论文中文题名: | CO2驱替置换煤层CH4压力效应作用机制及关键技术参数研究 |
姓名: | |
学号: | 17120089012 |
保密级别: | 保密(2年后开放) |
论文语种: | chi |
学科代码: | 083700 |
学科名称: | 工学 - 安全科学与工程 |
学生类型: | 博士 |
学位级别: | 工学博士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 矿井瓦斯灾害防治 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2023-06-19 |
论文答辩日期: | 2023-06-05 |
论文外文题名: | Study on mechanism of pressure effect and key technical parameters of CO2 displacing and replacing coal seam CH4 |
论文中文关键词: | |
论文外文关键词: | Gas extraction ; Carbon dioxide ; Displacement and replacement ; Pressure effect ; Key technical parameter |
论文中文摘要: |
<p>我国煤层渗透率普遍较低,原始煤层瓦斯抽采困难,因此常用人工增透和瓦斯解吸技术提高抽采效率。CO<sub>2</sub>驱替置换煤层CH<sub>4</sub>具有渗流驱替及置换解吸的双重作用,是一项具备工程应用潜力的瓦斯强化抽采技术。然而,由于工程实践中未充分考虑目标驱替煤层本身变质程度和原始瓦斯压力等赋存条件,以及实施过程中的关键技术参数对驱替效果的影响,导致现场瓦斯抽采效果不甚理想。揭示CO<sub>2</sub>驱替置换煤层CH<sub>4</sub>的作用机制,确定影响瓦斯抽采效果的关键技术参数,并掌握关键技术参数对驱替置换效果的影响规律,对于CO<sub>2</sub>驱替置换煤层CH<sub>4</sub>技术的推广应用具有重要科学意义和应用价值。</p>
<p>鉴于此,论文采用理论分析、物理相似模拟、数值模拟及工程试验相结合的研究方法,围绕CO<sub>2</sub>与CH<sub>4</sub>竞争吸附过程中的合理置换压力、CO<sub>2</sub>驱替煤层CH<sub>4</sub>过程中的合理驱替压力与驱替效果定量指标、煤层中CO<sub>2</sub>渗透系数的变化规律与渗流影响半径等主要内容进行了系统地研究,确定煤层注CO<sub>2</sub>驱替置换CH<sub>4</sub>的关键技术参数,最终通过工程试验进行效果检验。取得的主要研究成果如下:</p>
<p>(1)通过开展不同变质程度煤样CH<sub>4</sub>、CO<sub>2</sub>等温吸附实验,得出煤样对CH<sub>4</sub>、CO<sub>2</sub>等温吸附特性曲线,明确了不同煤样CH<sub>4</sub>与CO<sub>2</sub>吸附量差异;依据吸附势理论,构建了煤样对CH<sub>4</sub>、CO<sub>2</sub>吸附势与吸附空间的量化对应关系,确定了CO<sub>2</sub>置换不同变质程度煤层CH<sub>4</sub>的合理置换压力阈值:无烟煤(2.3~4.3MPa)、焦煤(0.5~2.5MPa)、弱粘煤(3.8~7.0MPa)、长焰煤(0.5~0.9MPa),在合理置换压力阈值内,CO<sub>2</sub>置换煤层CH<sub>4</sub>效果显著。</p>
<p>(2)开展了不同驱替压力条件下煤层(弱粘煤)注CO<sub>2</sub>驱替CH<sub>4</sub>物理模拟实验,分析了CO<sub>2</sub>驱替煤层CH<sub>4</sub>过程中气体浓度变化规律,明确了驱替效果的定量指标;结合驱替压力与驱替效率及驱替置换比之间的关系,确定了CO<sub>2</sub>驱替煤层CH<sub>4</sub>过程中的合理驱替压力阈值(>3.75MPa);综合合理置换压力和合理驱替压力,确定了合理的注入压力阈值为3.8~7.0MPa。基于驱替置换比及钻孔周边的CO<sub>2</sub>含量分布规律,提出了CO<sub>2</sub>驱替煤层CH<sub>4</sub>钻孔合理压注量的确定方法。</p>
<p>(3)开展了CO<sub>2</sub>在煤样中的渗流实验,掌握了煤层中CO<sub>2</sub>的渗透系数对注入压力的响应规律,得到CO<sub>2</sub>渗透系数随着注入压力的增加呈现先减小后增大的趋势,证明煤层中CO<sub>2</sub>渗透系数变化过程中存在合理压力梯度;开展了CO<sub>2</sub>在煤层中的渗流特性原位试验,得到CO<sub>2</sub>渗透系数变化规律与渗流实验中的基本一致。</p>
<p>(4)构建了CO<sub>2</sub>驱替煤层CH<sub>4</sub>渗流扩散数值模型,研究驱替过程中CO<sub>2</sub>和CH<sub>4</sub>浓度变化规律,验证了数值模型的可靠性;进行了煤层注CO<sub>2</sub>驱替CH<sub>4</sub>的数值模拟计算,明确了驱替压力与CO<sub>2</sub>渗流影响半径的对应关系:驱替压力为5.0~8.0MPa,CO<sub>2</sub>渗流影响半径为22.0~25.0m;此结论验证了通过吸附特性和驱替效果综合确定的注入压力阈值的合理性。</p>
