- 无标题文档
查看论文信息

论文中文题名:

 固体吸附式空调中金属有机框架材料除湿和除碳性能研究    

姓名:

 杨发妹    

学号:

 20203053010    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081404    

学科名称:

 工学 - 土木工程 - 供热、供燃气、通风及空调工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 土木工程    

研究方向:

 制冷空调节能技术    

第一导师姓名:

 陈柳    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-10    

论文答辩日期:

 2023-06-05    

论文外文题名:

 Experimental investigation of the dehumidification and decarburization performance of metal-organic framework materials in solid adsorption air conditioning    

论文中文关键词:

 固体吸附装置 ; 空调 ; 金属有机框架材料(MOFs) ; 除湿 ; 除碳    

论文外文关键词:

 Solid adsorption device ; Air conditioning ; Metal-organic frameworks (MOFs) ; Dehumidification ; Carbon removal    

论文中文摘要:

固体吸附式空调系统是除湿与降温耦合的空调系统,由用于除湿的固体吸附单元和用于冷却的蒸发冷却单元组成,具有可充分利用低品位能源以及使用水为制冷剂的突出优点。固体吸附单元是固体吸附式空调系统的关键组成部分,吸附材料是实现固体吸附单元高能效的关键。针对传统吸附材料如硅胶和沸石存在吸附能力低和再生温度高的缺点,提出了应用金属有机框架材料作为吸附材料的固体吸附式空调系统,该系统不仅可以用来吸附空气中多余的水蒸气,同时还可以吸附空气中的二氧化碳,提供一个舒适的人居环境。具体研究内容与结果如下:

搭建了固体吸附动态除湿性能测试实验台,实验研究了MIL-101(Cr)、MIL-101(Fe)和MIL-100(Fe)三种金属有机框架材料(MOFs)的除湿性能。研究表明:当相对湿度为50%,温度为298 K时,MIL-101(Cr)饱和除湿量为1.25 g·g-1,分别为MIL-101(Fe)和MIL-100(Fe)的1.25和1.92倍;当相对湿度为30%,温度为298 K时,MIL-101(Fe)的吸附速率为0.966 s-1,分别为MIL-101(Cr)和MIL-100(Fe)的1.71和2.05倍;当相对湿度为80%,温度从298 K升高到328 K时,MIL-101(Cr)、MIL-101(Fe)和MIL-100(Fe)的除湿量分别从1.45 g·g-1、1.30 g·g-1和0.67 g·g-1降到了0.95 g·g-1、0.45 g·g-1和0.30 g·g-1;十次循环后MIL-101(Cr)、MIL-101(Fe)和MIL-100(Fe)的吸附容量损失分别为3.33%、3.22%和10.04%。

搭建了固体吸附动态除碳性能测试实验台,实验研究了MIL-101(Cr)、MIL-101(Fe)和MIL-100(Fe)三种金属有机框架材料(MOFs)的除碳性能。研究表明:在干燥空气中,MIL-101(Cr)的除碳量和吸附选择性系数分别为0.80 mmol·g-1和5.96。当相对湿度为30%时,MIL-100(Fe)的除碳量和吸附选择性系数分别为0.73 mmol·g-1和5.60;当相对湿度为60%时,MIL-100(Fe)的除碳量和吸附选择性系数分别为0.68 mmol·g-1和4.91。二氧化碳浓度为0.1% ~ 0.5%时,三种MOFs的除碳能力随着二氧化碳浓度的增加而增大。固体吸附式装置在吸附低浓度的二氧化碳时首选MIL-101(Cr)作为吸附材料。

搭建了动态吸附水蒸气和二氧化碳共同吸附性能测试实验台,比较研究了三种MOFs吸附材料和传统硅胶(SG)对水蒸气和二氧化碳的共吸附性能。研究表明:三种MOFs都能共同吸附水蒸气和二氧化碳。在高湿度条件下(相对湿度80%、温度303 K,二氧化碳浓度0.3%),MIL-101(Cr)的空调除湿量可达805 mg·g-1,是SG的4.4倍。MIL-100(Fe)的空调除碳量可达19 mg·g-1,是SG的10.6倍。在高二氧化碳浓度(二氧化碳浓度0.4%、相对湿度50%、温度303 K)时,MIL-101(Cr)的空调除湿量高达573 mg·g-1,是SG的6.7倍。MIL-101(Fe)具有高达27 mg·g-1的空调除碳量,为SG的14.2倍。

