论文中文题名: | 煤自燃过程中元素迁移与热反应特性研究 |
姓名: | |
学号: | 19220214087 |
保密级别: | 保密(1年后开放) |
论文语种: | chi |
学科代码: | 085224 |
学科名称: | 工学 - 工程 - 安全工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 煤火灾害防治 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2022-06-21 |
论文答辩日期: | 2022-06-05 |
论文外文题名: | Elemental migration and thermal reaction characterization during coal spontaneous combustion |
论文中文关键词: | |
论文外文关键词: | Coal spontaneous combustion ; Elemental migration ; Thermal reaction properties ; Critical structure ; Critical temperature |
论文中文摘要: |
<p>煤自燃过程主要发生在有机大分子结构中,参与反应的物质就是组成煤的主要元素,这些元素包括C、H、O、S和N。而煤自燃热反应产生的热效应也会导致煤中元素含量的变化,表现为宏观的动力学和热力学过程。因此,本文利用实验测试、理论分析和数学计算相结合的方法,从元素变化对煤自燃热反应过程入手,采用数学方法分析元素变化与热反应过程的相关性,得到影响热反应过程的关键元素,以此探究以关键元素为单体其互相组成结构的迁移过程。从而确定煤自燃过程中元素迁移对其热反应特性影响,进一步揭示煤自燃机理,这对于煤自燃理论的发展以及防灭火材料的研发具有重要科学意义。 通过对煤自燃过程中元素变化研究,掌握了C、H、O、S和N元素在煤自燃过程中的变化规律,发现煤体在120℃之前以O/C变化为主,在120~270℃之间主要以H/C变化为主,270℃之后主要以O/C变化为主;煤中C元素与O元素含量成反比关系,且两者变化不受温度影响;采用热分析动力学方法,确定了煤各元素动力学模式函数以及表观活化能;其中H元素的表观活化能最低,即煤在氧化过程中首先最容易进行脱氢反应。O元素的表观活化能为负,这与煤氧化过程中O元素的迁移包含两个相反竞争反应有关;通过中间络合物理论以及元素热力学特性分析,确定了C、H、S和N元素从煤分子结构中迁移以及O元素嵌进煤体大分子结构均为非自发性过程,且煤在氧化过程中C元素以CO2的形式释放比CO释放时反应系统更稳定。 采用同步热分析方法,系统性研究了煤氧化和热解过程,确定了煤自燃过程中特征温度及分阶段特性,掌握了煤自燃过程热释放速率、质量以及气相产物释放规律;发现TG-差减曲线和DSC-差减曲线可更好的反映煤由于氧气参与反应所引发的质量-热量变化,可更好的阐释煤氧化机理;其中吸氧增重阶段,氧化作用与热解作用并驾齐驱,而受热分解阶段,主要以氧化作用为主。 采用灰色关联和Pearson相关系数相结合的方法,确定了元素变化与放热量、气相产物释放受煤中元素变化的共同影响,其中O元素变化对其热反应过程具有关键的促进作用,并根据分子轨道理论,揭示了O元素变化可促进煤自燃进程发生的微观机理;根据其确定的影响热反应过程的关键元素,探究了以关键元素为单体其互相组成结构的迁移过程,确定了煤自燃过程中元素迁移对其热反应特性影响,得到了促进煤自燃进程发生的关键结构,即-CH2、-C=O;确定了煤自燃进程加速温度点,即150℃,因此可将此基团作为抑制煤自燃氧化的关键结构。</p>
﹀
|
论文外文摘要: |
<p>The process of coal spontaneous combustion mainly occurs in the organic macromolecular structure, and the substances involved in the reaction are the main elements that make up coal, including C, H, O, S and N. The thermal effects generated by the thermal reaction of coal spontaneous combustion also lead to changes in the elemental content of coal, which are manifested as macroscopic kinetic and thermodynamic processes. Therefore, In this paper, the method of combining experimental tests, theoretical analysis and mathematical calculation is used to analyze the correlation between elemental changes and thermal reaction process of spontaneous combustion of coal, and to obtain the key elements affecting the thermal reaction process, so as to investigate the migration process of the key elements as monomers and their mutual composition structures. In this