- 无标题文档
查看论文信息

题名:

 低相位噪声CMOS电荷泵锁相环设计    

作者:

 韩志昊    

学号:

 20206035029    

保密级别:

 保密(3年后开放)    

语种:

 chi    

学科代码:

 080903    

学科:

 工学 - 电子科学与技术(可授工学、理学学位) - 微电子学与固体电子学    

学生类型:

 硕士    

学位:

 工学硕士    

学位年度:

 2023    

学校:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电子科学与技术    

研究方向:

 集成电路与芯片设计    

导师姓名:

 刘树林    

导师单位:

 西安科技大学    

提交日期:

 2023-06-25    

答辩日期:

 2023-06-01    

外文题名:

 Design of Low Phase Noise CMOS Charge Pump Phase Locked Loop    

关键词:

 锁相环 ; 相位噪声 ; 电荷泵 ; 环形振荡器    

外文关键词:

 Phase Locked Loop ; Phase Noise ; Charge Pump ; Ring Oscillator    

摘要:

电荷泵锁相环具有宽输出范围、快锁定时间、高分辨率和低成本的优点,被广泛应用于无线通信、数据转换器和高速数字电路系统中。但电荷泵锁相环内部各模块的噪声会直接叠加到输出端,使得输出信号产生抖动。因此,设计一款低相位噪声电荷泵锁相环具有重要的理论意义及应用价值。

通过分析电荷泵锁相环的基本结构和工作原理建立各模块的数学模型,在此基础上推导电荷泵锁相环的传递函数,并分析其环路稳定性。根据性能指标要求确定环路参数,并通过系统级仿真验证了参数设计的合理性。通过分析各模块噪声来源并推导噪声传递函数,得出了锁相环整体的噪声传输特性,并针对各模块的噪声传输特性分别提出了噪声抑制方案。针对鉴频鉴相器存在鉴相死区导致鉴相范围受限的问题,设计了差分鉴频鉴相器电路,通过合理设置复位脉冲宽度抑制了其“死区效应”;针对传统电荷泵存在非理想效应导致充放电电流匹配度较差的问题,设计了一种全差分电荷泵电路,采用低压共源共栅结构以提高电流源的输出阻抗,采用两组N型MOS管作为电荷泵开关管,消除了不同类型开关管之间存在的电流失配,并确保用作电流源的MOS管持续导通,有效抑制了传统电荷泵固有的非理想效应,提高了充放电电流的匹配度;针对控制电压易受电源波动影响的问题,设计了一种专用延迟单元偏置电路,为压控振荡器中的延迟单元提供不随电源电压变化的偏置电压;最终设计了一款参考频率为25MHz,输出频率为400MHz的低相位噪声电荷泵锁相环。

基于SMIC 0.18μm CMOS工艺,采用Spectre工具对电荷泵锁相环整体电路进行仿真。仿真结果表明,输出频率为400MHz时,电荷泵锁相环的锁定时间为3.5μs,电源电压为1.8V,功耗为6.24mW,输出信号抖动小于9ps,1MHz频率偏移处的相位噪声约为-104.15dBc/Hz。完成了电荷泵锁相环版图设计,并通过了DRC、LVS验证。提取版图寄生参数并完成了后仿,仿真结果验证了设计方案的可行性。

外文摘要:

Charge Pump Phase Locked Loop (CPPLL) has the advantages of wide output frequency range, fast locking time, high resolution and low cost, and is widely used in wireless communication, data converter and high-speed digital circuit system. However, the noise of each module in CPPLL is directly coupled to the output, which causing jitter in the output clock signal. Therefore, the design of a CPPLL with low phase noise has important theoretical significance and engineering application value.

