- 无标题文档
查看论文信息

论文中文题名:

 荷载-冻融耦合作用下再生砖混骨料混凝土 劣化规律及机理研究    

姓名:

 栾溪    

学号:

 20204053046    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 081402    

学科名称:

 工学 - 土木工程 - 结构工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 结构工程    

研究方向:

 固废弃物资源化利用    

第一导师姓名:

 邱继生    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-12    

论文答辩日期:

 2023-05-31    

论文外文题名:

 Study On the Deterioration Law and Mechanism of Recycled Mixed Brickbat and Concrete Aggregate Concrete Under Load-freeze-thaw Coupling    

论文中文关键词:

 荷载-冻融 ; 耦合环境 ; 再生砖混骨料 ; 多重界面过渡区 ; 孔结构    

论文外文关键词:

 Load-freeze-thaw ; Coupling Environment ; Recycled Mixed Brickbat and Concrete Aggregate Concrete ; Multiple Interface Transition Zone ; Pore Structure    

论文中文摘要:

随着我国旧城改造及城市更新的不断发展需要拆除大量的旧建筑物,导致建筑垃圾日益增多,并带来了“垃圾围城”等一系列的环境问题,如何有效的资源化利用建筑垃圾已迫在眉睫。混凝土和砖是我国村镇建筑的主要材料,建筑垃圾的主要组成部分是废混凝土与废砖且难以完全分离,因此对再生砖混骨料混凝土(Recycled Mixed Brickbat and Concrete Aggregate, RMBCA)的力学性能及耐久性进行研究,对提高建筑垃圾资源化水平和节能减排具有重要意义。本文采用理论分析与试验分析相结合的方法,研究再生砖及再生混凝土的取代率对RMBCA混凝土性能的影响并确定最优配合比,并对其在荷载-冻融环境耦合作用下劣化规律及机理进行研究,具有一定的社会意义与工程意义。

本文选取再生砖骨料(Recycled Brickbat Aggregate, RBA)与再生混凝土骨料(Recycled Concrete Aggregate, RCA)的比例为1:1,并将再生砖混骨料以5种取代率(20%、30%、40%、50%、60%)取代天然骨料(Natural Aggregate),选取一种特定取代率,并将RBA与RCA按照五种比例进行混合(0:1、3:7、1:1、7:3、1:0),得出最优配合比后采取不同弯曲应力水平(0、0.2、0.4、0.6)、不同冻融次数进行荷载-冻融耦合环境下的耐久性试验,分析RMBCA混凝土的抗冻性能变化规律。得到的主要结论有:

(1)RMBCA的宏观破坏模式与普通混凝土较为类似,但因其RBA的强度较低,则破坏面贯穿RBA内部,抗压强度随RMBCA的掺量逐渐降低,抗折强度和劈裂抗拉强度与RMBCA的掺量的相关性不显著,经试验结果得出,RMBCA的取代率为30%,且RBA与RCA的比例为1:1时,试件性能相对较好。

(2)RMBCA混凝土中加入RBA和RCA后,界面过渡区种类增加,建立了多重界面过渡区模型,RBA与新砂浆界面区性能优于旧砂浆界面区,RCA与旧界面性能优于新界面性能。

(3)RMBCA混凝土经荷载-冻融试验后,根据抗压强度、相对动弹模、质量损失率及损伤层厚度变化可知,随着冻融次数及应力水平的逐渐增大,试件的力学性能及抗冻性逐渐降低。当弯曲应力比小于0.6时,试件的失效形式为动弹模下降到临界值来评定,弯曲应力比大于0.6时,因RMBCA混凝土自身受冻融影响使自身的承载能力下降,过大的应力水平使试件发生脆性断裂。

(4)由显微硬度试验及扫描电镜可知,多重界面过渡区均随着冻融循环次数的增加以及应力水平的升高使界面过渡区的显微硬度值降低,以及界面区厚度加宽,均为由低应力少冻融次数时的细微裂缝,至高应力多冻融次数下的界面区裂缝加宽,骨料与砂浆基体脱粘,从而降低试件的性能。

(5)根据核磁共振结果来看,得到RMBCA混凝土的孔隙结构随冻融次数及应力水平不断变化,冻融次数越大,应力水平越高,导致试件总孔隙增多,胶凝孔占比逐渐减少,大孔数量增加。但施加适当的弯曲荷载会对质地疏松的RMBCA混凝土的孔隙产生一定的挤密作用,使得抗冻性小幅提升,应力水平较高时,则会使小孔隙逐渐劣化,孔隙与孔隙之间连通,增大冻胀力,降低试件的抗冻性。

