- 无标题文档
查看论文信息

论文中文题名:

 综采工作面煤流测量与刮板输送机负载预测融合的采运协同控制研究    

姓名:

 贺海涛    

学号:

 B201403009    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 0802    

学科名称:

 工学 - 机械工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

 智能综采    

第一导师姓名:

 郭卫    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-07-04    

论文答辩日期:

 2022-06-09    

论文外文题名:

 Research on Cooperative Control Method of Ming Equipment Based on Coal Flow Measurement and Scraper Conveyor Load Prediction in Fully Mechanized Mining Face    

论文中文关键词:

 综采工作面 ; 煤流输送系统 ; 煤流测量 ; 粗糙RBF神经网络 ; 负载预测 ; 采运协同控制    

论文外文关键词:

 Fully mechanized mining face ; Coal flow conveying system ; Coal flow measurement ; Rough RBF neural network ; Coal flow load prediction ; Collaborative control of mining and transportation    

论文中文摘要:

~煤矿智能化是煤炭工业高质量发展的核心技术支撑,是煤炭工业技术革命和升级发展的必然方向。综采智能化作为煤矿智能化的关键技术之一,它的实现将会极大促进煤矿智能化的发展。综采工作面采煤机割煤与装煤,刮板输送机输煤与卸煤,二者协同作业将持续产生的煤流连续运出综采工作面,因此采运协同智能控制对实现综采智能化至关重要。但综采工作面环境恶劣,采煤机与刮板输送机耦合作用机理复杂,综采工作面采运协同智能控制已成为制约工作面智能化的主要因素之一。针对此问题,本文依托国家重点研发计划项目“煤矿智能开采安全技术与装备研发”课题“大采高工作面智能开采安全技术集成与示范”(课题编号:2017YFC0804310),以综采工作面采运协同智能控制方法为研究主线,重点解决综采工作面煤流量在线监测问题、刮板输送机负载预测问题、综采工作面采运协同智能控制策略制定问题,通过建立现场数据采集系统对工作面采运协同智能控制方法进行验证,具体内容如下:
(1)综采工作面采运协同智能控制架构的提出。针对综采工作面采运协同智能控制方法缺乏问题,深入分析综采工作面煤流系统的生产过程与负载特点,确定综采工作面采运协同智能控制的基本思路,建立综采工作面采运协同智能控制模型与框架,给出综采工作面采运协同智能控制的关键问题与解决方案,为后续研究奠定基础。
(2)综采工作面煤流在线测量方法研究。针对暗光环境下综采工作面煤流量的动态实时监测问题,给出基于散斑结构光双目视觉的煤流量测量方案,并设计搭建煤流量测量装置;采用反向高斯牛顿算法对煤流散斑图像子区进行亚像素匹配,获得综采工作面煤流轮廓点云数据,结合四面体网格结构法对煤流量进行计算,最后通过煤流量测量实验对提出的系统性能进行验证。结果表明煤流量计算结果的相对误差最小为13.91%,能够准确、快速的测量刮板输送机的煤流量。
(3)综采工作面刮板输送机负载预测方法研究。针对刮板输送机电流数据有价值样本稀少和多样性不足导致的刮板输送机负载预测不准确的问题,通过分析综采工作面煤流系统的混合特性,提出扩展混合Petri网(ENPN),构建综采面煤流输送系统过程控制ENPN模型,生成突发工况下的刮板输送机电流数据样本;提出基于LSTM的条件Wasserstein对抗生成网络模型,对有价值的稀少刮板输送机电流数据样本进行扩充,建立完备充足的电流数据集;基于粗糙思想提出粗糙径向基神经网络RRBFNN模型,构建刮板输送机负载预测模型。
(4)综采工作面采运协同智能控制策略研究。针对综采工作面煤流系统的智能控制策略缺乏问题,提出基于煤流量在线测量和刮板输送机负载预测的综采工作面采运协同智能控制方法。该方法首先建立电流强化模型,得到反映综采工作面刮板输送机真实负载的电流分量;然后针对多输入参数中存在强非线性和时空关联特性,提出随机自注意力胶囊神经网络RSCAN,对综采工作面煤流系统运行状态进行特征提取;最后考虑煤流负载和煤流量建立基于随机自注意力胶囊神经网络RSCAN的综采工作面煤流系统智能控制模型,并进行仿真验证。本文采用的RSCAN方法建立的控制模型控制效果,比SCAN、CAN两种模型的平均绝对误差降低了17.7%,13.3%,结果表明,提出的负载电流预测方法和采运协同调速方法能有效实现综采工作面煤流系统的负载预测和采煤机的自适应调速。
(5)综采工作面采运协同智能控制模型现场数据验证。为进一步验证本文提出的综采工作面煤流系统智能控制模型的合理性和可行性,依托大柳塔煤矿52605综采工作面装备,构建综采工作面煤流量数据采集系统并进行数据采集和算法验证。结果表明:刮板输送机负载预测的平均误差为13.88%,3种采煤机运行位置工况中,机头附近的RSCAN采运协同控制效果最好,在数据集Ⅰ和数据集Ⅱ上的预测曲线与真实曲线之间的R-Squared值分别达到了0.8583和0.9046,精度提高了8.23%,表明本文提出的电流数据生成方法、煤流量测量方法、电流负载预测方法以及综采工作面采运协同智能控制方法合理可行,能有效实现综采工作面煤流输送系统的自主协同作业。
本文提出的综采工作面采运协同智能控制方法,为综采工作面关键设备的自主协同作业提供了一条新的解决途径,为综采工作面的智能化和少人化发展奠定了基础。
 