<p>(5)基于对CO<sub>2</sub>驱替置换CH<sub>4</sub>过程中置换压力、驱替压力和CO<sub>2</sub>渗流特性的研究,综合确定了合理注入压力、钻孔合理压注量、CO<sub>2</sub>渗流影响半径及钻孔封孔指标等关键技术参数,开展了高瓦斯煤层顺层钻孔CO<sub>2</sub>驱替置换煤层CH<sub>4</sub>工程试验,并通过瓦斯抽采效果考察了关键技术参数的合理性。</p>
<p>(6)通过工程试验的效果考察,对关键技术参数进行优选,确定了适合黄陵双龙煤矿顺层钻孔注CO<sub>2</sub>驱替置换煤层CH<sub>4</sub>的关键技术参数:合理注入压力阈值为5.8~7.0MPa;压注孔与抽采孔布置间距为20~30m;钻孔合理压注量为8.0~10.4m<sup>3</sup>。CO<sub>2</sub>驱替置换煤层CH<sub>4</sub>技术的实施,为煤层瓦斯高效抽采提供了新的工艺方法。</p>
﹀
|
论文外文摘要: |
<p>The low permeability of coal seams in China leads to the difficulties in original coal seam gas extraction. Therefore, artificial permeability enhancement and gas desorption technology were commonly used to improve extraction efficiency. CO<sub>2</sub> displacement and replacement of CH<sub>4</sub> in coal seams has the dual effects of seepage displacement and replacement desorption. It is a gas enhanced extraction technology with engineering application potential. However, due to the lack of full consideration of the occurrence conditions such as the metamorphic degree of the target displacement coal seam and the original gas pressure in the engineering practice, as well as the influence of the key technical parameters in the implementation process on the displacement effect, the field gas extraction effect was not ideal. It is of great scientific significance and application value for the popularization and application of CO<sub>2</sub> displacement and replacement of coal seam CH<sub>4</sub> technology to reveal the mechanism of CO<sub>2</sub> displacement and replacement of coal seam CH<sub>4</sub>, determine the key technical parameters affecting gas extraction effect, and master the influence law of key technical parameters on displacement and replacement effect.</p>
<p>In view of this, this paper adopted the research methods of theoretical analysis, physical similarity simulation, numerical simulation and engineering test, and systematically studies the reasonable displacement pressure in the process of competitive adsorption of CO<sub>2</sub> and CH<sub>4</sub>, the reasonable displacement pressure and displacement effect quantitative index in the process of