论文中文题名: | 锦瑞煤矿迎采动掘巷围岩应力演化规律及控制 |
姓名: | |
学号: | 19303213001 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085218 |
学科名称: | 工学 - 工程 - 矿业工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 矿山压力与岩层控制 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-24 |
论文答辩日期: | 2022-05-28 |
论文外文题名: | Stress Evolution Law and Control Technology of Sur-rounding Rock in Gateway Driving Along Goaf Forward to Mining Face in JinRui coal mine |
论文中文关键词: | |
论文外文关键词: | Heading for Adjacent Advancing Coal Face ; Face mining and opposite excavation ; stress evolution ; surrounding rock control. |
论文中文摘要: |
随着煤矿大规模、高强度开采,矿井采掘接续紧张,迎采动掘巷在单翼矿井取得一定推广应用,迎采动掘巷要经历掘巷和上区段工作面采动影响,矿压显现剧烈,支护较为困难。本文以锦瑞煤矿8107工作面运输巷为工程背景,采用理论分析、数值分析和现场实测等研究方法,分析了迎采动掘巷缓慢变形阶段、超前采动影响阶段、剧烈影响阶段、结构调整阶段及变形稳定阶段五个阶段影响时围岩应力演化规律和变形特征,确定了区段煤柱留设尺寸,提出了巷道围岩控制技术,并进行了工业性试验分析。主要研究成果如下: (1)基于极限平衡理论得出煤柱的最小宽度为4.85m,数值分析结果表明,煤柱宽度为5m时,能够有效控制围岩变形。 (2)通过理论分析与数值分析将迎采动巷道掘进过程划分为五个阶段,分别为:①8107掘进工作面与8105回采工作面相遇前50m以外为变形缓慢阶段,仅受掘巷扰动影响引起煤柱竖直应力的升高,围岩变形较为缓慢;②相遇前50m~20m为超前采动影响阶段,开始受回采工作面采动影响,煤柱竖直应力、变形大于前一阶段;③相遇前20m~相遇后10m为剧烈影响阶段,回采工作面动压影响达到最大,煤柱竖直应力达到峰值,围岩变形剧烈;④相遇后10m~50m为结构调整阶段,上覆岩层结构发生调整,回采工作面的滞后采动影响会持续影响煤柱50m范围,窄煤柱帮变形剧烈;⑤相遇50m以后为变形稳定阶段,与回采工作面相距较远,围岩应力趋近于平衡,围岩变形较小。控制两工作面相遇前后100m是整个迎采动掘巷围岩控制的关键。 (3)通过正交试验确定了迎采动掘进巷道围岩控制技术,①永久支护:高强度锚杆+锚索联合支护;②加强支护:相遇前后100m采用单体液压支柱加强支护,在结构调整阶段采用喷、注浆来封堵煤柱裂隙,提高煤柱强度。通过工业性试验,证明8107运输巷围岩控制能够保证矿井安全生产,支护设计合理。 |
论文外文摘要: |
With the large-scale and high-intensity mining of coal mines, the continuous mining and excavation of coal mines are tense. The face-to-face mining roadway has achieved certain popularization and application in single-wing coal mines. The face-to-face mining roadway will experience the mining influence of the roadway and the upper section of the working face, and the strata pressure is intense, and the support is difficult. In this paper, the transportation roadway of 8107 working face in Jinrui Coal Mine is taken as the engineering background, and the theoretical analysis, numerical analysis and field measurement are used to systematically analyze the stress evolution law and deformation characteristics of surrounding rock under the influence of five stages, namely, the slow deformation stage, the advanced mining influence stage, the severe influence stage, the structural adjustment stage and the deformation stability stage. The reasonable width of section coal pillar is determined, and the surrounding rock control technology of roadway is proposed, and the industrial test analysis is carried out. The main research results are as follows: (1) Based on the limit equilibrium theory, the minimum width of coal pillar is 4.85 m. The numerical analysis results show that when the width of coal pillar is 5 m, the deformation of surrounding rock can be effectively controlled. (2) Through theoretical analysis and numerical