论文外文摘要:

~Coal mine intellectualization is the core technical support for the high-quality development of the coal industry and the inevitable direction of the technological revolution and upgrading development of the coal industry. As one of the key technologies of coal mine intellectualization, the realization of fully mechanized mining intellectualization will greatly promote the development of coal mine intellectualization. The shearer of the fully mechanized face cuts and loads coal, and the scraper conveyor transports and unloads coal. The two cooperate to continuously transport the coal flow out of the fully mechanized face. Therefore, in order to realize the intellectualization of the fully mechanized face, the intelligent control must be carried out for the mining and transportation cooperation process of the fully mechanized face. However, the environment of fully mechanized face is bad, and the coupling mechanism of shearer and scraper conveyor is complex. The collaborative intelligent control of mining and transportation in fully mechanized face has become one of the main factors restricting the intellectualization of the face. To solve this problem, this dissertation relies on the sub topic "Integrated and demonstration of intelligent mining safety technology in large mining height coalface" (grant No.:2017YFC0804310) of the national key research and development plan project "research and development of safety technology and equipment for intelligent mining of coal mine", and takes the collaborative intelligent control method of mining and transportation of fully mechanized mining face as the research main line, focusing on solving the problem of on-line monitoring of coal flow in fully mechanized mining face For the load prediction of scraper conveyor and the formulation of intelligent control strategy for mining and transportation coordination of fully mechanized mining face, the intelligent control method for mining and transportation coordination of working face is verified by establishing a field data acquisition system. The specific contents are as follows:
(1) The intelligent control model and framework of mining and transportation coordination in fully mechanized coal face are put forward. In view of the lack of intelligent control methods for mining and transportation coordination in fully mechanized face, this dissertation deeply analyzes the production process and load characteristics of coal flow system in fully mechanized face, determines the basic idea of mining and transportation coordination intelligent control in fully mechanized face, establishes the model and framework of mining and transportation coordination intelligent control in fully mechanized face, and gives the key problems and solutions of mining and transportation coordination intelligent control in fully mechanized face, Lay a foundation for follow-up research.
(2) Research on on-line measurement method of coal flow in fully mechanized coal face. Aiming at the problem of dynamic real-time monitoring of coal flow in fully mechanized face under dark light environment, a coal flow measurement scheme based on speckle structured light binocular vision is proposed, and a coal flow measurement device is designed and built; The Inverse Gauss Newton algorithm is used for sub-pixel matching of the coal flow speckle image sub-area to obtain the coal flow contour point cloud data of the fully mechanized mining face. Combined with the tetrahedral grid structure method, the coal flow is calculated. Finally, the performance of the proposed system is verified by the coal flow measurement experiment. The results show that the proposed method and system can accurately and quickly measure the coal flow of the scraper conveyor.
(3) Research on load forecasting method of scraper conveyor in fully mechanized mining face. In view of the inaccurate load prediction of the scraper conveyor caused by the scarcity of valuable samples and the lack of diversity of the scraper conveyor current data, by analyzing the mixing characteristics of the coal flow system in the fully mechanized face, an extended hybrid Petri net (ENPN) is proposed to build the process control ENPN model of the coal flow system in the fully mechanized face, and generate the scraper conveyor current data samples under sudden working conditions; A conditional Wasserstein antagonism generation network model based on LSTM is proposed to expand the valuable rare current data samples of scraper conveyor and establish a complete and sufficient current data set; Based on the rough idea, a rough radial basis function neural network RRBFNN model is proposed to build a scraper conveyor load prediction model.
(4) Research on intelligent control strategy of mining and transportation coordination in fully mechanized coal face. In view of the lack of intelligent control strategy of coal flow system in fully mechanized coal face, a collaborative intelligent control method based on on-line coal flow measurement and scraper conveyor load prediction is proposed. In this method, firstly, the current intensification model is established to obtain the current component that reflects the real load of the scraper conveyor in the fully mechanized mining face; Then, in view of the strong nonlinearity and spatiotemporal correlation in the multi input parameters, a random attention capsule neural network RSCAN is proposed to extract the characteristics of the coal flow system in the fully mechanized face; Finally, considering the coal flow load and coal flow, the intelligent control model of coal flow system in fully mechanized coal face based on stochastic attention capsule neural network RSCAN is established and verified by simulation. The results show that the proposed load current prediction method and the mining and transportation coordinated speed regulation method can effectively realize the load prediction of the coal flow system in the fully mechanized face and the adaptive speed regulation of the shearer.
(5) Field data validation of the intelligent control model for mining and transportation coordination in fully mechanized coal face. In order to further verify the rationality and feasibility of the intelligent control model of the coal flow system in the fully mechanized face proposed in this dissertation, relying on the equipment of the 52605 fully mechanized face in Daliuta coal mine, the coal flow data acquisition system in the fully mechanized face is constructed and the data acquisition and algorithm verification are carried out. The results show that the average error of scraper conveyor load prediction is 13.88%, and the maximum R-squared value of mining and transportation collaborative control is 0.9046;It shows that the current data generation method, the coal flow measurement method, the current load prediction method and the mining and transportation collaborative intelligent control method proposed in this dissertation are reasonable and feasible, and can effectively realize the autonomous collaborative operation of the coal flow and transportation system in the fully mechanized mining face.
The intelligent control method proposed in this dissertation provides a new solution for the autonomous cooperative operation of key equipment in fully mechanized face, and lays a foundation for the development of intelligence and less people in fully mechanized face.
 

