论文中文题名: | 固体吸附式空调中金属有机框架材料除湿和除碳性能研究 |
姓名: | |
学号: | 20203053010 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 081404 |
学科名称: | 工学 - 土木工程 - 供热、供燃气、通风及空调工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 制冷空调节能技术 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-10 |
论文答辩日期: | 2023-06-05 |
论文外文题名: | Experimental investigation of the dehumidification and decarburization performance of metal-organic framework materials in solid adsorption air conditioning |
论文中文关键词: | 固体吸附装置 ; 空调 ; 金属有机框架材料(MOFs) ; 除湿 ; 除碳 |
论文外文关键词: | Solid adsorption device ; Air conditioning ; Metal-organic frameworks (MOFs) ; Dehumidification ; Carbon removal |
论文中文摘要: |
固体吸附式空调系统是除湿与降温耦合的空调系统,由用于除湿的固体吸附单元和用于冷却的蒸发冷却单元组成,具有可充分利用低品位能源以及使用水为制冷剂的突出优点。固体吸附单元是固体吸附式空调系统的关键组成部分,吸附材料是实现固体吸附单元高能效的关键。针对传统吸附材料如硅胶和沸石存在吸附能力低和再生温度高的缺点,提出了应用金属有机框架材料作为吸附材料的固体吸附式空调系统,该系统不仅可以用来吸附空气中多余的水蒸气,同时还可以吸附空气中的二氧化碳,提供一个舒适的人居环境。具体研究内容与结果如下: 搭建了固体吸附动态除湿性能测试实验台,实验研究了MIL-101(Cr)、MIL-101(Fe)和MIL-100(Fe)三种金属有机框架材料(MOFs)的除湿性能。研究表明:当相对湿度为50%,温度为298 K时,MIL-101(Cr)饱和除湿量为1.25 g·g-1,分别为MIL-101(Fe)和MIL-100(Fe)的1.25和1.92倍;当相对湿度为30%,温度为298 K时,MIL-101(Fe)的吸附速率为0.966 s-1,分别为MIL-101(Cr)和MIL-100(Fe)的1.71和2.05倍;当相对湿度为80%,温度从298 K升高到328 K时,MIL-101(Cr)、MIL-101(Fe)和MIL-100(Fe)的除湿量分别从1.45 g·g-1、1.30 g·g-1和0.67 g·g-1降到了0.95 g·g-1、0.45 g·g-1和0.30 g·g-1;十次循环后MIL-101(Cr)、MIL-101(Fe)和MIL-100(Fe)的吸附容量损失分别为3.33%、3.22%和10.04%。 搭建了固体吸附动态除碳性能测试实验台,实验研究了MIL-101(Cr)、MIL-101(Fe)和MIL-100(Fe)三种金属有机框架材料(MOFs)的除碳性能。研究表明:在干燥空气中,MIL-101(Cr)的除碳量和吸附选择性系数分别为0.80 mmol·g-1和5.96。当相对湿度为30%时,MIL-100(Fe)的除碳量和吸附选择性系数分别为0.73 mmol·g-1和5.60;当相对湿度为60%时,MIL-100(Fe)的除碳量和吸附选择性系数分别为0.68 mmol·g-1和4.91。二氧化碳浓度为0.1% ~ 0.5%时,三种MOFs的除碳能力随着二氧化碳浓度的增加而增大。固体吸附式装置在吸附低浓度的二氧化碳时首选MIL-101(Cr)作为吸附材料。 搭建了动态吸附水蒸气和二氧化碳共同吸附性能测试实验台,比较研究了三种MOFs吸附材料和传统硅胶(SG)对水蒸气和二氧化碳的共吸附性能。研究表明:三种MOFs都能共同吸附水蒸气和二氧化碳。在高湿度条件下(相对湿度80%、温度303 K,二氧化碳浓度0.3%),MIL-101(Cr)的空调除湿量可达805 mg·g-1,是SG的4.4倍。MIL-100(Fe)的空调除碳量可达19 mg·g-1,是SG的10.6倍。在高二氧化碳浓度(二氧化碳浓度0.4%、相对湿度50%、温度303 K)时,MIL-101(Cr)的空调除湿量高达573 mg·g-1,是SG的6.7倍。MIL-101(Fe)具有高达27 mg·g-1的空调除碳量,为SG的14.2倍。 搭建实验台对MIL-101(Cr)固体吸附装置进行共同吸附水蒸气和二氧化碳的动态测试。结果表明:固体吸附装置的最佳操作周期为10 min。处理空气温度越低固体吸附装置的共吸附性能越好。除湿器的除湿性能随着处理空气湿度增大会显著提升,但除碳性能会减弱。实际应用中,除湿器的处理风速推荐为2 m·s-1。二氧化碳浓度增大有利于除湿器的除碳性能。 研究表明,金属有机框架材料作为吸附材料用于固体吸附式空调中具有良好的除湿和除碳性能。此外,在除湿的同时可以共同吸附空气中的二氧化碳,为金属有机框架材料应用在固体吸附式空调系统中提供了理论依据和参考。 |
论文外文摘要: |
Solid adsorption air conditioning system is a coupled air conditioning system of dehumidification and cooling. It consists of a solid adsorption unit for dehumidification and an evaporative cooling unit for cooling. It has the outstanding advantages of making full use of low-grade energy and using water as refrigerant. Solid adsorption unit is a key component of solid adsorption air conditioning system, and adsorption material is the