论文外文摘要:

With the continuous development of China's old city reconstruction and urban renewal, a large number of old buildings need to be demolished, resulting in an increasing number of construction waste, and bringing a series of environmental problems such as ' garbage siege '. How to effectively utilize construction waste is imminent. Concrete and brick are the main materials of rural buildings in China. The main components of construction waste are waste concrete and waste brick, which are difficult to be completely separated. Therefore, it is of great significance to study the mechanical properties and durability of Recycled Mixed Brickbat and Concrete Aggregate (Recycled Mixed Brickbat and Concrete Aggregate Concrete, RMBCA) to improve the level of construction waste recycling and energy saving and emission reduction. In this paper, the method of combining theoretical analysis and experimental analysis is used to study the influence of the replacement rate of recycled brick and recycled concrete on the performance of RMBCA concrete and determine the optimal mix ratio, and study its deterioration law and mechanism under the coupling effect of load-freeze-thaw environment, which has certain social significance and engineering significance.

In this paper, the ratio of recycled brick aggregate (Recycled Brickbat Aggregate, RBA) to recycled concrete aggregate (Recycled Concrete Aggregate, RCA) is 1:1, and the recycled brick aggregate is replaced with five kinds of replacement rates (20%, 30%, 40%, 50%, 60%) to replace the natural aggregate. A specific replacement rate is selected, and RBA and RCA are mixed according to five ratios (0:1, 3:7, 1:1, 7:3, 1:0 ). After the optimal mix ratio is obtained, different bending stress levels (0, 0.2, 0.4, 0.6) and different freeze-thaw cycles are used to carry out the durability test under the load-freeze-thaw coupling environment. The macro and mcro properties and frost resistance of RMBCA were analyzed. The main conclusions are as follows :

The macroscopic damage pattern of RMBCA is more similar to that of ordinary concrete, but because of its lower strength of RBA, then the damage surface penetrates inside RBA, the compressive strength decreases gradually with the amount of RMBCA admixture, the correlation between flexural strength and splitting tensile strength and the amount of RMBCA admixture is not significant, and it is concluded from the test results that the specimen performance is relatively good when the replacement ratio of RMBCA is 30% and the ratio of RBA to RCA is 1:1.

After adding RBA and RCA to RMBCA concrete, the type of interfacial transition zone increases, and a multiple interfacial transition zone model is established. The performance of RBA and new mortar interface area is better than that of old mortar interface area, and the performance of RCA and old interface is better than that of new interface.

(3) RMBCA concrete by load - freeze-thaw test, according to the compressive strength, relative dynamic elastic modulus, mass loss rate and damage layer thickness changes can be seen, with the number of freeze-thaw and stress level gradually increased, the mechanical properties of the test specimen and frost resistance gradually reduced. When the bending stress ratio is less than 0.6, the failure of the specimen in the form of dynamic-elastic mode drops to a critical value to assess, the bending stress ratio is greater than 0.6, because RMBCA concrete itself by the freeze-thaw influence to make its own load-bearing capacity decreases, excessive stress levels make the specimen brittle fracture.

(4) From the microhardness test and scanning electron microscopy, it can be seen that the multiple interface transition zone are with the increase of the number of freeze-thaw cycles and the increase of the stress level to reduce the microhardness value of the interface transition zone, as well as the widening of the thickness of the interface zone, are from the fine cracks at low stress less freeze-thaw times, to the widening of the interface zone cracks at high stress more freeze-thaw times, the aggregate and mortar matrix debonding, thus reducing the performance of the specimen.

(5) According to the NMR results, the pore structure of RMBCA concrete was obtained to change continuously with the number of freeze-thaws and stress levels, and the higher the number of freeze-thaws, the higher the stress level, leading to an increase in the total pores of the specimens, a gradual decrease in the percentage of colloidal pores, and an increase in the number of large pores. However, the application of appropriate bending load will produce a certain crowding effect on the pores of RMBCA concrete with loose texture, which makes a small increase in the freezing resistance, and the higher stress level will cause a gradual deterioration of small pores and a connection between pores, which increases the freezing and swelling force and reduces the freezing resistance of the specimens.

参考文献:

[1]Arezoumandi M , Drury J , Volz J S, et al. Effect of Recycled Concrete Aggregate Replacement Level on Shear Strength of Reinforced Concrete Beams[J]. Aci Materials Journal, 2015, 112(4).

[2] 中华人民共和国统计局. 中国统计年鉴[Z]. 北京: 中国统计出版社, 2019.

[3] 黄禹. 我国城镇住房拆除率及影响因素研究[D]. 北京: 清华大学, 2016.