参考文献:

[1] 刘峰,曹文君,张建明,等.我国煤炭工业科技创新进展及“十四五”发展方向[J].煤炭学报,2021,46(01):1-15.

[2] 王国法,徐亚军,张金虎,等.煤矿智能化开采新进展[J].煤炭科学技术, 2021,49(1):1-10.

[3] 胡青松,钱建生,李世银,等.再论智能煤矿建设路线——基于人工智能3.0视角[J].煤炭科学技术,2022,50(01):256-264.

[4] 黄曾华,王峰,张守祥.智能化采煤系统架构及关键技术研究[J].煤炭学报,2020, 45(06):1959-1972.

[5] 王国法,刘峰,庞义辉,等.煤矿智能化——煤炭工业高质量发展的核心技术支撑[J].煤炭学报,2019,44(02):349-357.

[6] 方原柏.国产电子皮带秤进展评述[J].工业计量,2016,2(02):24-28.

[7] 厉达,何福胜.皮带秤技术现状及发展趋势[J].衡器,2012,41(02):1-5.

[8] 段辉伟,黄志刚,蒋启富,等.电子皮带秤在线准确性研究[J].自动化与仪器仪表,2011 (05):157-158.

[9] 李萍.基于机器图像识别的散状物料动态计量系统研究[D].北京:中国矿业大学,2017.

[10] 陈湘源.基于超声波的带式输送机多点煤流量监测系统设计[J].工矿自动化,2017,43(02):75-78.

[11] Galetto M, Pralio B. Optimal sensor positioning for large scale metrology applications [J]. Precision Engineering, 2010, 34(3): 563-577.

[12] Mirahmadi A, Mansourzadeh A. A novel method for construction of a point coordinate measuring instrument using ultrasonic waves[J]. Measurement, 2011, 44(3): 539-548.

[13] 蒋林,闰继宏,减希品,等.一种新的超声波绝对定位方法[J].吉林大学学报(工学版),2009,39(01):188-193.

[14] 王桂梅,逯圣辉,刘杰辉,等.基于图像处理的带式输送机煤体积计量[J].计量学报,2020, 41(6):724-728.

[15] Moosmann F, Pinkan O and Stiller C. Segmentation of 3D Lidar Data in non-flat Urban Environment using a Local Convexity Criterion[C]. //Intelligent Vehicle Symposium (IV). Xian, 2009.

[16] Schch A, Salvadori A, Germann I, et al. High-Speed Measurement of Complex Shaped Parts at Elevated Temperature by Laser Triangulation[J]. International Journal of Automati -on Technology, 2015, 9(5): 558-566.

[17] 曾飞,吴青,初秀民,等.带式输送机物料瞬时流量激光测量方法[J].湖南大学学报(自然科学版),2015,42(02):40-47.

[18] 张小虎,欧建良,苑云,等.投影轮廓线辅助下的堆场三维形貌摄影测量研究[J].光学学报,2011,31(6):28-36.

[19] 胡而已.基于激光扫描的综放工作面放煤量智能监测技术[J].煤炭科学技术,2022, 50(02):244-251.

[20] 蒋卫良,王兴茹,刘冰,等.煤矿智能化连续运输系统关键技术研究[J].煤炭科学技术,2020,48(7):134-142.

[21] Pennington P. A Preprocessing Technique for Robot and Machine Vision[J]. Artificial Intelligence,1971,2(3):319-329.

[22] Aldrich C,Jemwa G T,Van J C,et al. Online Analysis of Coal on A Conveyor Belt by use of Machine Vision and Kernel Methods[J]. International Journal of Coal Preparation and Utilization, 2010, 30(6):331-348.

[23] Bracun D, Skulj G, et al. Spectral selective and difference imaging laser triangulation measurement system for on line measurement of large hot workpieces in precision open die forging[J]. International Journal of Advanced Manufacturing Technology,2016, 90(1-4):1-10.

[24] Shirai Y. Recognition of polyhedrons with a range finder[J]. Pattern Recognition, 1972, 4(3):243-250.

[25] Dipanda A, Woo S. Towards a real-time 3D shape reconstruction using a structured light system[J]. Pattern Recognition, 2005, 38(10):1632-1650.