way, the influence of elemental migration on the thermal reaction properties during coal spontaneous combustion is determined, and the mechanism of coal spontaneous combustion is further revealed, which is of great scientific significance for the development of coal spontaneous combustion theory and the research and development of fire prevention materials. The elemental changes in the process of coal spontaneous combustion were studied to grasp the changes of C, H, O, S and N elements in the process of coal spontaneous combustion, and it was found that O/C changes were dominant before 120 °C, mainly H/C changes between 120 and 270 °C, and mainly O/C changes after 270 °C; the C element and O element content in coal were inversely related, and the changes of both were not affected by temperature.Using a thermal analysis kinetic method, the kinetic mode functions of the elements of the coal were determined as well as the apparent activation energy; where the apparent activation energy of element H is the lowest, meaning that the coal is first and easiest to dehydrogenate during the oxidation process.The apparent activation energy of O is negative, which is related to the fact that the migration of O element during the oxidation of coal involves two opposite competing reactions.The migration of C, H, S and N elements from the molecular structure of the coal and the embedding of O elements into the macromolecular structure of the coal were determined to be non-spontaneous processes through intermediate complex theory and analysis of the thermodynamic properties of the elements, and that the release of C elements as CO2 during the oxidation of the coal is a more stable reaction system than when CO is released. A systematic study of the oxidation and pyrolysis of coal was carried out using simultaneous thermal analysis to determine the characteristic temperature and phasing characteristics of the coal spontaneous combustion process, and to grasp the heat release rate, mass and gas phase product release patterns of the coal spontaneous combustion process; it was found that the TG-difference-decrease curve and DSC-difference-decrease curve can better reflect the mass-heat changes of coal due to the participation of oxygen in the reaction, and can better explain the mechanism of coal oxidation; in the oxygen absorption and weight gain stage, oxidation and pyrolysis go hand in hand, while the heat decomposition stage is dominated