[4] A. hassani H.-Ganjidoust-A.A.-Maghanaki. Use of plastic waste (poly-ethylene terephthalate) in asphalt concrete mixture as aggregate replacement[J]. Waste Management Research, 2005, 23(4) : 322-327.

[5] 肖建庄, 李佳彬, 兰阳. 再生混凝土技术最新研究进展与评述[J]. 混凝土, 2003(10) : 140-148.

[6] 山西首个建筑垃圾资源化利用项目亮相[J]. 江西建材, 2021(2) : 16.

[7] 上海市政协委员呼吁促进建筑垃圾资源化利用[J]. 江西建材, 2021(2) : 226.

[8] 加强固体废弃物和城市垃圾分类处置[J]. 砖瓦, 2019(4) : 77.

[9] 刘日. 盐浸-干湿-冻融多重耦合作用下混凝土的劣化性能研究[D]. 呼和浩特, 内蒙古大学, 2019.

[10]Metha P K. Durability of Concrete-Fifty Years of Progress. ACI Special Publication, 1991, 126: 1-31.

[11]乔运峰. 不同饱水度砼在冻融与疲劳耦合作用下的损伤劣化与寿命预测[D]. 东南大学, 2018.

[12]肖成, 刘经纬, 李长顺. 混杂砖骨料自密实再生混凝土配合比设计[J]. 山西建筑, 2018, 44(02) : 106-107.

[13]Martínez-Lage I, Martínez-Abella F, Vázquez-Herrero C, et al. Properties of plain concrete made with mixed recycled coarse aggregate[J]. Construction and Building Materials, 2012, 37 : 171-176.

[14]葛培, 黄炜, 权文立, 郭余婷. 混杂再生骨料混凝土抗压计算研究[J]. 华中科技大学学报(自然科学版), 2021, 49(05) : 86-91.

[15]陈峰, 伍凯, 南洋, 张鹏, 张贺. 混合再生骨料混凝土基本力学性能研究[J]. 四川建筑科学研究, 2016, 42(04) : 93-97.

[16]张贺, 伍凯, 陈柯呈, 南洋, 徐方媛, 陈峰. 砖块体再生骨料混凝土性能研究[J]. 四川建筑科学研究, 2016, 42(05) : 88-90+117.

[17]杨莹莹. 砖粒含量对再生混凝土基本性能影响试验研究[D]. 河北工程大学, 2018.

[18]元成方, 李爽, 曾力, 陈自豪. 废砖、废混凝土混合再生粗骨料混凝土力学性能研究[J].硅酸盐通报, 2018, 37(02) : 398-402.

[19]Liu Xu, Wu Jin, Zhao Xing, Yan Pengpeng, Ji Weiyi, et al. Effect of brick waste content on mechanical properties of mixed recycled concrete[J]. Construction and Building Materials, 2021, 292.

[20]马昆林, 黄新宇, 胡明文,等. 砖混再生粗骨料混凝土力学性能及工程应用研究[J]. 硅酸盐通报, 2020, 39(8) : 2600-2607.

[21]张明明, 王社良, 张世民, 张博. 砖替率对再生粗骨料的性能影响试验研究[J]. 混凝土, 2017(11) : 91-93+99.

[22]陈杰, 耿悦, 王玉银, 孙文景. 含碎红砖再生混凝土基本力学性能及其应力-应变关系[J]. 建筑结构学报, 2020, 41(12) : 184-192.

[23]安新正, 牛薇, 张亚飞, 刘燕. 砖粒及粉煤灰掺量对再生混凝土抗冻性能的影响[J]. 科学技术与工程, 2018, 18(14) : 237-240.

[24]冀韦伊. 混合型再生粗骨料混凝土力学性能与耐久性能试验研究[D]. 南京航空航天大学, 2020.

[25]刘超, 余伟航, 刘化威, 胡天峰, 胡慧敏. 再生砖骨料混凝土力学性能及破坏机理研究[J]. 材料导报, 2021, 35(13) : 13025-13031.

[26]牛建刚, 牛荻涛. 荷载作用下混凝土的耐久性研究[J]. 混凝土, 2008, 226 : 30-33.

[27]严安. 在荷载与冻融双因素下混凝土的损伤过程[D]. 东南大学, 1998.

[28]慕儒, 严安, 孙伟. 荷载作用下高强混凝土的抗冻性[J]. 东南大学学报,1998(04) : 140-146.

[29]慕儒, 严安, 严捍东. 冻融和应力复合作用下 HPC 的损伤与损伤抑制[J]. 建筑材料学报, 1999, 2(4) : 359-364.