搭建实验台对MIL-101(Cr)固体吸附装置进行共同吸附水蒸气和二氧化碳的动态测试。结果表明:固体吸附装置的最佳操作周期为10 min。处理空气温度越低固体吸附装置的共吸附性能越好。除湿器的除湿性能随着处理空气湿度增大会显著提升,但除碳性能会减弱。实际应用中,除湿器的处理风速推荐为2 m·s-1。二氧化碳浓度增大有利于除湿器的除碳性能。

研究表明,金属有机框架材料作为吸附材料用于固体吸附式空调中具有良好的除湿和除碳性能。此外,在除湿的同时可以共同吸附空气中的二氧化碳,为金属有机框架材料应用在固体吸附式空调系统中提供了理论依据和参考。

论文外文摘要:

Solid adsorption air conditioning system is a coupled air conditioning system of dehumidification and cooling. It consists of a solid adsorption unit for dehumidification and an evaporative cooling unit for cooling. It has the outstanding advantages of making full use of low-grade energy and using water as refrigerant. Solid adsorption unit is a key component of solid adsorption air conditioning system, and adsorption material is the key to achieve high energy efficiency of solid adsorption unit. Aiming at the shortcomings of traditional adsorption materials such as silica gel and zeolite, such as low adsorption capacity and high regeneration temperature, a solid adsorption air conditioning system using metal organic framework materials as adsorption materials is proposed. The system can not only be used to adsorb excess water vapor in the air, but also adsorb carbon dioxide in the air to provide a comfortable living environment. The specific research contents and results are as follows :

A solid adsorption dynamic dehumidification performance test bench was set up to study the dehumidification performance of three metal organic framework materials (MOFs) : MIL-101(Cr), MIL-101(Fe) and MIL-100(Fe).The results show that the saturated dehumidification capacity of MIL-101(Cr) is 1.25 g·g-1, which is 1.25 and 1.92 times that of MIL-101(Fe) and MIL-100(Fe), respectively, when the relative humidity is 50% and the temperature is 298 K. When the relative humidity was 30% and the temperature was 298 K, the adsorption rate of MIL-101(Fe) was 0.966 s-1, which was 1.71 and 2.05 times that of MIL-101(Cr) and MIL-100(Fe), respectively. When the relative humidity was 80% and the temperature increased from 298 K to 328 K, the dehumidification capacity of MIL-101(Cr), MIL-101(Fe) and MIL-100(Fe) decreased from 1.45 g·g-1,1.30 g·g-1 and 0.67 g·g-1 to 0.95 g·g-1,0.45 g·g-1 and 0.30 g·g-1, respectively. After ten cycles, the adsorption capacity loss of MIL-101(Cr), MIL-101(Fe) and MIL-100(Fe) were 3.33%, 3.22% and 10.04%, respectively.

A solid adsorption dynamic carbon removal performance test bench was set up to study the carbon removal performance of three metal organic framework materials (MOFs) : MIL-101(Cr), MIL-101(Fe) and MIL-100(Fe). The results showed that the carbon removal capacity and adsorption selectivity coefficient of MIL-101(Cr) were 0.80 mmol·g-1 and 5.96 in dry air, respectively. When the relative humidity was 30%, the carbon removal capacity and adsorption selectivity coefficient of MIL-100(Fe) were 0.73 mmol·g-1 and 5.60, respectively. When the relative humidity was 60%, the carbon removal capacity and adsorption selectivity coefficient of MIL-100(Fe) were 0.68 mmol·g-1 and 4.91, respectively. When the carbon dioxide concentration was 0.1% to 0.5%, the carbon removal capacity of the three MOFs increased with the increase of carbon dioxide concentration. MIL-101(Cr) is preferred as the adsorption material when the solid adsorption device adsorbs low concentration of carbon dioxide.

A test platform for dynamic co-adsorption of water vapor and carbon dioxide was built, and the co-adsorption properties of three MOFs adsorbents and traditional silica gel (SG) for water vapor and carbon dioxide were compared. Studies have shown that three MOFs can adsorb water vapor and carbon dioxide together. Under high humidity conditions ( relative humidity 80%, temperature 303 K, carbon dioxide concentration 0.3% ), the air conditioning dehumidification capacity of MIL-101(Cr) can reach 805 mg·g-1, which is 4.4 times that of SG. The carbon removal of MIL-100(Fe) can reach 19 mg·g-1, which is 10.6 times that of SG. At high carbon dioxide concentration (carbon dioxide concentration 0.4%, relative humidity 50%, temperature 303 K), the air conditioning dehumidification capacity of MIL-101(Cr) is as high as 573 mg·g-1, which is 6.7 times that of SG. MIL-101(Fe) has a carbon removal capacity of up to 27 mg·g-1, which is 14.2 times that of SG.