[26] Young M, Beeson E, Davis J, et al. Viewpoint-Coded Structured Light[C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition. DBLP, 2007: 1-8.

[27] Wu C X, Chen B J, Ye C S. Detecting defects on corrugated plate surfaces using a differential laser triangulation method[J]. Optics and Lasers in Engineering, 2020,129:1-5.

[28] 李克伟.基于机器视觉技术的带式输送机输送量检测系统的应用与研究[D].沈阳:东北大学,2014.

[29] 张延芝.基于激光扫描技术的带式输送机非接触式输送量检测系统的应用与研究[D].沈阳:东北大学,2014.

[30] 李萍.基于机器图像识别的散状物料动态计量系统研究[D].北京:中国矿业大学,2017.

[31] 乔葳.基于机器图像识别的输送带运输物料双视点流量测量方法研究[D].太原:太原理工大学,2018.

[32] Dolipski M, Remiorz E, Sobota P. Dynamics of Non-Uniformity Loads of Afc Drives[J]. Archives of Mining Sciences,2014,59(1):155-168.

[33] Makapor M H. Mine scraper conveyor vibration of power transmission device [J]. Yro. Tb,1988,9(4):57-61.

[34] Murphy C J, Bliss R E. Study on Prediction Method of Fatigue Life for Vertical Ring of Chains Applied to Scraper Conveyor [J]. Coal Science and Technology,2012,40(7): 62-65.

[35] Sikora W. The inhomogeneity of drive device of efficient scraper conveyor[J]. Przegl. Gorn.1993(4):23-26.

[36] 毛君,曹昊,谢苗.刮板输送机稳定运行状态时负载特性分析及仿真[J].辽宁工程技术大学学报(自然科学版),2017,36(12):1298-1302.

[37] 杨伟,刘长友,杨宇,等.工作面刮板输送机稳定性分析[J].煤炭工程,2011:7-10.

[38] 高小强,杜福银,蔡爱国.变频驱动刮板输送机负载特性及调速的智能控制策略研究[J].矿山机械,2011,39(11):12-16.

[39] 贾炎,曲乃锐.基于AMESim的刮板输送机计算模型建立与研究[J].煤矿机械,2011, 18(11):53-55.

[40] 闫国嘉.采煤机装煤效率影响因素及模拟优化分析[J].能源与节能,2018 (12):20-22+80.

[41] 刘艳芳.综采工作面刮板输送机远程监控技术研究[D].徐州:中国矿业大学,2014.

[42] 王艳萍,周杨,闰超.基于改进BP神经网络的刮板输送机负载预测方法研究[J].矿山机械,2015, 43(10):17-21.

[43] Olimpiu S, Andras I, Radu S M, et al. Present situation of fully mechanized mining technology for steeply inclined coal seams in China[J]. Arabian Journal of Geosciences, 2015,8(7):4485-4494.

[44] Durucan S, Jozefowicz R, Brenkley D. Coal Mining research in the united kingdom: a Historical review[J]. Extracting the Science: A Century of Mining Research, 2010:10-22.

[45] 谢苗,毛君,许文馨.重型刮板输送机故障载荷工况与结构载荷工况的动力学仿真研究[J].中国机械工程,2012,23(10):1200-1204.

[46] Schutte A, Udwadia F. New approach to the modeling of complex multibody namical systems[J]. Journal of Applied Mechanics, 2011,78(2): 021018.

[47] 鞠亚轩,张春雨,朱仁敬,等.基于时间序列多尺度分解的建筑用电负荷预测方法[J].西南大学学报(自然科学版),2020,42(10):8-16.

[48] 李震,张思,任娴婷,等.基于数据驱动的线性聚类ARIMA长期电力负荷预测[J].科学技术与工程,2020,20(16):6497-6504.

[49] 孙超,吕奇,朱思曈,等.基于双层XGBoost算法考虑多特征影响的超短期电力负荷预测[J].高电压技术,2021,47(08):2885-2898.

[50] Zhang J J, Zhang Q, Li G L, et al. Application of HIMVO-SVM in short-term load forecasting[C]//2020 Chinese Control And Decision Conference (CCDC),August 22-24, 2020, China. Hefei:IEEE,2020:768.

[51] Chen R X,Wang Y L. A study of the weighted least squares support vector machine within the Bayesian evidence framework[C]//2016 IEEE International Conference on Aircraft Utility Systems(AUS),October 10-12,China. Beijing:IEEE,2016:616.

[52] Zeng K W, Liu J N, Wang H Z, et al. Research on adaptive selection algorithm for multi-model load forecasting based on Adaboost[C].//IOP Conference Series:Earth and Environmental Science,October 15-17,2020,China. Guiyang:IOP Publishing,2020,610(1): 012005.

[53] Bai Y, Bezak N, Sapac K, et al. Short-term streamflow forecasting using the feature- enhanced regression model[J]. Water Resources Management,2019,33(14):4783-4794.