CO<sub>2</sub> displacing coal seam CH<sub>4</sub>, the variation law of CO<sub>2</sub> permeability coefficient in coal body and the influence radius of seepage. The key technical parameters of CH<sub>4</sub> displacement by CO<sub>2</sub> injection in coal seam were determined, and the effect was tested by engineering experiment. The main research results are as follows:</p>
<p>(1) By conducting CH<sub>4</sub> and CO<sub>2</sub> isothermal adsorption experiments on coal samples with different metamorphic degrees, the adsorption characteristics curves o for CH<sub>4</sub> and CO<sub>2</sub> are obtained, and the difference in adsorption capacity between CH<sub>4</sub> and CO<sub>2</sub> for different coal samples was clarified. Based on the adsorption potential theory, a quantitative correspondence between the adsorption potential and adsorption space of coal samples for CH<sub>4</sub> and CO<sub>2</sub> was established. The reasonable threshold for the displacement pressure of CO<sub>2</sub> in different metamorphic coal seams was determined: anthracite (2.3-4.3MPa), coking coal (0.5-2.5MPa), weakly caking coal (3.8-7.0MPa), long flame coal (0.5-0.9MPa). Within the reasonable replacement pressure threshold, the effect of CO<sub>2</sub> replacing CH<sub>4</sub> in coal seams is remarkable.</p>
<p>(2) The physical simulation experiment of CO<sub>2</sub> displacement CH<sub>4</sub> in coal seam (weak viscous coal) under different displacement pressure conditions was carried out, and the change law of gas concentration in the process of CO<sub>2</sub> displacement of CH<sub>4 </sub>in coal seam was analyzed, and the quantitative index of displacement effect was clarified. Combined with the relationship between displacement pressure, displacement efficiency and displacement ratio, the reasonable displacement pressure threshold (>3.75MPa) in the process of CO<sub>2 </sub>displacement of coal seam CH<sub>4 </sub>was determined, and the reasonable injection pressure threshold was determined to be 3.8~7.0MPa by comprehensively treating the displacement pressure and reasonable displacement pressure. Based on the displacement ratio and the distribution of CO<sub>2</sub> content around the borehole, a method for determining the reasonable pressure injection amount of CH<sub>4</sub> drilling hole in CO<sub>2</sub> displacement coal seam was proposed.</p>