key to achieve high energy efficiency of solid adsorption unit. Aiming at the shortcomings of traditional adsorption materials such as silica gel and zeolite, such as low adsorption capacity and high regeneration temperature, a solid adsorption air conditioning system using metal organic framework materials as adsorption materials is proposed. The system can not only be used to adsorb excess water vapor in the air, but also adsorb carbon dioxide in the air to provide a comfortable living environment. The specific research contents and results are as follows : A solid adsorption dynamic dehumidification performance test bench was set up to study the dehumidification performance of three metal organic framework materials (MOFs) : MIL-101(Cr), MIL-101(Fe) and MIL-100(Fe).The results show that the saturated dehumidification capacity of MIL-101(Cr) is 1.25 g·g-1, which is 1.25 and 1.92 times that of MIL-101(Fe) and MIL-100(Fe), respectively, when the relative humidity is 50% and the temperature is 298 K. When the relative humidity was 30% and the temperature was 298 K, the adsorption rate of MIL-101(Fe) was 0.966 s-1, which was 1.71 and 2.05 times that of MIL-101(Cr) and MIL-100(Fe), respectively. When the relative humidity was 80% and the temperature increased from 298 K to 328 K, the dehumidification capacity of MIL-101(Cr), MIL-101(Fe) and MIL-100(Fe) decreased from 1.45 g·g-1,1.30 g·g-1 and 0.67 g·g-1 to 0.95 g·g-1,0.45 g·g-1 and 0.30 g·g-1, respectively. After ten cycles, the adsorption capacity loss of MIL-101(Cr), MIL-101(Fe) and MIL-100(Fe) were 3.33%, 3.22% and 10.04%, respectively. A solid adsorption dynamic carbon removal performance test bench was set up to study the carbon removal performance of three metal organic framework materials (MOFs) : MIL-101(Cr), MIL-101(Fe) and MIL-100(Fe). The results showed that the carbon removal capacity and adsorption selectivity coefficient of MIL-101(Cr) were 0.80 mmol·g-1 and 5.96 in dry air, respectively. When the relative humidity was 30%, the carbon removal capacity and adsorption selectivity coefficient of MIL-100(Fe) were 0.73 mmol·g-1 and 5.60, respectively. When the relative humidity was 60%, the carbon removal capacity and adsorption selectivity coefficient of MIL-100(Fe) were 0.68 mmol·g-1 and 4.91, respectively. When the carbon dioxide concentration was 0.1% to 0.5%, the carbon removal capacity of the three MOFs increased with the increase of carbon dioxide concentration. MIL-101(Cr) is preferred as the adsorption material when the solid adsorption device adsorbs low concentration of carbon dioxide. A test platform for dynamic co-adsorption of water vapor and carbon dioxide was built, and the co-adsorption properties of three MOFs adsorbents and