[54] Schulz E, Speekenbrink M, Krause A. A tutorial on Gaussian process regression: modelling, exploring, and exploiting functions[J]. Journal of Mathematical Psychology, 2018,85:1-15.

[55] 王国法.法煤矿智能化最新技术进展与问题探讨[J].煤炭科学技术,2022,50(1):1-27.

[56] 王世博,葛世荣,王世佳,等.长壁综采工作面无人自主开采发展路径与挑战[J].煤炭科学技术2021,41(8):1-13.

[57] 牛剑峰.综采液压支架跟机自动化智能化控制系统研究[J].煤炭科学技术,2015, 43(12):85-91.

[58] Zhang L, Wang Z B, Tan C, et al. A fruit fly-optimized kalman filter algorithm for pushing distance estimation of a hydraulic powered roof support through tuning covariance[J]. Applied Sciences,2016,6(10):299-312.

[59] Zhang L, Zhou X M, Wang Z B, et al. A nonmodel dual-tree wavelet thresholding for image denoising through noise variance optimization based on improved chaotic drosophila algorithm[J]. International Journal of Pattern Recognition&Artificial Intelligence, 2017,31(8): 238-254.

[60] 李昊.智能化综采工作面液压支架自适应跟机关键技术研究[D].北京:中国矿业大学,2020.

[61] 尤秀松,李首滨,魏文燕.基于遗传算法与BP神经网络的支架跟机自动化研究[J].煤炭科学技术,2021,49(01):272-277.

[62] 付翔,王然风,赵阳升.液压支架群组跟机推进行为的智能决策模型[J].煤炭学报,2020,45(6):2065-2077.

[63] 陶显,林福严,张晓青,等.支架电液控制系统跟机自动化技术研究[J].煤炭科学技术,2012,40(12):84-87.

[64] 乔春光,王学文,谢嘉成,等.基于采煤机运行轨迹的刮板输送机竖直面形态解算方法[J].工程设计学报,2018,25(5):495-502.

[65] 丰岩. 薄煤层自动化工作面多机协同控制技术设计与实现[D].西安:西安科技大学,2020.

[66] Fan Q G, Li W, Wang Y Q, et al. Study on control strategy for intelligent height adjusting system of shearer[J]. Mining science on control strategy for intelligent and technology, 2010,20(6):908-912.

[67] 王凯.基于刮板输送机负载预测的采煤机调速技术研究[D].徐州:中国矿业大学,2015.

[68] 陈迪蕾,郑征,黄涛,等.基于采煤机和刮板输送机能耗模型的速度协同优化控制[J].煤炭学报,2021,4(1):1-15.

[69] 王国法,刘峰,孟祥军,等.煤矿智能化(初级阶段)研究与实践[J].煤炭科学技术,2019,47(08):1-36.

[70] 石勇,林江,崔志芳,等.综采工作面中部跟机自动化控制的数学模型[J].工矿自动化,2016,42(11):14-19.

[71] 路正雄,郭卫,张帆,等.基于数据驱动的综采装备协同控制系统架构及关键技术[J].煤炭科学技术,2020,48(07):195-205.

[72] 郭卫,贺海涛,赵青青,等.智能Petri网的综采煤流负载平衡自适应控制系统构建[J].西安科技大学学报,2020,40(06):1071-1080.

[73] 陆刚,孙宇博,叶怀珍.综采面生产过程的混合Petri网建模与仿真[J].矿业研究与开发,2013,33(02):100-104.

[74] 李旺年. 基于虚拟现实技术的综采“三机”联动过程仿真[D].西安:西安科技大学,2014.

[75] 李提建.综采工作面三机运动模拟关键技术[J].煤矿机械,2011,32(03):66-68.

[76] 潘涛,徐会军.一种基于GIS建模的综采工作面自动化采煤方法[J].煤田地质与勘探,2018,46(S1):89-92.

[77] Zhou X, Wang Z, Tan C, et al. A novel approach for shearer memory cutting based on fuzzy optimization method[J]. Advances in Mechanical Engineering, 2013,12(4): 319272 -319272.

[78] Xie J C, Yang Z, Wang X, et al. A virtual reality collaborative planning simulator and its method for three machines in a fully mechanized coal mining face[J]. Arabian Journal for Science and Engineering,2018,43(8):4835-4854.

[79] Gamal M, Mahmoud E, et al. Complete synchronization of chaotic complex nonlinear systems with uncertain parameters[J]. Nonlinear Dynamics, 2010,28(5): 713-728.

[80] Mahmoud G M, Mahmoud E E. Phase and antiphase synchronization of two identical hyperchaotic complex nonlinear systems[J]. Nonlinear Dynamics, 2009, 61(1):141-152.

[81] Mahmoud G M, Mahmoud E E. Lag synchronization of hyperchaotic complex nonlinear systems[J]. Nonlinear Dynamics, 2011, 21(2):2369-2379.

[82] Song R, Xiao W, Zhang H, et al. Adaptive Dynamic Programming for a Class of Complex-Valued Nonlinear Systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(9):1733-1739.

[83] 朱大业,丁晓红,王神龙,等.基于支持向量机模型的复杂非线性系统试验不确定度评定方法[J].机械工程学报,2018,54(08):177-184.