<p>(3) The seepage experiment of CO<sub>2</sub> in coal samples was carried out, and the response law of the permeability coefficient of CO<sub>2 </sub>in coal to the injection pressure was mastered, and the permeability coefficient of CO<sub>2 </sub>showed a trend of decreasing first and then increasing with the increase of injection pressure, which proved that there was a reasonable pressure gradient during the change of CO<sub>2</sub> permeability coefficient in coal. The seepage characteristic of CO<sub>2</sub> in coal seam was tested in situ, and the change law of CO<sub>2</sub> permeability coefficient was basically consistent with that in the seepage experiment.</p>
<p>(4) The numerical model of CO<sub>2</sub> displacing CH<sub>4</sub> seepage and diffusion was constructed to study the variation of CO<sub>2</sub> and CH<sub>4</sub> concentration during the displacement process, and the reliability of the numerical model was verified. We conducted numerical simulations of CO<sub>2</sub> injection in coal seams to displace CH<sub>4</sub> in coal seams, mastered the laws of the CO<sub>2</sub> seepage, and clarified the relationship between displacement pressure and the radius of influence of seepage flow: the displacement pressure is 5.0-8.0MPa, and the CO<sub>2</sub> seepage influence radius is 22.0-25.0m; this conclusion verifies the rationality of the injection pressure threshold determined by the combination of adsorption characteristics and displacement effect.</p>
<p>(5) Based on the research on the displacement pressure, displacement pressure and CO<sub>2</sub> seepage characteristics during the process of CO<sub>2</sub> displacement and CH<sub>4</sub> displacement, the key technical parameters such as reasonable injection pressure, reasonable pressure injection amount of borehole, radius of influence of CO<sub>2</sub> seepage and borehole sealing index were comprehensively determined, and the CH<sub>4</sub> engineering test of CO<sub>2 </sub>displacement coal seam was carried out along the high gas coal seam, and the rationality of key technical parameters was investigated by gas extraction effect.</p>