Through analyzing the basic structure and working principle of CPPLL, mathematical models of each module are established. On this basis, the transfer function of CPPLL is deduced. Besides, its loop stability are analyzed. According to the performance requirements, loop parameters are determined, and the rationality of loop parameters design is verified by system-level simulation. By analyzing the noise sources of each module and deriving the noise transfer functions, the overall noise transmission characteristic of the CPPLL is obtained, and the noise suppression scheme of each module is proposed for the noise transmission characteristics. Aiming at the problem that phase frequency detector has "dead zone effect" which limits the phase detection range, a differential phase frequency detector circuit is designed, and its "dead zone effect" is eleminated by setting the reset pulse width reasonably; Aiming at the problem that traditional charge pump which has mismatch between charge and discharge currents caused by the non-ideal effect, a fully differential charge pump circuit is designed, and the low voltage common source current mirror is used to improve the current replication precision. Two sets of NMOS are used as charge pump switches, the mismatch between different types of switches is suppressed, the continuous conduction of MOS as current source is assured, the non-ideal effects of traditional charge pump are effectively suppressed, and the matching degree of charge and discharge current is effectively improved; Aiming at the problem that control voltage is susceptible to power fluctuation, a dedicated delay unit bias circuit is designed to provide bias voltage which does not change with the power voltage to the delay unit. Based on D filp-flop triggered by edge, a basic 2 frequency divider circuit is designed, and a 16 frequency divider is realized by cascading the basic 2 frequency dividers; Finally, a low phase noise CPPLL with a reference frequency of 25 MHz and an output frequency of 400 MHz is designed.

Based on SMIC 0.18 μm CMOS process,Spectre simulation tool is used to simulate and analyze the overall circuit. Simulation results show that when the output frequency is 400MHz, the lock-in time is 3.5μs, the power consumption at 1.8V supply is 6.24mW, the jitter of output signal is less than 9ps, and the phase noise at 1MHz frequency deviation is -104.15dBc/Hz. The overall layout of the chip is completed, and the DRC and LVS verification is passed. The simulation results verify the correctness of the theoretical analysis and the feasibility of the design scheme.

参考文献:

[1]段宗明, 柴文乾, 代传堂. 时钟抖动和相位噪声对数据采集的影响[J]. 雷达科学与技术, 2010, 8(04): 372-375.

[2]Mo X, Wu J, Wary N and Carusone T C. Design Methodologies for Low-Jitter CMOS Clock Distribution[J]. IEEE Open Journal of the Solid-State Circuits Society, 2021, 1(01): 94-103.

[3]邓联文, 尹芊奕, 胡照文, 李璨, 胡俊琪, 单庆晓. 随机振动中晶体振荡器的有源降噪设计[J]. 国防科技大学学报, 2018, 40(01): 74-77.

[4]Xi N, Lin F and Ye T. A Low Phase Noise, High Phase Accuracy Quadrature LC-VCO With Dual-Tail Current Biasing to Insert Reconfigurable Phase Delay[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(03): 450-454.

[5]Gui X, Tang R, Zhang Y, Li D and Geng L. A Voltage-Controlled Ring Oscillator With VCO Gain Variation Compensation[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(03): 288-291.

[6]Calosso C E, Cárdenas-Olaya A C and Rubiola E. Phase-Noise and Ampli-tude Noise Measurement of DACs and DDSs[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67(02): 431-439.

[7]沈辉, 薛兵, 唐朝阳, 于佳佳, 景加荣. 基于DDS技术的信号发生器设计[J]. 电子测量技术, 2020, 43(20): 160-164.

[8]Guo T, Tang K and Zheng Y. A 1GHz Configurable Chirp Modulation Direct Digital Frequency Synthesizer in 65nm CMOS[C]//2021 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2021: 1-4.

[9]Shahramian S, Hart A, Carusone A C, Garcia P, Chevalier P and Voinigescu S P. A D-band PLL covering the 81–82 GHz, 86–92 GHz and 162–164 GHz bands[C]//2020 IEEE Radio Frequency Integrated Circuits Symposium (IRFIC). IEEE, 2020: 53-56.

[10]Straayer and Perrott M H. A Low-Noise Wide-BW 3.6-GHz Digital Fractional N Frequency Synthesizer With a Noise-Shaping Time-to-Digital Converter and Quantization Noise Cancellation[J]. IEEE Journal of Solid-State Circuits, 2018, 43(12): 2776-2786.

[11]拉扎维, 陈贵灿, 张瑞智, et al. 模拟CMOS集成电路设计: Design of analog CMOS integrated circuits[M]. 西安: 西安交通大学出版社, 2003: 432-470.

[12]Choudhary A, Khade A and Zele R H. Design Considerations for Low Spur Charge Pump in High Performance Phase Locked Loops[C]//2021 IEEE 18th India Council International Conference (INDICON), Guwahati, India, IEEE, 2021:1-6.