[84] 崔亚辉,刘占生,叶建槐,等.内外激励作用下含侧隙的齿轮传动系统的分岔和混沌[J].机械工程学报,2010,46(11):129-136.

[85] 崔亚辉,谭喜峰,齐焕敏.大客车侧面碰撞建模与仿真分析[J].机械设计与制造,2019(10):222-225.

[86] 杜贞斌,胡寿松.非线性系统的模糊混合H_2/H_∞采样控制[J].控制与决策,2017,32(05):930-934.

[87] 周攀,陈仁良,俞志明.倾转四旋翼飞行器直升机模式操纵策略研究[J].航空动力学报,2021,36(10):2036-2051.

[88] 李太福,廖志强,辜小花,等.基于BPNN与ISPEA的工业决策参数稳健优化[J].控制工程,2015,22(04):742-746.

[89] 张志军.三次采油用改性石油磺酸钠的合成与性能研究[D].大连:大连理工大学,2009.

[90] 刘德馨. 非线性系统多模型自适应控制方法研究[D].北京:北京科技大学,2015.

[91] 孙国法,魏巍.一类严格反馈系统变比例增益精确微分补偿控制[J].控制与决策,2020,35(06):1490-1496.

[92] Plate R. Assessing individuals' understanding of nonlinear causal structures in complex systems[J]. System Dynamics Review, 2010, 26(1):19-33.

[93] Mahmoud G M, Bountis T. The Dynamics of Systems of Complex Nonlinear oscillators: A Review[J]. International Journal of Bifurcation & Chaos, 2004, 14(11):3821-3846.

[94] Wang W, Lai Y C, Grebogi C. Data based identification and prediction of nonlinear and complex dynamical systems[J]. Physics Reports, 2016,644:1-76.

[95] Gamal M. Complex modified projective synchronization of two chaotic complex nonlinear systems[J]. Nonlinear Dynamics, 2013, 73(4):2231-2240.

[96] Aghababa P M. No-chatter variable structure control for fractional nonlinear complex systems[J]. Nonlinear Dynamics, 2013, 73(4):2329-2342.

[97] Aghababa P M. Synchronization and stabilization of fractional second-order nonlinear complex systems[J]. Nonlinear Dynamics, 2015, 80(4):1731-1744.

[98] Bolourchi A, Masri S F, Aldraihem O J. Development and application of computational intelligence approaches for the identification of complex nonlinear systems[J]. Nonlinear Dynamics, 2014, 79(2):765-786.

[99] Tao F, Sun J. Existence and uniqueness of solutions to complex-valued nonlinear impulsive differential systems[J]. Advances in Difference Equations, 2012, 2012(1):115.

[100] Barnett W, Serletis A, Serletis D. Nonlinear and Complex Dynamics in Real Systems[J]. International Journal of Nonlinear Sciences & Numerical Simulation, 2006, 7(2):191 -196.

[101] 文成馀,江驹,余朝军,等.高超声速飞行器快速平滑自适应二阶滑模控制[J].哈尔滨工业大学学报,2020,52(12):35-41.

[102] 王飞跃.智能控制五十年回顾与展望:傅京孙的初心与萨里迪斯的雄心[J].自动化学报,2021,47(10):2301-2320.

[103] 庞义辉,王国法,任怀伟.智慧煤矿主体架构设计与系统平台建设关键技术[J].煤炭科学技术,2019,47(03):35-42.

[104] Treesatayapun, C. Stabilized adaptive controller based on direct IF-THEN knowledge of electronic systems for PWM drivers[J]. Electrical Engineering, 2016,98(1) :77-85.

[105] Sugie T, Ono T. An iterative learning control law for dynamical systems[J]. Automatica, 1991,27(4):729-732.

[106] Rizzo L, Longo L. Multi-agent distributed model predictive control with fuzzy negotiation[J]. Journal of Robotics & Machine Learning, 2019,36(8):121-136.

[107] 程健,祖丰收,王东伟,等.露天储煤场无人机自动盘煤系统研究[J].煤炭科学技术,2016,44(05):160-165.

[108] 毛君,曹昊,谢苗.刮板输送机稳定运行状态时负载特性分析及仿真[J].辽宁工程技术大学学报(自然科学版),2017,36(12):1298-1302.

[109] Pedraza L F, Hernández H A, Hernández C.A. Artificial neural network controller for a modular robot using a software defined radio communication system[J]. Electronics, 2020,9(10):1626-1636.

[110] DiDomenico A, Nussbaum M A. Interactive effects of physical and mental workload on subjective workload assessment[J]. International Journal of Industrial Ergonomics, 2008, 38(11):977-983.

[111] Zhang C,Kannan R.Generative adversarial network for synthetic time series data generation in smart grids[C]. //2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids.Aalborg, Denmark: IEEE, 2018:1-6.

[112] 董骁翀,孙英云,蒲天骄.基于条件生成对抗网络的可再生能源日前场景生成方法[J].中国电机工程学报,2020,40(17):5527-5536.