<p>(6) Through the evaluation of the effect of engineering test and the optimization of key technical parameters, the key technical parameters suitable for the CO<sub>2</sub> displacement and replacement technology of coal seam CH<sub>4</sub> in the Huangling Shuanglong Coal Mine were determined: the reasonable injection pressure threshold is 5.8-7.0MPa; The spacing between injection holes and extraction holes is 20-30m; The reasonable injection volume threshold is 8.0-10.4m<sup>3</sup>. The implementation of the technology of replacing coal seam CH<sub>4</sub> by CO<sub>2</sub> displacement provides a new process method for efficient extraction of coal seam gas.</p>
﹀
|
参考文献: |
谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J].煤炭学报, 2019, 44(7): 1949-1960. 中矿(北京)煤炭产业景气指数研究课题组, 吴吟. 2022-2023年中国煤炭产业经济形势研究报告[J]. 中国煤炭, 2023, 49(3): 2-10. 景国勋, 刘孟霞. 2015-2019年我国煤矿瓦斯事故统计与规律分析[J]. 安全与环境学报, 2022, 22(3): 1680-1686. 张培森, 李复兴, 朱慧聪, 等. 2008-2020年煤矿事故统计分析及防范对策[J]. 矿业安全与环保, 2022, 49(1): 128-134. 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报, 2016, 41(1): 1-6. 范维澄, 苗鸿雁, 袁亮, 等. 我国安全科学与工程学科“十四五”发展战略研究[J]. 中国科学基金, 2021, 35(6): 864-870. 刘峰, 曹文君, 张建明, 等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报, 2021, 46(1): 1-15. 吴财芳, 曾勇, 秦勇. 煤与瓦斯共采技术的研究现状及其应用发展[J]. 中国矿业大学学报, 2004(2): 13-16. 谢和平, 任世华, 谢亚辰等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报, 2021, 46(7): 2197-2211. 王恩元, 张国锐, 张超林, 等. 我国煤与瓦斯突出防治理论技术研究进展与展望[J]. 煤炭学报, 2022, 47(1): 297-322. 彭苏萍. 建设“煤炭资源强国”的战略思考[J]. 煤炭经济研究, 2017, 37(11): 1. 李志凯, 秦张峰, 吴志伟, 等. 煤层气治理与利用技术研究开发进展[J]. 燃料化学学报, 2013, 41(7): 787-797. 袁欣鹏, 梁冰, 孙维吉, 等. 煤层群覆岩裂隙带煤与瓦斯共采协同机制研究[J]. 中国矿业大学学报, 2020, 49(2): 289-295. 李树刚, 林海飞, 赵鹏翔, 等. 采动裂隙椭抛带动态演化及煤与甲烷共采[J]. 煤炭学报, 2014, 39(8): 1455-1462. 袁亮. 我国煤炭主体能源安全高质量发展的理论技术思考[J]. 中国科学院院刊, 2023, 38(1): 11-22. 吴教锟. 基于应力分带特征的顺层钻孔合理封孔深度研究[J]. 矿业安全与环保, 2017, 4(1): 62-65. 孟然, 徐经苍, 魏攀, 等. 顺层瓦斯抽放钻孔渗流场数值模拟及应用[J]. 西安科技大学学报, 2015, 35(5): 561-566. 郑乃国. 低透气性薄煤层地面钻孔抽放瓦斯技术研究[J]. 煤炭技术, 2021, 40(2): 127-129. 郭德勇, 张超, 朱同功, 等. 深孔聚能爆破起爆位置对煤层致裂增透的影响[J]. 煤炭学报, 2021, 46(S1): 302-311. 黄文尧, 颜事龙, 刘泽功, 等. 煤矿瓦斯抽采水胶药柱在煤层深孔爆破中的研究与应用[J]. 煤炭学报, 2012, 37(3): 472-476. 姜永东, 李业, 崔悦震, 等. 声场作用下煤储层渗透性试验研究[J]. 煤炭学报, 2017, 42(S1): 154-159. 林海飞, 韩双泽, 杨二豪, 等. 脉冲超声对煤的孔隙结构及瓦斯解吸特性影响的实验研究[J]. 采矿与安全工程学报, 2022, 39(6): 1235-1245. 