analysis, the roadway excavation process is divided into five stages, which are as follows : ①outside 50 m before the encounter between 8107 heading face and 8105 mining face is the slow deformation stage. The vertical stress of coal pillar increases only due to the disturbance of roadway excavation, and the deformation of surrounding rock is relatively slow. ②50 m ~ 20 m before meeting is the advanced mining influence stage, beginning to be affected by mining face, vertical stress and deformation of coal pillar are greater than the previous stage ; ③20 m before encounter – 10 m after encounter is the stage of severe influence, the dynamic pressure of working face reaches the maximum, the vertical stress of coal pillar reaches the peak, and the deformation of surrounding rock is severe ; ④10m ~ 50m after the encounter is the structural adjustment stage, the structure of the upper strata is adjusted, the lag mining effect of the mining face will continue to affect the coal pillar 50m range, and the deformation of the narrow coal pillar is severe. ⑤After meeting 50 m, the deformation is stable, which is far away from the working face. The stress of surrounding rock tends to be balanced, and the deformation of surrounding rock is small. The control of 100 m before and after the encounter of the two working faces is the key to the surrounding rock control of the whole mining roadway. (3) The surrounding rock control technology of heading roadway under mining action was determined by orthogonal test, ①permanent support : high strength bolt + anchor cable combined support; ②Strengthening support : the single hydraulic prop was used to strengthen the support at 100 m before and after the encounter, and the spray and grouting were used to seal the coal pillar cracks and improve the strength of the coal pillar in the structural adjustment stage. Through industrial test, it is proved that the surrounding rock control of 8107 transportation roadway can ensure the safety of mine production, and the support design is reasonable. |
参考文献: |
[1] 刘满平.我国实现“碳中和”目标的意义、基础、挑战与政策着力点[J].价格理论与实践,2021,(02):8-13. [2] 钱鸣高,许家林,王家臣.再论煤炭的科学开采[J].煤炭学报,2018,43(01):1-13. [3] 王菊,于阿南,房春生.能源革命战略背景下控制煤炭消费的困境与对策——以高比例煤炭消费的吉林省为例[J].经济纵横,2018,(09):51-57. [4] 邹才能,何东博,贾成业,等.世界能源转型内涵、路径及其对碳中和的意义[J].石油学报,2021,42(02):233-247. [7] 高俊莲,姜克隽,刘嘉,等.基于LEAP模型的中国煤炭需求情景分析[J].中国煤炭,2017,43(04):23-27. [8] 康红普,徐刚,王彪谋,等.我国煤炭开采与岩层控制技术发展40a及展望[J].采矿与岩层控制工程学报,2019,1(02):7-39. [9] 王国法,庞义辉,任怀伟,等.煤炭安全高效综采理论、技术与装备的创新和实践[J].煤炭学报,2018,43(04):903-913. [10] 王昆.中美煤炭矿山税费负担比较研究[J].中国地质大学学报(社会科学版),2014,14(06):23-29. [11] 袁亮.煤炭精准开采科学构想[J].煤炭学报,2017,42(01):1-7. [12] 仇奎凯,刘景飞,何欣.迎采动掘进巷道留设合理煤柱宽度研究[J].煤炭技术,2019,38(04):44-47. [13] 付书俊,吴乐,何杰.近距离煤层迎采动工作面沿空掘巷支护技术[J].煤炭工程,2019,51(06):81-85. [14] 马昂.申南凹矿迎采动掘进巷道围岩稳定控制机理研究[D].徐州:中国矿业大学,2020. [15] 王夏南.基于松动圈测试的迎采动巷道围岩控制技术研究[J].