[113] Yang F, Yin S, Zhou S, et al. Electric vehicle charging current scenario generation based on generative adversarial network combined with clustering algorithm[J]. International Transactions on Electrical Energy Systems. 2021,31(8):e12971.

[114] Wang Y, Hug G, Liu Z, et al. Modeling load forecast uncertainty using generative adversarial networks[J]. Electric Power Systems Research, 2020,189:106732.

[115] Yamaguchi I. Speckle Displacement and Decorrelation in the Diffraction and Image Fields for Small Object Deformation[J]. Journal of Modern Optics,1981,28(10):1359- 1376.

[116] Wu R, Kong C, Li K, et al. Real Time Digital Image Correlation for Dynamic Strain Measurement[J]. Experimental Mechanics, 2016, 56(5):833-843.

[117] Ghorbani R, Matta F and Sutton M A. Full field deformation measurement and crack mapping on confined masonry walls using digital image correlation[J]. Experimental Mechanics, 2015,55(1):227-243.

[118] Tsai R Y. A versatile camera Calibration technique for high2accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses[J]. IEEE Journal of Robotics and Automation,1987,ra23(4):323-344.

[119] Quan C,Tay C J , He X Y,et al. Microscopic surface contouring by fringe projection method[J]. Optics&Laser Technology, 2002, 34(7):547-552.

[120] Greitans M, Shavelis R. Reconstruction of Sequences of Arbitrary shaped Pulses from its Low-Pass or Band-Pass Approxiamations Using Spectrum Extrapolation[C]. //IEEE European Signal Processing Conference. 2010:1607-1611.

[121] Nefti-Meziani S,Manzoor U,Davis S,et al. 3D perception from binocular vision for a low cost humanoid robot NAO[J].Robotics&Autonomous Systems,2015, 68:129-139.

[122] Su Z, Lu L, He X. Recursive iterative digital image correlation based on salient features[J].Optical Engineering, 2020,5(3):03411.

[123] 苏勇,张青川,伍小平.数字图像相关技术的一些进展[J].中国科学:物理学,力学,天文学,2018,48(09):23-47.

[124] Pan, B. Reliability guided digital image correlation for image deformation measur -ement[J]. Applied Optics, 2009, 48(8):1535-1548.

[125] Dana S, Kevin M M, et al. MultiDIC:an Open-Source 3D Digital Image Correlation[J]. IEEE Access, 2018,Toolbox for Multi View 99(6):30520-30535.

[126] Du W L, Li X Y, Ye B. A Fast Dense Feature-Matching Model for Cross-Track Push broom Satellite Imagery[J].Sensors, 2018,18(12):4182-4195.

[127] Huttunen K, Keranen H, Vayrynen E, et al. Effect of cognitive load on speech prosody in aviation: Evidence from military simulator flights[J].Applied ergonomics, 2011,42(2): 348-357.

[128] Bugarin A J, Barro S. Fuzzy reasoning supported by Petri nets[J]. IEEE Trans. Fuzzy Systems, 1994(2):135-150.

[129] Garg M L, Ashon S I, Gupta P V. A fuzzy Petri net for knowledge representation and reasoning [J]. Inform. Process.Lett,1991(39):165-171.

[130] Scarpelli H, Gomide F. A high-level fuzzy net approach for discovering potential inconsistencies in fuzzy knowledge bases [J]. Fuzzy Sets and Systems,1994(64):175- 193.

[131] 孙宇博,陆刚,叶怀珍.综采面生产过程的混合Petri网建模与仿真[J].矿业研究与开发,2013,33(02):100-104.

[132] 孔令东,张虹,朱玉.基于模糊Petri网的瓦斯突出空间模型[J].计算机工程与应用,2009,45(22):244-248.

[133] 曹春玲,高文星,李咪,等.基于随机Petri网的井下连续运输系统可靠性研究[J].煤矿机械,2020,41(05):180-183.

[134] Pekin M. Infrasound monitoring in the Vestfold[J]. Australian Antarctic Magazine, 2017, (32): 4-15.

[135] Fatemeh Fahimi, Zhuo Wooi Boon Goh, et al. EEG Using GANs for BCI Applications[C]. //IEEE EMBS International Conference on Biomedical&Health Informatics, 2019.

[136] Hartmann K G, Schirrmeister R T, Ball T. EEG-GAN: Generative adversarial networks for electroencephalograhic(EGG) brain signals[J].2018.28(04):90-102.

[137] 朱纯,王翰林,魏天远,等. 基于深度卷积生成对抗网络的语音生成技术[J].仪表技术, 2018(2):4-11.

[138] Jiang C M, Mao Y F, Chai Y, et al.Scenario generation for wind power using improved generative adversarial networks[J]. IEEE Access,2018,6:62193-62203.

[139] Zhang H X, Xu R Q, Cheng L L, et al.Residential load forecasting based on LSTM fusing self-attention mechanism with pooling[J]. Energy, 2021,229:120682.

[140] Peng X G, Hu S F and Lv D Y. Review on grid short-term load forecasting methods based on RBF neural network[J]. Power System Protection and Control, 2011,39(17) :144-148.

