- 无标题文档
查看论文信息

题名:

 基于车辆稳定性的转交约束自适应路径跟踪控制    

作者:

 任杰    

学号:

 22206223074    

保密级别:

 保密(1年后开放)    

语种:

 chi    

学科代码:

 085400    

学科:

 工学 - 电子信息    

学生类型:

 硕士    

学位:

 工学硕士    

学位年度:

 2025    

学校:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 控制工程    

研究方向:

 车辆动力学与控制    

导师姓名:

 寇发荣    

导师单位:

 西安科技大学    

提交日期:

 2025-06-17    

答辩日期:

 2025-06-03    

外文题名:

 Adaptive Path Tracking Control with Steering Angle Constraints Based on Vehicle Stability    

关键词:

 自动驾驶车辆 ; 路径跟踪 ; 前轮转角 ; 模型预测控制 ; 参数优化    

外文关键词:

 Autonomous vehicles ; Path tracking ; Front wheel steering angle ; Model prediction control ; Phase plane method ; Parameter optimization    

摘要:

车辆电动化与智能化的不断发展导致自动驾驶车辆的研究已逐步成为当今热点领域。路径跟踪控制作为自动驾驶最重要的一环,对于实现自动驾驶功能具有重要的意义。其中,前轮转角是直接影响自动驾驶车辆的运动控制性能的主要因素之一。然而,传统的定前轮转角约束控制器不能实时适应不同的工况变化,进而限制了智能车辆在预定路径上的跟踪精度和行驶稳定性。本文结合车辆的动力学特性和模型预测控制(Model Predictive Control,MPC)算法,提出基于车辆稳定性的前轮转角约束自适应MPC路径跟踪控制策略,该策略能够在不同的工况下,保障车辆的运动性能,从而显著提高自动驾驶车辆在预定路径上的跟踪性能和行驶稳定性。本文主要研究内容为:

(1)采用魔术轮胎公式建立轮胎模型,分析轮胎横向和纵向的动力学特性,基于魔术轮胎模型,构建二自由度车辆动力学模型和三自由度车辆动力学模型分别作为稳定性分析参考模型和路径跟踪参考模型。为确保车辆动力学模型的准确性,利用实车的实际测量参数和力学理论计算相结合来配置模型参数。

(2)针对车辆前轮转角不能实时适应不同工况的问题,设计基于车辆动力学和稳定性前轮转角约束条件:依据轮胎动力学模型,分析轮胎的纵向力,结合车辆与前轮转角的动力学关系,设定前轮转角的动力学约束条件;从车辆稳定性角度出发,设定前轮转角的稳定性约束条件,避免因转角过大或变化过快导致车辆失稳。综合考虑转角的动力学约束和稳定性约束,设定前轮转角自适应约束条件。结合MPC控制器,根据车辆实时状态动态调整前轮转角,实现前轮转角的约束自适应。

(3)针对车辆路径跟踪过程中跟踪精度低且行驶不稳定的问题,设计MPC路径跟踪控制器,基于GA-PSO优化算法优化MPC的重要时域参数,并与未优化的MPC控制器进行仿真对比。结果表明,优化后MPC控制器的横向和航向误差最大值分别降低79.09%和22.95%。再结合所设定的前轮转角约束条件和MPC滚动优化特性,设计基于转角约束自适应MPC路径跟踪控制策略,动态调整前轮转角的约束,从而在不同的工况下实现高精度的路径跟踪和行驶稳定性,同时研究每一时刻的车辆参数输出和前轮转角对路径跟踪控制的影响。

(4)针对所设计路径跟踪策略控制性能的验证问题,搭建CarSim/Simulink联合仿真平台,配置相关参数,并在多种工况下进行仿真验证,分析该控制策略在路径跟踪精度和稳定性方面的表现;在Simulink-ROS分层架构的基础上搭建实车试验平台,设计完整的实车试验流程,并进行路径跟踪控制策略实车试验,进一步验证控制策略在实际控制中的有效性。结果表明,所设计控制器的横向位移、横摆角、质心侧偏角和横摆角速度的均方根值均得到改善。

外文摘要:

The continuous advancement of vehicle electrification and intelligentization has made autonomous driving a prominent research focus in recent years. As one of the most critical components of autonomous driving systems, path-tracking control plays a vital role in achieving reliable autonomous vehicle functionality. However, conventional fixed front-wheel angle constraint controllers fail to adapt to varying operational conditions in real time, limiting tracking accuracy and driving stability for intelligent vehicles along predefined paths.To address this limitation, this study integrates vehicle dynamics characteristics with a Model Predictive Control (MPC) algorithm, proposing a stability-based adaptive MPC path-tracking control strategy with front-wheel angle constraints. The proposed strategy dynamically adjusts to diverse driving conditions, ensuring consistent motion performance and substantially improving both path-tracking precision and driving stability for autonomous vehicles.The main research contents of this thesis are as follows:

(1) The Magic Formula Tire model was employed to establish the tire model, analyzing both lateral and longitudinal tire dynamics characteristics. Based on the Magic Formula Tire model, two-degree-of-freedom and three-degree-of-freedom vehicle dynamics models were constructed to serve as the reference models for stability analysis and path tracking respectively. To ensure the accuracy of the vehicle dynamics models, the model parameters were configured through a combination of actual measured parameters from real vehicles and mechanical theory calculations.

(2) To address the problem that the front-wheel steering angle cannot adapt to different working conditions in real time, a steering angle constraint condition was designed based on vehicle dynamics and stability requirements: Based on the tire dynamics model, the longitudinal tire forces were analyzed and combined with the dynamic relationship between the vehicle and front-wheel steering angle to establish dynamic constraints for the steering angle. From the perspective of vehicle stability, the minimum and maximum values of the steering angle were determined, along with stability constraints, to prevent vehicle instability caused by excessive steering angles or overly rapid steering changes. By comprehensively considering both the dynamic constraints and stability constraints, adaptive steering angle constraints were established. Within the MPC controller framework, the front-wheel steering angle was dynamically adjusted in real time according to the vehicle's actual state, thereby achieving adaptive steering angle control.

(3) To address the issues of low tracking accuracy and unstable driving performance in vehicle path tracking, this study designed an MPC path tracking controller with its critical time-domain parameters optimized using a GA-PSO algorithm, followed by comparative simulations with conventional MPC controllers. Results demonstrate that the optimized MPC controller achieves 79.09% and 22.95% reductions in maximum lateral and heading errors, respectively. By integrating predefined front-wheel steering angle constraints with MPC's receding horizon optimization, an adaptive MPC path tracking control strategy was developed to dynamically adjust steering angle constraints, thereby ensuring high-precision path tracking and enhanced driving stability across various operating conditions, while simultaneously investigating the influence of real-time vehicle parameter outputs and steering angles on control performance.

(4) To validate the control performance of the designed path tracking strategy, a CarSim/Simulink co-simulation platform was established with relevant parameters configured. Extensive simulation tests were conducted under various operating conditions to analyze the strategy's performance in terms of path tracking accuracy and stability. Furthermore, based on the Simulink-ROS hierarchical architecture, a physical vehicle test platform was constructed. A complete vehicle testing procedure was designed and implemented to conduct real-world path tracking control experiments, thereby further verifying the effectiveness of the control strategy in practical applications. The results demonstrate that the designed controller achieves improvements in the root mean square values of lateral displacement, yaw angle, sideslip angle, and yaw rate.

参考文献:

[1] 王芳,李富强,张文静.2024年上半年中国汽车产业发展现状及形势研判[J].汽车工业研究,2024,15(03):2-7.

[2] 2024年上半年全国机动车和驾驶人统计分析[J]. 公安研究, 2024, 23(07): 127-128.

[3] 李军, 周伟, 唐爽. 基于自适应拟合的智能车换道避障轨迹规划[J]. 汽车工程, 2023, 45(07): 1174-1183.

[4] 郭延永, 刘佩, 袁泉, 等. 网联自动驾驶车辆道路交通安全研究综述[J]. 交通运输工程学报, 2023, 23(05): 19-38.

[5] 王晔, 曲林迟. 智能驾驶技术对传统汽车产业的影响:互补与替代效应[J]. 复旦学报(自然科学版), 2020, 59 (04): 483-489.

[6] 汪洪波, 王春阳, 赵林峰, 等. 基于强化学习的智能车辆路径跟踪变参数MPC多目标控制[J]. 中国公路学报, 2024, 37(03): 157-169.

[7] 李韶华, 杨泽坤, 王雪玮. 基于T-S模糊变权重MPC的智能车轨迹跟踪控制[J]. 机械工程学报, 2023, 59(04): 199-212.

[8] Tian Y, Yao Q, Wang C, et al. Switched model predictive controller for path tracking of autonomous vehicle considering rollover stability [J]. Vehicle system dynamics, 2022, 60(12): 4166-4185.

[9] Ge L, Zhao Y, Zhong S, et al. Simultaneous Stability and Path Following Control for 4WIS4WID Autonomous Vehicles Based on Computationally Efficient Offset Free MPC[J]. International Journal of Control, Automation and Systems, 2023, 21(09): 2782-2796.