traditional silica gel (SG) for water vapor and carbon dioxide were compared. Studies have shown that three MOFs can adsorb water vapor and carbon dioxide together. Under high humidity conditions ( relative humidity 80%, temperature 303 K, carbon dioxide concentration 0.3% ), the air conditioning dehumidification capacity of MIL-101(Cr) can reach 805 mg·g-1, which is 4.4 times that of SG. The carbon removal of MIL-100(Fe) can reach 19 mg·g-1, which is 10.6 times that of SG. At high carbon dioxide concentration (carbon dioxide concentration 0.4%, relative humidity 50%, temperature 303 K), the air conditioning dehumidification capacity of MIL-101(Cr) is as high as 573 mg·g-1, which is 6.7 times that of SG. MIL-101(Fe) has a carbon removal capacity of up to 27 mg·g-1, which is 14.2 times that of SG. An experimental platform was built to test the dynamic adsorption of water vapor and carbon dioxide by MIL-101(Cr) solid adsorption device. The results showed that the optimal operation period of the solid adsorption device was 10 min. The lower the treatment air temperature, the better the co-adsorption performance of the solid adsorption device. The dehumidification performance of the dehumidifier will be significantly improved with the increase of air humidity, but the carbon removal performance will be weakened. In practical application, the processing wind speed of the dehumidifier is recommended to be 2 m·s-1. The increase of carbon dioxide concentration is beneficial to the carbon removal performance of the dehumidifier. Studies have shown that metal-organic framework materials have good dehumidification and carbon removal performance as adsorption materials for solid adsorption air conditioners. In addition, carbon dioxide in the air can be adsorbed together while dehumidification, which provides a theoretical basis and reference for the application of metal-organic framework materials in solid adsorption air conditioning systems. |
参考文献: |
[16]王晨曦, 邹豪, 王如竹. 空气取水实现可持续农业和沙漠绿化[J]. 上海交通大学学报, 2021, 55(S1):88-90. [19]高娅洁, 赵惠忠, 张斌斌等.空气取水用硅胶/MgCl2复合吸附材料吸附性能研究[J].应用化工, 2023, 52(02):376-381+388. [22]郑旭, 邓帅, 王如竹. 基于内冷式干燥剂换热器的固体除湿空调技术研究进展[J]. 制冷学报, 2019, 40(05):109-117. [23]何晨晨, 陈柳. 新型复合固体除湿材料的吸附和解吸性能研究[J] .低温与超导, 2020, 48(04):58-65. [32]杨建成, 王诗宁, 杨硕, 等. 金属有机框架材料吸附VOCs影响因素研究进展[J]. 化工进展, 2021, 40(01): 463-476. [49]梅华, 陈道远, 姚虎卿, 等. 硅胶的二氧化碳吸附性能及其与微孔结构的关系[J]. 天然气化工, 2004(05):21-25. [50]王洪梅, 罗仕忠, 吴永永, 等. 改性硅胶吸附剂用于CO2/CH4吸附分离的研究[J]. 天然气化工, 2012, 037(005):1-5+26. [51]倪诸希, 何胜, 张勇, 等. 结合改性硅胶对模拟煤层气中CH4/CO2的吸附分离研究[J]. 矿业研究与开发, 2021, 41(02):138-143. [53]李文哲, 高海云, 杨海燕, 等.乙醇胺改性硅胶吸附剂对模拟沼气中CH4/CO2的分离性能[J]. 农业工程学报, 2014, 30(22):267-272. [76]GB 50736-2012. 民用建筑供暖通风与空气调节设计规范[S]. 北京: 中国建筑工业出版社,2012. |
中图分类号: | TU834.9 |
开放日期: | 2023-06-26 |