[13]王振武. 毫米波锁相环型频率综合器关键技术研究[D]. 北京: 清华大学, 2018.

[14]Chen R Y , Yang Z Y and Yu S C. High-Frequency Phase Frequency Detect-ors: Analysis for Oscillation-Free Optimal I/O[C]//IEEE Microwave and Wireless Components Letters (IMWCL), IEEE, 2020: 1097-1100.

[15]Liu X and Luong H C. A Fully Integrated 0.27 THz Injection Locked Frequency Synthesizer With Frequency Tracking Loop in 65-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2020, 55(04): 1051-1063.

[16]Heymann P, Rudolph M. " Phase Noise Measurement," A Guide to Noise in Microwave Circuits: Devices, Circuits and Measurement[M]. Wiley-IEEE Press, 2022: 399-433.

[17]陈雅婷. 低抖动80MHz环振锁相环芯片的设计与实现[D]. 杭州: 浙江大学, 2021.

[18]龚锦霞, 解大, 张延迟. 三相数字锁相环的原理及性能[J]. 电工技术学报, 2019, 24(10): 94-99.

[19]Chen X, Cai L, Xu Y, Ou J and Liao J. A 0.13um Low Phase Noise and Fast Locking PLL[C]//2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). IEEE, 2019: 1468-1471.

[20]王靖瑞. 基于0.18μm CMOS工艺电荷泵锁相环的研究与设计[D]. 西安: 西安电子科技大学, 2021.

[21]Best R E. Phase-Looked Loops Design, Simulation and Application, Fifth Edition[M]. McGraw-Hill, 2003: 220-275.

[22]张刚. CMOS 集成锁相环电路设计[M]. 北京: 清华大学出版社, 2013, 23-138.

[23]施展, 余隽, 唐祯安 ,蔡泓, 冯冲. 高性能集成锁相环中低失配电荷泵的设计[J]. 电子与信息学报, 2017,3 9(06): 1472-1478.

[24]Lee C H, Kabalican L, Ge Y, et al. A 2.7 GHz to 7 GHz Fractional-N LC-PLL Utilizing Multi-Metal Layer SoC Technology in 28 nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2019, 50(4): 856-866.

[25]Tsai C W, Chiu Y T, Tu Y H and Cheng K H. A Wide-Range All-Digital Delay-Locked Loop for DDR1–DDR5 Applications[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. IEEE, 2021, 29(10): 1720-1729.

[26]Cheng-Hsueh Tsai et al. A 22.5-27.7GHz Fast-Lock Bang-Bang Digital PLL in 28nm CMOS for Millimeter-Wave Communication With 220fs RMS Jitter[J]. IEEE Solid-State Circuits Letters, 2019, 2(9): 111-114.

[27]潘碑, 苏卫国. 锁相频率源混频信号的相位噪声分析[J]. 固体电子学研究与进展, 2014, 34(05): 432-435+439.

[28]Nagam S, Kinget P R. A Low-Jitter Ring-Oscillator Phase-Locked-Loop Using Feedforward Noise Cancellation With a Sub-Sampling Phase Detector[J]. IEEE Journal of Solid-State Circuits, 2018,53(03): 703-714.

[29]Huang Y, Chen Y, Jiao H, Mak P I and Martins R P. A 3.36-GHz Locking-Tuned Type-I Sampling PLL With −78.6-dBc Reference Spur Merging Single-Path Reference Feedthrough-Suppression and Narrow-Pulse-Shielding Techniques[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(09): 3093-3097.

[30]Grout K and Kitchen J. A Dividerless Ring Oscillator PLL With 250fs Integrated Jitter Using Sampled Lowpass Filter[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(11): 2337-2341.

[31]Hickle M D, Grout K, Grens C, Flewelling G and Turner S E. A Single-Chip 25.3-28.0 GHz SiGe BiCMOS PLL with −134 dBc/Hz Phase Noise at 10 MHz Offset and −96 dBc Reference Spurs[C]//IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium(BCICTS), IEEE, 2021: 1-4.