胡国忠, 杨南, 朱健, 等. 微波辐射下含水分煤体孔渗特性及表面裂隙演化特征实验研究[J]. 煤炭学报, 2020, 45(S2): 813-822. 王兆丰, 周大超, 李豪君, 等. 液态CO2相变致裂二次增透技术[J]. 河南理工大学学报(自然科学版), 2016, 35(5): 597-600. 杨宏民, 梁龙辉. 等压扩散下CO2对不同变质程度煤中CH4置换效应的影响[J]. 煤田地质与勘探, 2018, 46(5): 55-59+65. 卢义玉. 页岩超临界CO2压裂起裂压力与裂缝形态试验研究[J]. 煤炭学报, 2018, 43(1): 175-180. 黎力, 梁卫国, 李治刚, 等. 注热CO2驱替增产煤层气试验研究[J]. 煤炭学报, 2017, 42(8): 2045-2051. 蔡银英, 程建圣, 程波. 基于时变扩散系数的圆柱体煤屑的瓦斯放散规律研究[J]. 矿业安全与环保, 2020, 47(3): 32-36. 侯鹏, 高峰, 高亚楠, 等. 脉冲气压疲劳对原煤力学特性及渗透率的影响[J]. 中国矿业大学学报, 2017, 46(2): 257-264. 龙泳翰, 张磊, 李菁华, 等. 注气驱替机理研究现状及展望[J]. 矿业安全与环保, 2023, 50(1): 103-108+114. 林海飞, 黄猛, 李志梁, 等. 注气驱替抽采瓦斯技术在高瓦斯突出矿井煤巷掘进中的试验[J]. 矿业安全与环保, 2016, 43(3): 10-12. 吴迪, 刘雪莹, 孙可明, 等. 热力作用下煤层注CO2驱替CH4试验研究[J]. 煤炭学报, 2016, 41(1): 162-166. 凡永鹏, 霍中刚, 赵晶, 等. 煤的表面自由能随瓦斯抽采的变化规律[J]. 煤矿安全, 2021, 52(12):15-20. 桑树勋, 朱炎铭, 张井, 等. 煤吸附气体的固气作用机理(Ⅱ)-煤吸附气体的物理过程与理论模型[J]. 天然气工业, 2005(1): 16-18+21-205. 李明, 顾安忠, 鲁雪生, 等. 吸附势理论在甲烷临界温度以上吸附中的应用[J]. 天然气化工, 2003(5): 28-31. 李祥春, 张梦婷, 李忠备, 等. 气体吸附过程中煤比表面Gibbs函数变化规律[J]. 煤炭学报, 2019, 44(2): 509-519. 崔永君. 煤对CH4、N2、CO2及多组分气体吸附的研究[D]. 西安: 煤炭科学研究总院, 2003. 罗明坤, 李胜, 荣海, 等. CH4与N2, CO2间竞争吸附关系的核磁共振实验研究[J]. 煤炭学报, 2018, 43(2): 490-497. 张庆贺, 刘文杰, 李宁, 等. CH4和CO2及其多元气体在淮南C13煤中的吸附特性试验研究[J]. 煤矿安全, 2019, 50(8): 14-17. 马东民, 李来新, 李小平, 等. 大佛寺井田4号煤CH4与CO2吸附解吸实验比较[J]. 煤炭学报, 2014, 39(9): 1938-1944. 林海飞, 蔚文斌, 李树刚, 等. 煤体吸附CH4及CO2热力学特性试验研究[J]. 中国安全科学学报, 2018, 28(6): 129-134. 袁瑞甫, 魏晓, 刘银先. 高温条件下煤对CO2的吸附解吸特性实验研究[J]. 中国科技论文, 2017, 12(21): 2457-2463. 王延斌, 陶传奇, 倪小明, 等. 基于吸附势理论的深部煤储层吸附气量研究[J]. 煤炭学报, 2018, 43(6): 1547-1552. 苏现波, 林萌, 林晓英, 等. 吸附势理论在煤层甲烷吸附中的应用[J]. 中国煤层气, 2006(02): 28-30. 姜伟, 吴财芳, 姜玮, 等. 吸附势理论在煤层气吸附解吸研究中的应用[J]. 煤炭科学技术, 2011, 39(5): 102-104. 苏现波, 宋金星, 郭红玉, 等. 煤矿瓦斯抽采增产机制及关键技术[J]. 煤炭科学技术, 2020, 48(12): 1-30. 张磊, 李菁华, 郭鲁成, 等. 含瓦斯烟煤CO2置换吸附行为与形变特性研究[J]. 中国矿业大学学报, 2022, 51(5): 901-913. 李菁华, 张磊, 薛俊华, 等. 注气驱替中CO2置换煤体CH4行为特性[J]. 煤炭学报, 2021, 46(S1): 385-395. 杨天鸿, 陈立伟, 杨宏民, 等. 注二氧化碳促排煤层瓦斯机制转化过程实验研究[J]. 东北大学学报(自然科学版), 2020, 41(5): 623-628. 耿晓伟, 阎晶雪. 注气条件对CO2置换驱替CH4影响的实验研究[J]. 中国安全生产科学技术, 2021, 17(11): 79-84. 白刚, 周西华, 魏士平, 等. 低渗煤层注CO2增抽瓦斯数值模拟与应用[J]. 煤田地质与勘探, 2019, 47(3): 77-84. 王公达, REN Tingxiang, 齐庆新, 等. 二氧化碳/氮气驱替煤层瓦斯过程的数学模型[J]. 岩石力学与工程学报, 2016, 35(S2): 3930-3936. 王晋, 王延斌, 范晶晶, 等. 注CO2置换煤层CH4试验研究[J]. 科技报, 2015, 33(17): 84-89. 杨宏民, 梁龙辉. 等压扩散下CO2对不同变质程度煤中CH4置换效应的影响[J]. 