An experimental platform was built to test the dynamic adsorption of water vapor and carbon dioxide by MIL-101(Cr) solid adsorption device. The results showed that the optimal operation period of the solid adsorption device was 10 min. The lower the treatment air temperature, the better the co-adsorption performance of the solid adsorption device. The dehumidification performance of the dehumidifier will be significantly improved with the increase of air humidity, but the carbon removal performance will be weakened. In practical application, the processing wind speed of the dehumidifier is recommended to be 2 m·s-1. The increase of carbon dioxide concentration is beneficial to the carbon removal performance of the dehumidifier.

Studies have shown that metal-organic framework materials have good dehumidification and carbon removal performance as adsorption materials for solid adsorption air conditioners. In addition, carbon dioxide in the air can be adsorbed together while dehumidification, which provides a theoretical basis and reference for the application of metal-organic framework materials in solid adsorption air conditioning systems.

参考文献:

[1]Building Energy Conservation Research Center of Tsinghua University, Research report on annual development of building energy efficiency in China, China Architecture & Building Press, 2021.

[2]Dai B, Tong Y, Hu Q, et al. Characteristics of thermal stratification and its effects on HVAC energy consumption for an atrium building in south China[J]. Energy, 2022, (249):123425.

[3]Su W, Lu Z F, She X H, et al. Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies[J]. Applied Energy, 2022, 308:118394.

[4]Tsai D H, Lin J S, Chan C C. Office Workers' Sick Building Syndrome and Indoor Carbon Dioxide Concentrations[J]. Journal of Occupational & Environmental Hygiene, 2012, 9(5):345-351.

[5]Fiedoruk K G, Krawczyk D A. The possibilities of energy consumption reduction and a maintenance of indoor air quality in doctor's offices located in north-eastern Poland[J]. Energy & Buildings, 2014, 85:235-245.

[6]Tu Z J, Li Y, Geng S B, et al. Human responses to high levels of carbon dioxide and air temperature[J]. Indoor Air, 2020, 31:872-886.

[7]Zhang T, Liu X H, Jiang Y. Development of temperature and humidity independent control (THIC) air-conditioning systems in China - A review[J]. Renewable and Sustainable Energy Reviews, 2014, 29:793-803.

[8]Gao D C, Sun Y J, Ma Z, et al. A review on integration and design of desiccant air-conditioning systems for overall performance improvements[J]. Renewable and Sustainable Energy Reviews, 2021, 141:110809.

[9]Jani D B, Mishra M, Sahoo P K . Solid desiccant air conditioning - A state of the art review[J]. Renewable and Sustainable Energy Reviews, 2016, 60:1451-1469.

[10]La D, Dai Y J, Li Y. Technical development of rotary desiccant dehumidification and air conditioning: A review[J]. Renewable and Sustainable Energy Reviews 2010, 14:130-147.

[11]Speerforck A, Ling J, Aute V, et al. Modeling and simulation of a desiccant assisted solar and geothermal air conditioning system[J]. Energy 2017, 141:2321-2336.

[12]Chen L, Tan Y. The performance of a desiccant wheel air conditioning system with high-temperature chilled water from natural cold source[J]. Renewable Energy, 2020, 146:2142-2157.

[13]Zheng X, Ge T S, Wang R Z. Recent progress on desiccant materials for solid desiccant cooling systems[J]. Energy, 2014, 74:280-294.

[14]Karmakar A, Prabakaran V, Zhao D, et al. A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications[J]. Applied Energy, 2020, 269:115070.

[15]Mahmoud M, Abd-Elhady, Mohamed S, et al. Solid desiccant-based dehumidification systems: A critical review on configurations, techniques, and current trends[J] . International Journal of Refrigeration, 2022, 133:337-352.

[16]王晨曦, 邹豪, 王如竹. 空气取水实现可持续农业和沙漠绿化[J]. 上海交通大学学报, 2021, 55(S1):88-90.