[141] Han H G, Qiao J F and Bo Y C. On structure design for RBF neural network based on information strength[J]. ACTA AUTOMATICA SINICA, 2012, 38(7):1083-1090.

[142] Meng A B, Hu H W and Liu X D. Short-term load forecasting using neural network based on wavelets and crisscross optimization algorithm[J]. Power System Protection and Control, 2016, 44(7):102-106.

[143] 肖丰,张彼德,孙文成,等.一种融合电气量和开关量的电网Petri网故障诊断方法[J].电力科学与技术学报,2022,37(01):113-121.

[144] 吴哲辉.有界Petri网的活性和公平性的分析与实现[J].计算机学报,1989,012(004): 267-278.

[145] 尹久, 曹华军, 杜彦斌. 基于扩展一阶混合Petri网的机械制造系统碳流动态建模方法[J]. 机械工程学报, 2011, 47(23):9-18.

[146] 李惠峰,周锐,陈宗基.混合Petri网及其可达性分析[J].北京航空航天大学学报,2000(02):149-152.

[147] 曹树刚,齐庆杰.矿井生产运输系统的随机模拟[J].重庆大学学报(自然科学版),1990(04):97-103.

[148] 屠世浩,张先尘,徐永圻,等.高产高效矿井煤流采运系统分析[J].中国矿业大学学报,1997(01):41-44.

[149] Goodfellow I, Pouget J, Mirza M, et al.Generative adversarial nets[C]. //Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press,2014: 2672-2680.

[150] Guo Z J, Wan Y M, Ye H.A data imputation method for multivariate time series based on generative adversarial network[J].Neurocomputing,2019,360:185-197.

[151] Kong W, Dong Z Y, Hill D J, et al.Short-term residential load forecasting based on resident behavior learning[J].IEEE Transactions on Power Systems,2018,33(1):1087- 1088.

[152] Singh S P, Kumar A, Darbari H, et al.Machine translation using deep learning: an overview[C]//International Conference on Computer, Communications and Electronics, IEEE,2017:162-167.

[153] Greff K, Srivastava R K, Koutnik J, et al. LSTM:a search space odyssey[J]. IEEE Transactions on Neural Networks & Learning Systems,2016,28(10):2222-2232.

[154] 管一臣,童攀,冯志鹏.基于ICEEMDAN方法和频率解调的行星齿轮箱故障电流信号特征分析[J].振动与冲击,2019,38(24):41-47.

[155] Hassan Y F. Rough sets for adapting wavelet neural networks as a new classifier system[J].Applied Intelligence, 2011, 35(2):260-268.

[156] 何群,赵婧怡,江国乾,等.基于电流信号稀疏滤波特征融合的齿轮箱故障诊断方法[J].电网技术,2020,44(05):1964-1971.

[157] 张根,丁小辉,杨骥,等.基于多尺度自适应胶囊网络的高光谱遥感分类[J].激光与光电子学进展,2021,12(7),1-19.

[158] 马云飞,贾希胜,胡起伟,等.基于小波包频带稀疏编码的非完备信息条件下轴承状态识别[J].振动与冲击,2021,40(23):288-294.

[159] Dhanabal L, Shantharajah S P. A study on NSL-KDD dataset for intrusion detection system based on classification algorithms[J]. International Journal of Advanced Research in Computer and Communication Engineering, 2015, 4(6): 446-452.

[160] Lu Z X, Guo W, Zhang C, et al. A Novel Intelligent Decision-Making Method of Shearer Drum Height Regulating Based on Neighborhood Rough Reduction and Selective Ensemble Learning[J]. IEEE Access, 2021,9(1),46545-46559.

[161] Li Z C, Li T, Yan X F. A novel deep quality-supervised regularized autoencoder model for quality-relevant fault detection[J]. Science China Information Sciences,2021,65(5): 1-3.

[162] Zhong Z, Li J, Clausi D A, et al. Generative adversarial networks and conditional random fields for hyperspectral image classification[J]. IEEE Transactions on Cybemet -ics,2020,50(7):3318-3329.

[163] Jahangir H, Tayarani H, Baghali S, et al. A Novel Electricity Price Forecasting Approach Based on Dimension Reduction Strategy and Rough Artificial Neural Networks[J]. IEEE Transactions on Industrial Informatics, 2019, 19(99):1-11.

[164] Cruz R, Souza M, Sabourin R, et al. Dynamic Ensemble Selection and Data Prepro -cessing for Multi-Class Imbalance Learning[J]. International Journal of Pattern Recognition & Artificial Intelligence,2019,33(11):238-251.

[165] 田新华, 冯润明, 翁干飞,等. 一种将Simulink/Stateflow模型改造成HLA成员的方法[J].系统仿真学报,2002,14(7):5-12.

[166] Liu X D, Zhang L, Zhang Z R, Zhao T, Zou L. Ultra-short-term wind power prediction model based on VMD decomposition and LSTM[J]. Earth and Environmental Science, 2021,838(1):1-6.

中图分类号:

 TD528    

开放日期:

 2024-07-11    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式