煤田地质与勘探, 2018, 46(5): 55-59+65. 梁卫国, 吴迪, 赵阳升. CO2驱替煤层CH4试验研究[J]. 岩石力学与工程学, 2010, 29(4): 665-673. 梁卫国, 张倍宁, 韩俊杰, 等. 超临界CO2驱替煤层CH4装置及试验研究[J]. 煤炭学报, 2014, 39(8): 1511-1520. 张鹏. 注二氧化碳提高煤层气采收率理论与实验研究[D]. 太原: 太原理工大学, 2012. 孔祥言. 高等渗流力学[M]. 合肥: 中国科学技术大学出版社, 2010. 李秉芮, 李书波, 刘娜, 等. 注气条件下煤层透气性系数的快速测定及其计算[J]. 煤炭学报, 2021, 46(S1): 274-280. 张占存. 压力恢复曲线测定煤层瓦斯赋存参数的试验研究[J]. 煤炭学报, 2012, 37(8): 1310-1314. 荆俊杰. 煤体含水率对CO2驱替CH4影响的实验研究[D]. 太原理工大学, 2016. 石强. 煤层气CO2驱对储层渗透率的影响[J]. 石化技术, 2015, 22(12): 83+73. 李珍宝, 王凤双, 梁瑞, 等. 液态CO2驱替煤体CH4的渗流特性及机制分析[J]. 采矿与安全工程学报, 2022, 39(6): 1265-1271. 姜延航, 周露函, 白刚, 等. 煤层注热CO2驱替CH4特性实验研究[J]. 中国安全生产科学技术, 2022, 18(10): 70-77. 侯东升, 梁卫国, 张倍宁, 等. CO2驱替煤层CH4中混合气体渗流规律的研究[J]. 煤炭学报,2019, 44(11): 3463-3471. 牛庆合, 曹丽文, 周效志. CO2注入对煤储层应力应变与渗透率影响的实验研究[J]. 煤田地质与勘探, 2018, 46(5): 43-48. 倪冠华, 李钊, 温永瓒, 等. CO2注入下煤层气产出及储层渗透率演化规律[J]. 采矿与安全工程学报, 2022, 39(4): 837-846. 梁卫国, 张倍宁, 黎力, 等. 注能(以CO2为例)改性驱替开采CH4理论与实验研究[J]. 煤炭学报, 2018, 43(10): 2839-2847. 林刚, 陈莉纯. 温室气体 CO2的收集、存储与再利用[J]. 低温与特气, 1999, 2: 14-19. 苏现波, 陈润, 林晓英, 等. 吸附势理论在煤层气吸附/解吸中的应用[J]. 地质学报, 2008, 82(10): 1382-1389. 宋金星. 煤储层表面改性增产机理及技术研究[D]. 焦作: 河南理工大学, 2016. 王立国. 注气驱替深部煤层CH4实验及驱替后特征痕迹研究[D]. 徐州: 中国矿业大学, 2013. 郑尚超, 代志旭. 气体驱替在提高瓦斯抽采率中的创新与应用[J]. 煤矿安全. 2008, 39(8): 42-44. 杨宏民, 张铁岗, 王兆丰, 等. 煤层注氮驱替甲烷促排瓦斯的试验研究[J]. 煤炭学报, 2010, 35(5): 792-796. 王世斌, 吴学明, 王鹏, 等. 矿井瓦斯“2-111”高效抽采新理念[J]. 陕西煤炭, 2019, 38(5): 1-5. 樊世星, 文虎, 程小蛟, 等. 井下高压液态CO2压裂增透煤岩成套装备研制与应用[J]. 煤炭学报, 2020, 45(S2): 801-812. 冯俊超. 大平煤矿瓦斯抽采钻孔注气增产机理及技术研究[D]. 焦作: 河南理工大学 2016. 卢守青, 王亮, 秦立明. 不同变质程度煤的吸附能力与吸附热力学特征分析[J]. 煤炭科学技术, 2014, 42(6): 130-135. 钟玲文. 煤的吸附性能及影响因素[J]. 地球科学, 2004(3): 327-332+368. 聂百胜, 卢红奇,李祥春, 等. 煤体吸附-解吸瓦斯变形特征实验研究[J].煤炭学报, 2015, 40(4): 754-759. 李龙建, 张雷, 郭建英, 等. 用高压气体吸脱附-微量热联用法对CO2和CH4在煤上吸附热力学的研究[J]. 煤炭转化, 2020, 43(3): 1-7. 吕敏敏. 煤吸附/解吸甲烷变形对微晶结构的影响[J]. 山东煤炭科技, 2021, 39(11): 165-167+173. 郇璇, 张小兵, 韦欢文. 基于不同类型煤吸附甲烷的吸附势重要参数探讨[J]. 煤炭学报, 2015, 40(08): 1859-1864. 白建平, 张典坤, 杨建强, 等. 寺河3号煤甲烷吸附解吸热力学特征[J]. 煤炭学报, 2014, 39(9): 1812-1819. 李惟慷, 杨新乐, 张永利, 等. 饱和蒸汽作用下煤体吸附甲烷运移产量规律试验研究[J]. 煤炭学报, 2018, 43(5): 1343-1349. 马志宏, 郭勇义, 吴世跃. 注入二氧化碳及氮气驱替煤层气机理的实验研究[J]. 太原理工大学学报, 2001(4): 335-338. 杨宏民, 鲁小凯. 变质程度对CO2置换煤中CH4效应的影响规律[J]. 中国安全生产科学技术, 2017, 13(9): 41-46. 白刚, 姜延航, 周西华, 等. 不同CO2注入温度置换驱替CH4特性试验研究[J]. 煤炭科学技术, 2021, 49(5): 67-174. 赵伟, 王凯, 李成武, 等. 