[17]Saeed A, Al-Alili A . A review on desiccant coated heat exchangers[J]. Hvac & R Research, 2016, 23(1):136-150.

[18]Bu, X. B, Wang, L. B,Huang, Y. F. Effect of pore size on the performance of composite adsorbent[J] . Adsorption, 2013, 19 (5):925-935.

[19]高娅洁, 赵惠忠, 张斌斌等.空气取水用硅胶/MgCl2复合吸附材料吸附性能研究[J].应用化工, 2023, 52(02):376-381+388.

[20]Jia C X, Dai Y J, Wu J Y, et al. Use of compound desiccant to develop high performance desiccant cooling system[J]. International Journal of Refrigeration, 2007, 30(2):345-353.

[21]Simonova I A, Freni A, Restuccia G, et al. Water sorption on composite "silica modified by calcium nitrate"[J]. Microporous & Mesoporous Materials, 2009, 122(1-3):223-228.

[22]郑旭, 邓帅, 王如竹. 基于内冷式干燥剂换热器的固体除湿空调技术研究进展[J]. 制冷学报, 2019, 40(05):109-117.

[23]何晨晨, 陈柳. 新型复合固体除湿材料的吸附和解吸性能研究[J] .低温与超导, 2020, 48(04):58-65.

[24]Yuan Y, Zhang H, Yang F, et al. Inorganic composite sorbents for water vapor sorption: A research progress[J]. Renewable and Sustainable Energy Reviews, 2016, 54(FEB.):761-776.

[25]Gordeeva L G, Glaznev I S, Aristov Y I. Sorption of Water by Sodium, Copper, and Magnesium Sulfates Dispersed into Mesopores of Silica Gel and Alumina[J]. Russian Journal of Physical Chemistry, 2003, 77(10):1715-1720.

[26]Aristov Y I, Sapienza A, Ovoshchnikov D S, et al. Reallocation of adsorption and desorption times for optimisation of cooling cycles[J]. International Journal of Refrigeration, 2012, 35(3):525-531.

[27]Cortés F B, Chejne F, Carrasco-Marín F, et al. Water sorption on silica- and zeolite-supported hygroscopic salts for cooling system applications[J]. Energy Conversion & Management, 2012, 53(1):219-223.

[28]Galina K, Larisa P, Anatoly B, et al. Heterogeneous Biocatalysts prepared by immuring enzymatic active components inside silica xerogel and nanocarbons-in-silica composites[J]. Catalysts, 2018, 8(5):177.

[29]Li X, Chen X, Li Z. Adsorption Equilibrium and desorption activation energy of water vapor on activated carbon modified by an oxidation and reduction treatment[J]. J.chem.eng.data, 2010, 55(9):3164-3169.

[30]Huang H, Oike T, Watanabe F, et al. Development research on composite adsorbents applied in adsorption heat pump[J]. Applied Thermal Engineering, 2010, 30(10):1193-1198.

[31]Tso C Y, Chao C Y H . Activated carbon, silica-gel and calcium chloride composite adsorbents for energy efficient solar adsorption cooling and dehumidification systems[J]. International Journal of Refrigeration, 2012, 35(6):1626-1638.

[32]杨建成, 王诗宁, 杨硕, 等. 金属有机框架材料吸附VOCs影响因素研究进展[J]. 化工进展, 2021, 40(01): 463-476.

[33]Frhlich D, Henninger S K, Janiak C. Multicycle water vapour stability of microporous breathing MOF aluminium isophthalate CAU-10-H[J]. Dalton Transactions, 2018, 43(41):15300-15304.

[34]Kummer H, Jeremias F, D Fröhlich, et al. A functional full-scale heat exchanger coated with aluminum fumarate metal-organic framework for adsorption heat transformation[J]. Industrial & Engineering Chemistry Research, 2017, 56(29):8393-8398.

[35]Karmakar A, Prabakaran V, Zhao D, et al. A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications[J]. Applied Energy, 2020, 269:115070.

[36]Ehrenmann J, Henninger S K, Janiak C . Water adsorption characteristics of MIL-101 for heat-transformation applications of MOFs[J]. European Journal of Inorganic Chemistry, 2011, 4:471-474.

[37]Chen L, He C . Experimental investigation of the dehumidification performance of a metal-organic framework MIL-101(Cr) ceramic fibre paper for use as a desiccant wheel[J]. Microporous and Mesoporous Materials, 2020, 305:110378.