by oxidation. By using the combination of grey correlation and Pearson correlation coefficients, it was confirmed that elemental changes, together with the release of heat and gas phase products, are influenced by elemental changes in coal, of which O elemental changes have a key role in promoting its thermal reaction process, and based on molecular orbital theory, the microscopic mechanism that O elemental changes can promote the occurrence of coal spontaneous combustion process was revealed; and based on its determination of the key elements affecting the thermal reaction process, the migration process of the key elements as monomers and their mutual composition structures on its thermal reaction characteristics was determined. Based on its identification of the key elements affecting the thermal reaction process, the migration process of the key elements as monomers of their mutual composition structures was investigated, and the influence of elemental migration on the thermal reaction properties of the coal during spontaneous combustion was determined, and the key structures that promote the occurrence of the spontaneous combustion process of coal, namely -CH2, -C=O, were obtained; the temperature point at which the coal spontaneous combustion process is accelerated, namely 150°C, was determined, so that this group can be used as a group to inhibit the coal spontaneous combustion The key structure for the oxidation of coal was identified</p>
﹀
|
参考文献: |
[4]王英,高世贤.陕西省煤种分布及其地质背景分析[J].西安科技大学学报,2003,23(4):400-403. [5]张嬿妮,侯云超,刘博,等.卤盐载体无机盐阻化煤自燃的机理及性能[J].工程科学学报,2021,43(10): 1295-1303. [6]郭文杰.煤自燃特性影响因素的试验研究[J].安全与环境学报,2018,18(2):1307-1316. [8]谢建军,杨学民,朱文魁,等.煤炭解耦燃烧过程N迁移与转化Ⅰ:热解阶段煤N的释放规律[J].燃料化学学报,2012,40(08):919-926. [9]张书,白艳萍,米亮,等.升温速率对胜利褐煤热解过程中N迁移转化的影响[J].燃料化学学报,2013,41(10):1153-1159. [10]李斌,曹晏,张建民,等.高硫煤热解部分气化过程中硫的变迁行为[J].环境科学,2003(02):60-65. [11]王张卿,梁杰,史龙玺,等.大雁褐煤在N2气氛中热解时各元素的迁移规律[J].煤炭工程,2015,47(10):128-131. [12]石振,成帅,陈兆辉,等.神木烟煤热解产物分布及主要元素的迁移规律[J].过程工程学报,2016,16(05):802-811. [13]王张卿,梁杰,史龙玺,等.N2热解气氛中煤种对C元素迁移规律的影响[J].煤炭工程,2016,48(03):123-125+129. [14]李海杰,李晓红,冯杰,等.预热处理对褐煤热解过程氧元素迁移的影响[J].燃料化学学报,2019,47(01):1-7. [15]朱红青,屈丽娜,高如乐.煤特征参数与氧元素关系的实验研究[J].煤矿安全,2013,44(01):9-11. [20]贾廷贵,强倩,娄和壮,等.不同变质程度煤样氧化自燃热特性试验研究[J].中国安全科学学报,2021,31(10):62-67. [21]李付海,李金亮,邵波,等.基于热量特征的煤低温氧化阶段性研究[J].中国煤炭,2018,44(05):89-94. [22]周西华,白刚,聂荣山,等.不同变质程度煤自燃特征参数实验研究[J].辽宁工程技术大学学报(自然科学版),2018,37(01):37-42. [23]王凯. 陕北侏罗纪煤低温氧化反应性及动力学研究[D].西安科技大学,2015. [24]舒新前.煤炭自燃的热分析研究[J].