[32]Yoon D H. et al. A 3.2-GHz 178-fsrms Jitter Subsampling PLL/DLL-Based Injection Locked Clock Multiplier[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30(07): 915-925.

[33]Kalia S. et al. A Sub-100 Fs RMSjitter 20 GHz Fractional-N Analog PLL With a BAW Resonator Based On-Chip 2.5 GHz Reference[J]. IEEE Journal of Solid-State Circuits, 2022, 57(05): 1372-1384.

[34]Zhang Z and Wu N. Design of High-Performance Phase-Locked Loop Using Hybrid Dual-Path Loop Architecture: an Overview[C]//2020 IEEE 15th Interna-tional Conference on Solid-State & Integrated Circuit Technology (ICSICT), IEEE, 2020: 1-4.

[35]黄胜. 高性能CMOS频率综合器关键技术研究[D]. 西安: 西安电子科技大学, 2019.

[36]陈嘉豪, 李浩明, 王腾佳等. 一种集成占空比校准的低杂散参考时钟倍频器[J]. 哈尔滨工业大学学报, 2021, 53(06): 86-93.

[37]吴金, 孙亚伟, 彭杰, 郑丽霞, 罗木昌, 孙伟锋. 一种应用于阵列TDC的低抖动锁相环设计[J]. 电子学报, 2020, 48(09): 1703-1710.

[38]Yilmaz G, Dehollain C. 20–300 MHz Frequency Generator with 70 dBc Reference Spur for Low Jitter Serial Applications[C]//IEEE Nordic Circuits & Systems Conference(INCSC), 2019: 1-4.

[39]Yuan J and Svensson C. High-Speed CMOS Circuit Technique[J]. IEEE Journal of Solid-State Circuits, 1989: 62-70.

[40]Kueppers S, Jaeschke T, Pohl N and Versatile J B. 126–182 GHz UWB D-Band FMCW Radar for Industrial and Scientific Applications[J]. IEEE Sensors Letters, 2022, 6(01): 1-4.

[41]Abidi A. Phase Noise and Jitter in CMOS Ring Oscillators[J]. IEEE Journal of Solid-State Circuits, 2020, 41(8): 1803-1816.

[42]Dong C, Dong G and Hu S, A 5G Millimeter Low Power Phase-Locked Loop in Low-Cost 0.18μm CMOS[C]//2020 IEEE MTT-S International Wireless Sym-posium,IEEE,2020:1-3.

[43]Chen B, Li L and Liu H. A Power-Efficient Switchable CML Driver at 10 Gbps[J]. Journal of Semiconductors, 2016, 37(02): 126-129.

[44]祝军, 张吉利, 王子谦, 刁盛锡, 林福江. 3GHz低杂散锁相环中的低失配电荷泵[J]. 微电子学, 2016, 46(04): 480-483.

[45]Razavi B. Charge Pump Phase Locked Loops[M]. Wiley-IEEE Press, 1996, 77-86.

[46]王程程. CMOS电荷泵锁相环的研究与设计[D]. 重庆: 重庆邮电大学, 2019.

[47]Arakali A, Gondi S, Hanumolu P K. Low-Power Supply-Regulation Techniques for Ring Oscillators in Phase-Locked Loops Using a Split Tuned Architecture[J]. IEEE Journal of Solid-State Circuits, 2009, 44(8): 2169-2181.

[48]Hu A, Liu D and Zhang K. A 0.03 to 3.6 GHz Frequency Synthesizer With Self Biased VCO and Quadrature Input Quadrature Output Frequency Divider[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66(12): 1997-2001.

[49]Hastings A. 模拟电路版图的艺术:第2版[M]. 电子工业出版社, 2007: 220-529.

[50]彭雄, 徐骅, 刘韬等.射频电路ESD防护优化设计[J]. 微电子学, 2021, 51(03): 363-367.

[51]徐严. 低噪声锁相环频率合成器的研究与设计[D]. 南京: 南京邮电大学, 2018.

[52]Volobuev P S, Fedorov R A, Gavrilov S,Korshunov A V and Ryzhov D I. 400 MHz PLL Based Frequency Synthesizer with Built-In Self Test[C]//2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Moscow and St. Petersburg, Russia, IEEE, 2018:1438-1441.

中图分类号:

 TN492    

开放日期:

 2026-06-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式