[38]Ferey G, Serre C, Mellot-draznieks C, et al. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction[J]. Angewandte Chemie, 2004, 43(46):6296-6301.

[39]Férey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309:2040-2042.

[40]Küsgens P, Rose M, SenkovskaI, et al. Characterization of metal-organic frameworks by water adsorption[J] . Microporous and Mesoporous Materials, 2009,120:325-330.

[41]Ehrenmann J, Henninger S K, Janiak C . Water adsorption characteristics of MIL-101 for heat-transformation applications of MOFs[J]. European Journal of Inorganic Chemistry, 2011, 4:471-474.

[42]Jeremias F, Khutia A, Henninger S K, et al. MIL-100(Al, Fe) as water adsorbents for heat transformation purposes-a promising application[J] . Journal of Materials Chemistry, 2012, 22:10148-10151.

[43]Lu X, Pang Z, Fu Y, et al. The nexus of the indoor CO2 concentration and ventilation demands underlying CCVbased demand-controlled ventilation in commercial buildings: A critical review[J]. Building and environment, 2022, 218:109116.

[44]Snow S, Boyson A S, Paas K, et al. Exploring the physiological, neurophysiological and cognitive performance effects of elevated carbon dioxide concentrations indoors[J]. Building and Environment, 2019, 156(JUN.):243-252.

[45]Abd A A, Naji S Z, Hashim A S, et al. Carbon dioxide removal through Physical Adsorption using Carbonaceous and non-Carbonaceous Adsorbents: A review[J]. Journal of Environmental Chemical Engineering, 2020, 8(5):104142.

[46]Chen L, Chu Y, Deng W . Experimental investigation of dedicated desiccant wheel outdoor air cooling systems for nearly zero energy buildings[J]. International Journal of Refrigeration, 2022, 134:265-277.

[47]Chu Y, Xu P, Jia Y, et al. An adsorption-based CO2 treatment unit for ultra-low fresh air HVAC system using solid amine[J]. Energy and Buildings, 2021, 111148.

[48]Sedighi M, Talaie M R, Sabzyan H, et al. Evaluating equilibrium and kinetics of CO2 and N2 adsorption into amine-functionalized metal-substituted MIL-101 frameworks using molecular simulation[J]. Fuel, 2022, 308:121965.

[49]梅华, 陈道远, 姚虎卿, 等. 硅胶的二氧化碳吸附性能及其与微孔结构的关系[J]. 天然气化工, 2004(05):21-25.

[50]王洪梅, 罗仕忠, 吴永永, 等. 改性硅胶吸附剂用于CO2/CH4吸附分离的研究[J]. 天然气化工, 2012, 037(005):1-5+26.

[51]倪诸希, 何胜, 张勇, 等. 结合改性硅胶对模拟煤层气中CH4/CO2的吸附分离研究[J]. 矿业研究与开发, 2021, 41(02):138-143.

[52]Zhang Z, Zhao S, Li K F, et al. Resilient silica-based aerogels with organic and inorganic molecular hybrid structure prepared by a novel self-catalyzed gelling strategy for efficient heat insulation and CO2 adsorption[J] Chemical Engineering Journal, 2023, 459:141579.

[53]李文哲, 高海云, 杨海燕, 等.乙醇胺改性硅胶吸附剂对模拟沼气中CH4/CO2的分离性能[J]. 农业工程学报, 2014, 30(22):267-272.

[54]Xu N. Preparation of nitrogen doped carbon from tree leaves as efficient CO2 adsorbent[J]. Chemical Physics Letters, 2018, 711.

[55]Zhou J, Li D, Wang Y, et al. Effect of the feedstock type on the volumetric low-pressure CO2 capture performance of activated carbons[J]. Energy & Fuels, 2018, 32(12):12711-12720.

[56]Zhang C, Song W, Ma Q, et al. Enhancement of V CO2 capture on biomass-based carbon from black locust by KOH activation and ammonia modification[J]. Energy & Fuels, 2016, 30(5):4181-4190.

[57]Díez N, Álvarez P, Granda M, et al. CO2 adsorption capacity and kinetics in nitrogen-enriched activated carbon fibers prepared by different methods[J]. Chemical Engineering Journal, 2015, 281:704-712.

[58]Sethia G, Sayari A. Comprehensive study of ultra-microporous nitrogen-doped activated carbon for CO2 capture[J]. Carbon, 2015, 93:68-80.

