Antenna using Theory of Characteristic Modes[J]. IEEE Transactions on Antennas and Propagation,2020,68(11):7618-7623.

[25]Zhan Zhang, Xiaona Fu, Shengli Cao. Design of a vertically polarized patch antenna with switchable near-endfire beam using characteristic mode analysis[J]. IEEE Antennas and Wireless Propagation Letters,2020,19(7):1157-1161.

[26]Kumar P. Vinod, Ghosh Basudeb. Characteristic mode analysis of linear to circular polarization conversion metasurface[J]. Electromagnetics,2020,40(8):605-612.

[27]Dingliang Wen, Yang Hao, Hanyang Wang, Hai Zhou. Design of a wideband antenna by manipulating characteristic modes of a metallic loop[J]. Microwave and Optical Technology Letters,2019,61(2):513-518.

[28]E. K. I. Hamad, A. Abdelaziz. Performance of a Metamaterial-based 1×2 Microstrip Patch Antenna Array for Wireless Communications Examined by Characteristic Mode Analysis[J]. Radioengineering,2019,28(4):681.

[29]Min Han, Wenbin Dou. Compact Clock-Shaped Broadband Circularly Polarized Antenna Based on Characteristic Mode Analysis.[J]. IEEE Access,2019,7:159952-159959.

[30]Puneeth Kumar Rajanna, Karthik Rudramuni, Krishnamoorthy Kandasamy. Characteristic mode-based compact circularly polarized metasurface antenna for in-band RCS reduction[J]. International Journal of Microwave and Wireless Technologies,2019,12(2):131-137.

[31]Mir Reyhane, Dashti Hamideh, Ahmadi-Shokouh Javad. Design and analysis of circularly polarized circular patch antenna with multiple shorting pins using characteristic mode the-ory[J]. AEUE - International Journal of Electronics and Communications,2022,146:154112.

[32]谭祥俊,卢忠亮,宋谦,等.基于特征模式分析的宽带圆极化超表面天线[J].电子元件与材料,2022,41(07):745-750.

[33]Tang Bin, Ma Kaixue, Luo Yu, Newton Moro Eric, Ma Jianguo. An n‐shaped multimode wideband substrate integrated suspended line antenna using characteristic mode analysis[J]. Microwave and Optical Technology Letters,2021,64(2):369-376.

[34]Jon Borchardt, Tyler C. Lapointe. U-Slot Patch Antenna Principle and Design Methodology Using Characteristic Mode Analysis and Coupled Mode Theory.[J]. IEEE Access,2019,7:375-385.

[35]Kim Dong Woo, Nam Sangwook. Mutual Coupling Compensation in Receive-Mode Antenna Array Based on Characteristic Mode Analysis[J]. IEEE Transactions on Antennas and Propagation,2018,66(12):7434-7438.

[36]Yoo, Byun, Lee, Choo. Design of spiral antenna using a Vivaldi-shaped balun[J]. Electromagnetics,2019,39(4):217-226.

[37]刘晓夏, 伍捍东, 赵宏锋, 彭军, 马超, 罗松. 一种C波段宽带圆极化振子天线设计[J].微波学报,2020,36(S1):130-132.

[38]Quang Quan Phung, Tuan Hung Nguyen, Naobumi Michishita, Hiroshi Sato, Yoshio Koy-anagi, Hisashi Morishita. Broadband design of U-shaped folded dipole antenna for WiMAX by using characteristic mode analysis[J].IEICE Communications Express,2019,8(8):347-352.

[39]Jon Borchardt, Tyler C. Lapointe. U-Slot Patch Antenna Principle and Design Methodology Using Characteristic Mode Analysis and Coupled Mode Theory.[J]. IEEE Access,2019,7:109375-109385.

[40]Perli B.R., Rao A.M.. Characteristic mode analysis of wideband microstrip antenna[J]. Progress In Electromagnetics Research C,2019,97:201-212.

[41]Harrington R F, Mautz J R, Chang Y. Characteristic modes for dielectric and magnetic bodies [J]. IEEE Transactions on Antennas & Propagation, 2003, 20(2):194-198.

[42]褚庆昕. 特征模法及其在天线设计中的应用[M].北京:科学出版社,2022:34p.

[43]林江锋. 基于特征模理论分析和设计天线的研究[D].华南理工大学,2018.6.

[44]Vogel M, Gampala G, Ludick D, et al. Characteristic Mode Analysis: Putting Physics back into Simulation [J]. IEEE Antennas & Propagation Magazine, 2015, 57(2):307-317.

[45]Bohannon N L, Bernhard J T. Design Guidelines Using Characteristic Mode Theory for Improving the Bandwidth of PIFAs [J]. IEEE Transactions on Antennas & Propagation, 2015, 63(2): 459-465.

[46]Khan M, Chatterjee D. Characteristic Mode Analysis of a Class of Empirical Design Techniques for Probe-Fed, U-Slot Microstrip Patch Antennas [J]. IEEE Transactions on Antennas & Propagation, 2016, 64(7):2758-2770.

[47]Lin F H, Chen Z N. Low-Profile Wideband Metasurface Antennas Using Characteristic Mode Analysis [J]. IEEE Transactions on Antennas & Propagation, 2017, 65(4):1706-1713.

[48]Lin F H, Chen Z N. A Method of Suppressing Higher Order Modes for Improving Radiation Performance of Metasurface Multiport Antennas Using Characteristic Mode Analysis [J]. IEEE Transactions on Antennas & Propagation, 2018, 66(4): 1894-1902.

[49]King A J. Characteristic mode theory for closely spaced dipole arrays [D]. University of Illinois at Urbana-Champaign, IL, USA,2015.

[50]Wu R, Chu Q. Resonator-loaded Broadband Antenna for LTE700/GSM850/GSM900 Base Stations [J]. IEEE Antennas & Wireless Propagation Letters, 2017:501-504.

[51]Wen D, Hao Y, Wang H, et al. Design of a Wideband Antenna with Stable Omnidirectional Radiation Pattern Using the Theory of Characteristic Modes [J]. IEEE Transactions on Antennas & Propagation, 2017, 65(5):2671-2676.

[52]Liang P, Wu Q. Duality Principle of Characteristic Modes for the Analysis and Design of Aperture Antennas [J]. IEEE Transactions on Antennas & Propagation, 2018, 66(6):2807-2817.

[53]Antonino-Daviu E, Cabedo-Fabrés M, Sonkki M, et al. Design Guidelines for the Excitation of Characteristic Modes in Slotted Planar Structures [J]. IEEE Transactions on Antennas & Propagation, 2016, 64(12):5020-5029.

中图分类号:

 TN823    

开放日期:

 2023-06-15    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式