[30]Sun W, Zhang Y M, Yan H D. Damage and damage resistance of high strength concrete under the action of load and freeze-thaw cycles [J]. Cement and Concrete Research, 1999, 29: 1519-1523.

[31]严安, 李启令. 高等混凝土在荷载作用下的冻融性能及其可靠性分析[J]. 混凝土与水泥, 2000.

[32]刘建忠, 孙伟. 弯曲荷载与盐溶液复合作用下混凝土冻融损伤[J]. 东南大学学报(自然科学版), 2006, (36) : 244-247.

[33]慕儒. 冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测[D]. 东南大学, 2000.

[34]Jacobsen S, Granl H C, Sellevold E J. High strength concrete-freeze/thaw testing and cracking [J]. Cement and Concrete Research, 1995, 8 : 1775-1780.

[35]刘波. 模拟荷载作用下的混凝土耐久性研究[D]. 南昌: 南昌大学, 2007 : 3-4.

[36]Tian J, Wang W, Du Y. Damage behaviors of self-compacting concrete and prediction mode under coupling effect of salt freeze-thaw and flexural load[J]. Construction & Building Materials, 2016, 119 : 241-250.

[37]曹银, 王玲, 王振地, 姚燕. 弯拉荷载-冻融循环-氯盐侵蚀作用下混凝土的劣化[J]. 建筑材料学报,2016,19(05) : 821-825.

[38]Lu J, Zhu K, Tian L,et al. Dynamic compressive strength of concrete damaged by fatigue loading and freeze-thaw cycling[J]. Construction and Building Materials, 2017, 152 : 847-855.

[39]Yang X, Shen A, Guo Y, et al. Deterioration mechanism of interface transition zone of concrete pavement under fatigue load and freeze-thaw coupling in cold climatic areas[J].Construction and Building Materials, 2018, 160 : 588-597.

[40]郭寅川, 申爱琴, 何天钦. 疲劳荷载与冻融循环耦合作用下季冻区路面水泥混凝土孔结构研究[J]. 中国公路学报, 2016, 29(8) : 29-35.

[41]李召行. 荷载与腐蚀冻融耦合及再生粗骨料性能对再生混凝土耐久性能的影响研究[D]. 南昌大学, 2019.

[42]冯晓爽. 考虑弯曲荷载损伤的粉煤灰混凝土盐冻劣化分析[D]. 河北农业大学, 2020.

[43]杜鹏. 多因素耦合作用下混凝土的冻融损伤模型与寿命预测[D].中国建筑材料科学研究总院, 2014.

[44]马昆林, 王中志, 龙广成, 谢友均, 曾晓辉. 动荷载-水-冻融共同作用下混凝土宏观裂缝扩展与演变的研究进展[J]. 材料导报, 2021, 35(19) : 19091-19098.

[45]GB/T 14684-2022, 《建设用砂》[S].

[46]GB/T 14685-2022, 《建设用卵石、碎石》[S].

[47]JGJ 55-2019, 《普通混凝土配合比设计规程》[S].

[48]GB/T50081-2019, 《混凝土物理力学性能试验方法标准》[S].

[49]GB/T 50082-2009, 《普通混凝土长期性能和耐久性能试验方法标准》[S].

[50]GB/T50081-2019, 《混凝土物理力学性能试验方法标准》[S].

[51]CECS 21-2000, 《超声法检测混凝土缺陷技术规程》[S].

[52]王小娟, 刘路, 贾昆程, 周宏元. 陶粒泡沫混凝土的力学性能及吸能特性[J]. 建筑材料学报, 2021, 24(01) : 207-215.

[53]Wasserman R, Bentur A. Interfacial interactions in lightweight aggregate concretes and their influence on the concrete strength[J]. Cement and Concrete Composites, 1996, 18(1) : 67-76.

[54]Liming Huang, Long Yu, Hui Zhang, Zhenghong Yang, et al. Composition and microstructure of 50-year lightweight aggregate concrete (LWAC) from Nanjing Yangtze River bridge (NYRB)[J]. Construction and Building Materials. Volume 216, 2019. PP 390-404.

[55]D.P. Bentz, K.A. Snyder, et al. Protected paste volume in concrete[J]. Cement and Concrete Research, Volume 29, Issue 11. 1999. PP 1863-1867.

[56]Xianwei Ma, Jianhui Liu, Caijun Shi, et al. A review on the use of LWA as an internal curing agent of high performance cement-based materials[J]. Construction and Building Materials Volume 218, 2019. PP 385-393.