[59]Alabadi A, Razzaque S, Yang Y, et al. Highly porous activated carbon materials from carbonized biomass with high CO2 capturing capacity[J]. Chemical Engineering Journal, 2015, 281:606-612.

[60]Coromina H M, Walsh D A, Mokaya R. Biomass-derived activated carbon with simultaneously enhanced CO2 uptake for both pre and post combustion capture applications[J]. Journal of Materials Chemistry A, 2015, 4(1):280-289.

[61]Chen, C, Yu, Y, He, C, et al. Efficient capture of CO2 over ordered micro-mesoporous hybrid carbon nanosphere[J]. Applied Surface Science, 2018. 439, 113-121.

[62]Tong L, Yue T, Zuo P, et al. Effect of characteristics of KI-impregnated activated carbon and flue gas components on Hg0 removal[J]. Fuel, 2017, 197:1-7.

[63]Mahdipoor H R, Halladj R, Babakhani E G, et al. Adsorption of CO2, N2 and CH4 on a Fe-based metal-organic frameworks, MIL-101(Fe)-NH2[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021, 619:126554.

[64]Llewellyn P L, Bourrelly S, Serre C, et al. High Uptakes of CO2 and CH4 in Mesoporous Metal-organic frameworks MIL-100 and MIL-101[J]. Langmuir, 2008, 24(14):7245-7250.

[65]Xian S K, Peng J J, Zhang Z J, et al. Highly enhanced and weakened adsorption properties of two MOFs by water vapor for separation of CO2/CH4 and CO2/N2 binary mixtures[J]. Chemical Engineering Journal, 2015, 270:385-392.

[66]Salehi S, Anbia M, Razavi F. Improving CO2/CH4 and CO2/N2 adsorptive selectivity of Cu‐BTC and MOF‐derived nanoporous carbon by modification with nitrogen‐containing groups[J]. Environmental Progress & Sustainable Energy, 2020, 39(1):13302.

[67]Zhang Z, Zhang W, Chen X, et al. Adsorption of CO2 on zeolite 13X and activated carbon with higher surface area[J]. Separation Science and Technology, 2010, 45(5):710-719.

[68] Mahdipoor H R, Babakhani E G, Halladj R, et al. Post-combustion CO2 capture using nontoxic iron-based amino-MIL-101(Fe)[J]. Inorganic Chemistry Communications, 2021, 133:108950.

[69]Soubeyrand-Lenoir E, Vagner C, Ji W Y, et al. Llewellyn. How water fosters a remarkable 5-fold increase in low-pressure CO2 uptake within mesoporous MIL-100(Fe)[J]. Journal of the American Chemical Society, 2018,134(24): 10174-10181.

[70]Li Q C, Xu W J, Liang X, et al. Specific alkali metal sites as CO2 traps in activated carbon with different pore size for CO2 selective adsorption: GCMC and DFT simulations[J]. Fuel, 2022,325:124871.

[71]LI J, Wang L, Liu Y, et al. Removal of berberine from wastewater by MIL-101(Fe): performance and mechanism[J]. ACS Omega, 2020,5(43): 27962-27971.

[72]Abd-elhady M M, Salem M S, Hamed A M, et al. Solid desiccant-based dehumidification systems: A critical review on configurations, techniques, and current trends[J]. International Journal of Refrigeration, 2022, 133:337-352.

[73]Hou P, Zu K, Qin M, et al. A novel metal-organic frameworks based humidity pump for indoor moisture control[J] . Building and Environment, 2021, 187:107396.

[74]Horcajada P, Surble S, Serre C, et al. Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores[J]. Chemical Communications, 2007, 27(27):2820-2822.

[75]Liu X W, Du B G, Wu J T, et al. Experiment of pressure swing adsorption of CO2/CH4 at low temperature through coconut shell activated carbon[J]. Journal of Jishou University (Natural Science Edition), 2016, 37(02):43-46+69.

[76]GB 50736-2012. 民用建筑供暖通风与空气调节设计规范[S]. 北京: 中国建筑工业出版社,2012.

[77]GB/T 18883-2022. 室内空气质量标准[S]. 北京: 中国标准出版社, 2022.

[78]Ge T S, Ziegler F, Wang R Z. A mathematical model for predicting the performance of a compound desiccant wheel (A model of compound desiccant wheel)[J]. Applied Thermal Engineering, 2010, 30(8-9):1005-1015.