中国煤田地质,1994(02):25-29. [25]徐精彩,煤自燃危险区域判定理论[M].北京:煤炭工业出版社,2001. [26]肖肠,马砺,王振平,等.采用热重分析法研究煤自燃过程的特征温度[J].煤炭科学技术,2007,05:73-76. [27]仲晓星,王德明,尹晓丹.基于程序升温的煤自燃临界温度测试方法[J].煤炭学报,2010,35(S1):128-131. [28]李金帅,王德明,仲晓星,等.基于交叉点温度法的煤自燃临界温度测试方法[J].煤炭工程,2011(10):107-109. [29]常绪华,王德明,贾海林.基于热重实验的煤自燃临界氧体积分数分析[J].中国矿业大学学报,2012,41(04):526-530+550. [30]石婷,邓军,王小芳,等.煤自燃初期的反应机理研究[J].燃料化学学报,2004(06):652-657. [31]王宝俊,凌丽霞,章日光,等.煤热化学性质的量子化学研究[J].煤炭学报,2009,34(09):1239-1243. [32]邓存宝.煤的自燃机理及自燃性危险指数研究[D].辽宁:辽宁工程技术大学,2006. [33]胡荣祖.热分析动力学[M].北京:科学出版社,2001. [34]张辛亥,白亚娥,李青蔚,等.基于活化能指标研究不同变质程度烟煤的自燃倾向性[J].矿业安全与环保,2016,43(01):5-7+11. [35]王继仁,邓存宝,单亚飞,等.煤的自燃倾向性新分类方法[J].煤炭学报,2008(01):47-50. [36]陆伟,王德明,仲晓星,等.基于活化能的煤自燃倾向性研究[J].中国矿业大学学报,2006(02):201-205. [38]戴广龙.煤低温氧化过程气体产物变化规律研究[J].煤矿安全,2007(01):1-4. [39]王彩萍,王伟峰,邓军.不同煤种低温氧化过程指标气体变化规律研究[J].煤炭工程,2013(02):109-111+114. [40]王海涛,刘永立,等.长焰煤自燃指标气体特征分析[J].煤炭技术,2021,40(11):167-170. [41]朱建国,戴广龙,唐明云,等.水浸长焰煤自燃预测预报指标气体试验研究[J].煤炭科学技术,2020,48(05):89-94. [42]郭小云,王德明,李金帅.煤氧化阶段气体吸附与解析过程特性研究[J].煤炭工程,2011,5:102-104. [43]任万兴,郭庆,石晶泰,等.基于标志气体统计学特征的煤自燃预警指标构建[J].煤炭学报,2021,46(06):1747-1758. [45]赵钢波,刘宝军,董雅梅,等.基于低温氧化产物的煤自燃倾向性快速测定方法[J].煤炭科技,2020,41(04):151-154. [46]许涛,王德明,等.基于CO浓度的煤氧化动力学试验研究[J].煤炭科学技术,2012,40(3):53-55. [50]戴广龙,王德明,张国枢.煤常温静态吸氧试验探讨[J].辽宁工程技术大学学报,2003(04):475-477. [51]翟光华,段利江,唐书恒,等.二氧化碳与煤作用机理的实验研究[J].煤炭学报,2012,37(05):788-793. [52]张遵国,陈毅,唐朝,等.煤体CO2吸附/解吸变形特征及变形模型[J].煤炭学报:1-9[2022-03-11]. [54]胡荣祖,高胜利,赵凤起,等.热分析动力学[MJ.北京:科学出版社,2008. [55]邓军,张嬿妮.煤自然发火微观机理[M].徐州:中国矿业大学出版社,2015. [56]虞继舜.煤化学[M].北京:冶金工业出版社,2005. [57]刘振海.分析化学手册-热分析分册[M].北京:化学工业出版社,2000. [58]高婧.褐煤低温氧化过程特性分析及煤堆自燃数值模拟[D].中国矿业大学,2021. [65]Moore, WJ. Basic physical Chemistry[M]. New Delhi: Prentice-Hall, 1994 [67]张晓娟,盛清涛,申峻,等.煤溶胀动力学与热力学的研究[J].洁净煤技术,2013,19(05):77-81+91. [68]煤热解过程中化学键断裂的热力学和动力学. 山西省,太原理工大学,2007-01-01. [69]赵云鹏. 西部弱还原性煤热解特性研究[D].大连理工大学,2010. [70]杨漪. 基于氧化特性的煤自燃阻化剂机理及性能研究[D].西安科技大学,2015. [71]李林, Beaimsh BB,姜德义.煤自然活化反应理论[J].煤炭学报,2009,34(04):505-508. [72]朱红青,沈静,张亚光.升温速率和氧浓度对煤表观活化能的影响[J].煤炭科学技术,2015,43(11):49-53+106. [73]吴强,陈文胜.煤自燃的热重分析研究[J].中国安全生产科学技术,2008(01):71-73. [74]邓聚龙.灰色理论基础[M].湖北:华中科技大学出版社,2002. [75]鲁峰,黄金泉.基于灰色关联聚类的特征提取算法[J].系统工程理论与实践,2012,32(4):872-876. [77]王云刚,周辰,李辉,等.基于熵权灰色关联法的煤与瓦斯突出主控因素分析[J].安全与环境学报,2016,16(06):5-9. [78]曹学军,朱南南,舒龙勇.煤与瓦斯突出综合指标预测模型及应用[J].能源技术与管理,2019,44(06):34-37+52. [81]王可,王慧琴,殷颖,等.基于Pearson关联度BP神经网络的时间序列预测[J].光学精密工程,2018,26(11):2805-2813. [82]张玉涛,杨杰,李亚清,等.煤自燃特征温度与微观结构变化及关联性分析[J].煤炭科学技术:1-8[2022-03-17]. |
中图分类号: | TD752.2 |
开放日期: | 2023-06-28 |