同煤科技,2020,(02):17-20. [16] 侯朝炯.深部巷道围岩控制的关键技术研究[J].中国矿业大学学报,2017,46(05):970-978. [17] 杨海楼,于洋,朱庆庆.对采对掘巷道围岩稳定与分段控制技术研究[J].煤炭工程,2013,45(10):11-14. [18] 钱鸣高,石平五,许家林.矿山压力与岩层控制[M].北京:矿山压力与岩层控制,2010:. [21] 宋振骐.采场上覆岩层运动与支架的选择[J].煤炭科学技术,1978,(9):5. [22] 茅献彪,缪协兴,钱鸣高.采动覆岩中复合关键层的断裂跨距计算[J].岩土力学,1999,(02):1-4. [23] 钱鸣高缪协兴何富连.采场“砌体梁”结构的关键块分析[J].煤炭学报,1994,(06):557-563. [24] 李学华,侯朝炯,姚强岭,等.综放沿空掘巷大、小结构稳定性原理及其应用[C]//综采放顶煤技术理论与实践的创新发展——综放开采30周年科技论文集.中国煤炭学会,2012,8. [25] 王红胜,张东升,李树刚,等.基于基本顶关键岩块B断裂线位置的窄煤柱合理宽度的确定[J].采矿与安全工程学报,2014,31(01):10-16. [26] 柏建彪,侯朝炯,黄汉富.沿空掘巷窄煤柱稳定性数值模拟研究[J].岩石力学与工程学报,2004,(20):3475-3479. [27] 李学华,王卫军,侯朝炯.加固顶板控制巷道底鼓的数值分析[J].中国矿业大学学报,2003,(04):98-101. [28] 康红普,林健,张晓.深部矿井地应力测量方法研究与应用[J].岩石力学与工程学报,2007,(05):929-933. [29] 曹树刚,邹德均,白燕杰,等.近距离“三软”薄煤层群回采巷道围岩控制[J].采矿与安全工程学报,2011,28(04):524-529. [30] 张璨,张农,许兴亮,等.高地应力破碎软岩巷道强化控制技术研究[J].采矿与安全工程学报,2010,27(01):13-18. [31] 陈登红,华心祝,李英明.复杂条件下回采巷道围岩控制综合技术[J].煤炭科学技术,2010,38(12):14-16. [32] 侯朝炯.深部巷道围岩控制的有效途径[J].中国矿业大学学报,2017,46(03):467-473. [36] M-Lin'kov A. On the Theory of Pillar Design[J]. Journal of Mining Science, 2001, 37(1). [40] 陆士良.无煤柱护巷的矿压显现[M].北京:煤炭工业出版社,1982. [41] 侯朝炯,马念杰.煤层巷道两帮煤体应力和极限平衡区的探讨[J].煤炭学报,1989,(04):21-29. [42] 屠洪盛,屠世浩,白庆升,等.急倾斜煤层工作面区段煤柱失稳机理及合理尺寸[J].中国矿业大学学报,2013,42(01):6-11. [43] 张科学.深部煤层群沿空掘巷护巷煤柱合理宽度的确定[J].煤炭学报,2011,36(S1):28-35. [44] 赵杰,刘长友,李建伟.沟谷区域浅埋煤层工作面覆岩破断及矿压显现特征[J].煤炭科学技术,2017,45(01):34-40. [45] 李磊,柏建彪,王襄禹.综放沿空掘巷合理位置及控制技术[J].煤炭学报,2012,37(09):1564-1569. [46] 柏建彪.沿空掘巷围岩控制[M].徐州:中国矿业大学出版社,2006. [47] 仇奎凯,刘景飞,何欣.迎采动掘进巷道留设合理煤柱宽度研究[J].煤炭技术,2019,38(04):44-47. [48] 杜鹏荣.迎采动巷道动态分段支护技术研究[J].煤炭技术,2020,39(12):23-25. [49] 郝长胜,赵冉,朱欣鹏.迎采动面沿空掘巷窄煤柱合理宽度研究[J].煤炭技术,2018,37(07):1-3. [50] 侯朝炯.煤巷锚杆支护的关键理论与技术[J].矿山压力与顶板管理,2002,(01):2-5. [51] 华心祝,刘淑,刘增辉,等.孤岛工作面沿空掘巷矿压特征研究及工程应用[J].岩石力学与工程学报,2011,30(08):1646-1651. [52] 华心祝,赵少华,朱昊,等.沿空留巷综合支护技术研究[J].岩土力学,2006,(12):2225-2228. [53] 孙恒虎,赵炳利.沿空留巷的理论与实践[M].北京:煤炭工业出版社,1993. [54] 袁振华.迎采动面沿空掘巷围岩应力分布规律及控制技术研究[J].能源技术与管理,2020,45(04):42-43. [57] 侯朝炯团队.巷道围岩控制[M].徐州:中国矿业大学出版社,2013:. [58] 李化敏.深部巷道围岩控制系统分析[J].矿山压力与顶板管理,1996,(02):54-57. [59] 吴林梓.基本顶断裂结构影响窄煤柱稳定性研究及工程应用[D].西安:西安科技大学,2014. [60] 张炜,张东升,陈建本,等.孤岛工作面窄煤柱沿空掘巷围岩变形控制[J].中国矿业大学学报,2014,43(01):36-42. [61] 张农李学华高明仕.迎采动工作面沿空掘巷预拉力支护及工程应用[J].岩石力学与工程学报,2004,(12):2100-2105. [62] 王猛,柏建彪,王襄禹,等.迎采动面沿空掘巷围岩变形规律及控制技术[J].采矿与安全工程学报,2012,29(02):197-202. [63] 于洋,王襄禹,薛广哲,等.迎采动工作面沿空掘巷动态分段围岩控制技术[J].煤炭科学技术,2013,41(07):43-46. [64] 杨海楼,于洋,朱庆庆.对采对掘巷道围岩稳定与分段控制技术研究[J].煤炭工程,2013,45(10):11-14. [65] 刘金海,曹允钦,魏振全,等.深井厚煤层采空区迎采动隔离煤柱合理宽度研究[J].岩石力学与工程学报,2015,34(S2):4269-4277. [66] 陈晓祥,王逸良,张天.迎采动面沿空掘巷围岩变形规律及控制技术[J].煤矿安全,2020,51(06):66-71. [67] 赵瑶,王珏,高明仕,等.陈四楼矿迎采动沿空掘巷技术研究及应用[J].煤炭工程,2012,(06):41-43. [68] 苟瑾.迎采动面沿空掘巷围岩控制技术研究[J].煤炭工程,2018,50(04):43-47. [69] 杜鹏荣.迎采动巷道动态分段支护技术研究[J].煤炭技术,2020,39(12):23-25. [70] 赵亚军,朱欣鹏,苏岳.确定迎采动面巷道停掘位置[J].煤炭技术,2018,37(02):6-8. |
中图分类号: | TD322 |
开放日期: | 2022-06-27 |