[79]Ng K C, Chua H T, Chung C Y, et al. Experimental investigation of the silica gel-water adsorption isotherm characteristics[J]. Applied Thermal Engineering, 2001, 21:1631-1642.

[80]Mason J A, Sumida K,Herm Z R, et al. Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy & Environmental Science, 2011, 4(8):3030-3040.

[81]Ansón A, Callejas M A, Benito A M, et al. Hydrogen adsorption studies on single wall carbon nanotubes[J]. Carbon, 2004, 42(7):1243-1248.

[82]Ansone-Bertina L, Ozols V, Arbidans L, et al. Metal-Organic Frameworks (MOFs) containing adsorbents for carbon capture[J]. Energies, 2022, 15:1-33.

[83]Jia X, Li S, Wang Y, et al. Adsorption Behavior and Mechanism of Sulfonamide Antibiotics in Aqueous Solution on a Novel MIL-101(Cr)@GO Composite[J]. Journal of Chemical & Engineering Data, 2019, 64(3):1265-1274.

[84] Zhang Z, Li F, Li G, et al. Cu-doped MIL-101(Fe) with enhanced photocatalytic nitrogen fixation performance[J]. Journal of Solid State Chemistry, 2022, 310:123041.

[85]Xie Q, Li Y, Lv Z, et al. Effective Adsorption and Removal of Phosphate from Aqueous Solutions and Eutrophic Water by Fe-based MOFs of MIL-101[J]. Scientific Reports, 2017, 7(1):3316.

[86]Jeremias F, Khutia A, Henninger S K, et al. MIL-100(Al, Fe) as water adsorbents for heat transformation purposes - a promising application[J]. Journal of Materials Chemistry, 2012, 12:10148-10151.

[87]Sohail M, Yun Y N, Lee E, et al. Synthesis of highly crystalline NH2-MIL-125 (Ti) with S-shaped water isotherms for adsorption heat transformation[J]. Crystal Growth & Design, 2017, 17:1208-1213.

[88]Lazaridis N K, Karapantsios T D, Georgantas D. Kinetic analysis for the removal of a reactive dye from aqueous solution onto hydrotalcite by adsorption[J]. Water Research, 2003, 12:3023-3033.

[89]Salman F, Zengin A, Kazici H C. Synthesis and characterization of Fe3O4-supported metal-organic framework MIL-101(Fe) for a highly selective and sensitive hydrogen peroxide electrochemical sensor[J]. Ionics, 2020, 26:5221-5232.

[90]Huo J B, Yu G C, Mesoporous cerium oxide-anchored magnetic polyhedrons derived from MIL-100(Fe) for enhanced removal of arsenite from aqueous solution[J]. Journal of Hazardous Materials, 2021, 415:14.

[91]Trung T K, Ramsahye N A, Trens P, et al. Adsorption of C5-C9 hydrocarbons in microporous MOFs MIL-100(Cr) and MIL-101(Cr): A manometric study[J]. Microporous and Mesoporous Materials, 2010, 134:134-140.

[92]Guo L J, Li F F, Liu J X, et al. Cracked spindle morphology of MIL-101(Fe) for improved photocatalytic nitrogen reduction[J]. Journal of Solid State Chemistry, 2022, 316:123610.

[93]Seo Y K, Yoon J W, Lee J S, et al. Energy-efficient dehumidification over hierachically porous metal-organic frameworks as advanced water adsorbents[J]. Advanced Materials, 2012, 24(6):806-810.

[94]Xian S, Peng J, Zhang Z, et al. Highly enhanced and weakened adsorption properties of two MOFs by water vapor for separation of CO2/CH4 and CO2/N2 binary mixtures[J]. Chemical Engineering Journal, 2015, 270:385-392.

[95]Henninger S K, Habib H A, Janiak C. MOFs as adsorbents for low temperature heating and cooling applications[J]. Journal of the American Chemical Society, 2009, 131(8):2776-2777.

[96]Tazibet S, Boucheffa Y, Lodewyckx P, et al. Evidence for the effect of the cooling down step on activated carbon adsorption properties[J]. Microporous & Mesoporous Materials, 2016, 221:67-75.

[97]Hodgson A, Haq S. Water adsorption and the wetting of metal surfaces[J]. Surface Science Reports, 2009, 64(9):381-451.

中图分类号:

 TU834.9    

开放日期:

 2023-06-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式