基于流动扩散互竟关系的基质吸附态瓦斯表观扩散系数实验室测定准确性分析[J]. 煤炭学报, 2022, 47(2): 860-869. 赖令彬, 潘婷婷, 冉启全, 等. 变形介质稠油油藏底水突破时间预测方法[J]. 科学技术与工程, 2013, 13(34): 10136-10141. 陈军斌, 熊鹏辉, 索根喜, 等. 吸附性气体对煤岩基质变形和渗透率的影响[J]. 大庆石油地质与开发, 2021, 40(1): 146-153. 刘江峰, 倪宏阳, 浦海, 等.多孔介质气体渗透率测试理论、方法、装置及应用[J]. 岩石力学与工程学报, 2021, 40(1): 137-146. 祝捷, 王学, 于鹏程, 等. 有效应力对煤样变形和渗透性的影响研究[J]. 岩石力学与工程学报, 2017, 36(9): 2213-2219. 樊世星, 文虎, 王文, 等. 液态CO2相变驱置煤层CH4单孔压注量的确定方法[P]. 中国: CN111894658B, 2022-03-11. 武炜, 王兆丰. 钻孔封孔注浆压力及封孔深度数值模拟研究[J]. 煤炭科学技术, 2015, 43(11): 68-72. 章光, 吴金刚, 杨龙杰. 非等压应力场上向长距离穿层瓦斯抽采钻孔密封长度研究[J]. 岩石力学与工程学报, 2018, 37(S1): 3422-3431. 康红普, 司林坡. 深部矿区煤岩体强度测试与分析[J]. 岩石力学与工程学报, 2009, 28(7): 1312-1320. 郭平. 瓦斯抽采钻孔漏气模型及封孔工艺优化研究[J]. 煤炭技术, 2020, 39(6): 82-85. 徐龙仓. 提高煤层气抽采钻孔封孔效果研究与应用[J]. 中国煤层气, 2008(1): 23-24+8. 胡胜勇. 瓦斯抽采钻孔周边煤岩渗流特性及粉体堵漏机理[D]. 徐州: 中国矿业大学, 2014. 牛心刚, 国林东. 顺层瓦斯抽采钻孔合理封孔深度及注浆参数研究[J]. 矿业安全与环保, 2021, 48(4): 48-54. 周来, 冯启言, 秦勇. CO2和CH4在煤基质表面竞争吸附的热力学分析[J]. 煤炭学报, 2011, 36(8): 1307-1311. 李忠华, 公衍梅, 梁冰. 深部含瓦斯煤内时本构方程体积响应[J]. 辽宁工程技术大学学报, 2007, 136(6): 845-846. 唐巨鹏, 潘一山, 李成全, 等. 有效应力对煤层气解吸渗流影响试验研究[J]. 岩石力学与工程学报, 2006(8): 1563-1568. 彭守建, 许江, 尹光志, 等. 基质收缩效应对含瓦斯煤渗流影响的实验分析[J]. 重庆大学学报, 2012, 35(5): 109-114. 付玉, 郭肖, 贾英, 等. 煤基质收缩对裂隙渗透率影响的新数学模型[J]. 天然气工业, 2005(02): 143-145+218. 张丽娜, 刘敏珊, 董其伍. 超临界二氧化碳细管内流动与换热特性分析研究[J]. 郑州大学学报(工学版), 2009, 30(4): 69-72. 史玉凤, 刘红, 孙文策. 多孔介质有效导热系数的实验与模拟[J]. 四川大学学报(工程科学版), 2011, 43(3): 198-203. 常勇强, 曹子栋, 赵振兴, 等. 多组分气体热物性参数的计算方法[J]. 动力工程学报, 2010, 30(10): 772-776. 夏同强. 瓦斯与煤自燃多场耦合致灾机理研究[D]. 徐州: 中国矿业大学, 2015. 范超军, 李胜, 罗明坤, 等. 基于流-固-热耦合的深部煤层气抽采数值模拟[J]. 煤炭学报, 2016(12):3076-3085. 白鑫, 王登科, 田富超, 等. 三轴应力加卸载作用下损伤煤岩渗透率模型研究[J]. 岩石力学与工程学报, 2021, 40(8): 1536-1546. 叶双江, 姜汉桥. 不同注采方式的流场计算模型及物模验证[J]. 西南石油大学学报(自然科学版), 2018, 40(2): 129-134. 张广洋, 谭学术, 鲜学福, 等. 煤层瓦斯运移的数学模型[J]. 重庆大学学报(自然科学版), 1994(4): 53-57. 任龙, 苏玉亮, 赵广渊. 致密油藏非达西渗流流态响应与极限井距研究[J]. 中南大学学报(自然科学版), 2015, 46(5): 1732-1738. 陈民锋, 王兆琪, 张琪琛, 等. 启动压力影响下注采井间有效驱替规律[J]. 深圳大学学报(理工版), 2017, 34(1): 91-97. 吴凡, 孙黎娟, 乔国安, 等. 气体渗流特征及启动压力规律的研究[J]. 天然气工业, 2001(1): 82-84+3. 张天军, 庞明坤, 蒋兴科, 等.负压对抽采钻孔孔周煤体瓦斯渗流特性的影响[J]. 岩土力学, 2019, 40(7): 2517-2524. 程松林. 高等渗流力学[M]. 北京: 石油工业出版社, 2011. 马砺, 魏高明, 李珍宝, 等. 高瓦斯煤层注液态CO2压裂增透技术试验研究[J]. 矿业安全与环保, 2018, 45(5): 6-11. 倪小明, 杨艳辉, 田永东. 考虑启动压力的煤层气直井采收率预测模型[J]. 辽宁工程技术大学学报(自然科学版), 2015, 34(1): 5-9. |
中图分类号: | TD712 |
开放日期: | 2025-06-20 |