[57]Shuai Nie, Shuguang Hu, Fazhou Wang, Chuanlin Hu, Xinping Li, Yaohong Zhu, et al. Pozzolanic reaction of lightweight fine aggregate and its influence on the hydration of cement[J]. Construction and Building Materials Volume 153, 2017. PP 165-173.

[58]Shuai Nie, Wenqin Zhang, Shuguang Hu, Zhichao Liu, Fazhou Wang, et al. Improving the fluid transport properties of heat-cured concrete by internal curing[J]. Construction and Building Materials Volume 168, 2018. PP 522-531.

[59]Escadeillas.G, Maso.J.C. Approach of the initial state in cement paste,mortar,and concrete. In: Mindess S, editor. Advances in cement materials, Cermic Transactions vol 16. American Ceramic Societ, 1991. 169-84.

[60]Metha P K. Hardened cement paste-microstructure and its relationship to properties. In: proceedings of 8th international congress on the chemistry of cement[C]. Rio de Janeiro, 1986(1), 113-121.

[61]Diamond S. The microstructure of cement paste in concrete. In: proceedings of 8th international congress on the chemistry of cement[C]. Rio de Janeiro, 1986(1) : 122-147.

[62]陈惠苏, 孙伟, Stroeven P. 水泥基复合材料集料与浆体界面研究综述(二) : 界面微观结构的形成、劣化机理及其影响因素[J]. 硅酸盐学报, 2004(1) : 70-79.

[63]杨彬. 基于高分辨 X-CT 的水泥基材料界面微结构研究[J]. 南京: 东南大学, 2018.

[64]Berger R L, Cahn D S, Mcgregor J D. Calcium hydroxide as a binder in portland cement paste[J]. Journal of the American Ceramic Society, 1970, 53(1) : 57-58.

[65]Stroeven P, Stroeven M. Reconstructions by space of the interfacial transition zone[J]. Cement and Concrete Composites, 2001, 23 (2) : 189-200.

[66]王振军, 沙爱民, 杜少文. 水泥乳化沥青混凝土浆体-集料界面区结构形成机理[J]. 公路, 2008( 11) : 186-189.

[67]Yang X ,Shen A ,Guo Y , et al. Deterioration mechanism of interface transition zone of concrete pavement under fatigue load and freeze-thaw coupling in cold climatic areas[J]. Construction and Building Materials, 2018, 160.

[68]Z.Ge, Z.L.Gao, R.J.Sun. Mix design of concrete with recycled clay-brick-powder using the orthogonaldesign method[J]. Construction and Building Materials, 2012, (31) : 289-293.

[69]T. Liu, Y. Wang, K. Zhou, F. Gao, S. Xie, D. Jeng, Research on the mechanical properties and NMR characteristics of cement mortar during freeze-thaw cycles. Advanced in Civil Engineering. (2019).

[70]G. Heijden, L. Pel, O. Adan. Fire spalling of concrete, as studied by NMR. Cement Concrete Research. 42(2)(2012)265–271.

[71]A. Pop, C. Badea, L. Ardelean. The effect of different superplasticizers and water-to-cement ratios on the hydration of gray cement using T2-NMR. Applied Magnetic Resonance. 44(10)(2013)1223-1234.

[72]王洪强, 付晨东, 井连江. 核磁共振成像技术在岩石物理实验中的应用[J]. 测井技术, 2005, 29(2) : 95-97.

[73]Y. Li, R. Wang, S. Li. Assessment of the freeze–thaw resistance of concrete incorporating carbonated coarse recycled concrete aggregates. Journal of the Ceramic Society of Japan. 125(11)(2017)837-845.

[74]邓克俊, 谢然红. 核磁共振测井理论及应用[M]. 中国石油大学出版社, 2010.

[75]MANDELBROT B B. The fractal geometry of nature[M]. Macmillan, 1983.

[76]郭寅川, 申爱琴, 何天钦. 疲劳荷载与冻融循环耦合作用下季冻区路面水泥混凝土孔结构研究[J]. 中国公路学报. 2016, 29(08) : 29-35.

[77]张楠. 疲劳荷载与冻融循环多次交互作用下混凝土损伤特性试验研究[D]. 烟台大学, 2018.

[78]王晨霞, 刘路, 曹芙波. 冻融循环后再生混凝土力学性能试验研究[J]. 建筑结构学报, 2020, 41(12) : 193-202.

[79]王立久, 袁大伟. 关于混凝土冻害机理的思考[J]. 低温建筑技术, 2007(5):1-3.

[80]邓斌. 混凝土受冻破坏机理分析与探讨[J]. 科技信息, 2009(18):626.

中图分类号:

 TU528    

开放日期:

 2024-06-12    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式