[10] 许英博, 李景涛, 高飞翔, 等. 智能电动浪潮下的汽车产业格局重塑[J]. 汽车安全与节能学报, 2023, 14(06): 651-663.

[11] 陈云培. 《汽车驾驶自动化分级》(GB/T 40429—2021)解析[J]. 汽车维护与修理, 2021, (21): 68-70.

[12] Nasr V, Wozniak D, Shahini F, et al. Application of advanced driver-assistance systems in police vehicles[J]. Transportation research record, 2021, 2675(10): 1453-1468.

[13] 任泽豫, 周丰婕. 新能源浪潮下传统造车企业应对造车新势力的挑战研究[J]. 现代工业经济和信息化, 2023, 13(07): 40-42.

[14] Talpes E, Sarma D D, Venkataramanan G, et al. Compute solution for tesla's full self-driving computer[J]. IEEE Micro, 2020, 40(02): 25-35.

[15] 丁浩东, 王长胜, 冯斌. 蔚来如何打造可进化的智能电动汽车[J]. 质量与认证, 2020, 14(10): 90-91.

[16] 董芳芳. Apollo开放平台:赋能产教融合, 推动行业创新[J]. 软件和集成电路, 2021, 15(06): 32-33.

[17] Zhang P, Li G, Liu C, et al. End-to-end BEV perception via homography matrix[C]//2023 IEEE 6th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). IEEE, 2023,32(06): 1352-1356.

[18] 田野. 华为打造智能汽车解决方案[J]. 智能网联汽车, 2022, 5(01): 68-69.

[19] Zhao F, Kuang X, Hao H, et al. Selection of emerging technologies: A case study in technology strategies of intelligent vehicles[J]. Engineering Management Journal, 2022, 34(01): 37-49.

[20] Dowling R, McGuirk P. Autonomous vehicle experiments and the city[J]. Urban Geography, 2022, 43(03): 409-426.

[21] Gámez Serna, Lombard A, Ruichek Y. et al. GPS-Based Curve Estimation for an Adaptive Pure Pursuit Algorithm [J]. Lecture Notes in Computer Science, 2017: 497–511.

[22] 付景枝, 尹泽凡, 刘云平, 等. 基于改进纯跟踪算法的无人车路径跟踪研究[J]. 机械设计, 2022, 39 (S2): 41-45.

[23] Park M , Lee S , Han W . Development of lateral control system for autonomous vehicle based on adaptive pure pursuit algorithm[C]. IEEE, 2014: 1443-1447.

[24] Hafizah N A, Khisbullah H, Hairi Z, et al. Adaptive modified Stanley controller with fuzzy supervisory system for trajectory tracking of an autonomous armoured vehicle [J]. Robotics and Autonomous Systems, 2018, 105:94-111.

[25] Han G, Fu W, Wang W, et al. The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network[J]. Sensors, 2017, 17(06): 1244.

[26] Al-Mayyahi A, Wang W, Birch P. Path tracking of autonomous ground vehicle based on fractional order PID controller optimized by PSO[C]. IEEE, 2015: 109-114.

[27] 赵树恩, 刘秋杨. 基于分数阶PID理论的汽车线控转向的主动控制[J]. 汽车安全与节能学报, 2019, 10(02): 161-168.

[28] 周义棚, 杨威. 基于MPC和PID的无人驾驶车辆路径跟踪控制[J]. 农业装备与车辆工程, 2023, 61(09): 78-81.

[29] 高琳琳, 唐风敏, 郭蓬, 等. 自动驾驶横向运动控制的改进LQR方法研究[J]. 机械科学与技术, 2021,40(03): 435-441.

[30] 余米森, 钱玉宝, 黄华宝, 等. 连续工况下基于 PID+LQR算法的自动驾驶车辆横纵向耦合控制[J]. 科学技术与工程, 2022, 22(30): 13490-13496.

[31] 王姝, 张海川, 赵轩, 等. 融合稳定性的分布式驱动电动汽车路径跟踪控制策略研究[J]. 中国机械工程, 2023, 34(09): 1035-1044

[32] Qian Y, Wang Z, Liang W, et al. Research on automatic parking system based on linear quadratic regulator[J]. Engineering Computations, 2022, 39(3): 1161-1179.

[33] 李爽, 徐延海, 陈静, 等.基于弧长预瞄的车辆侧向跟踪控制研究[J]. 汽车工程, 2019, 41(06): 668-675.

[34] 孔慧芳, 曹诚, 张倩. 基于预瞄时间自适应的爆胎车辆横向控制[J]. 合肥工业大学学报(自然科学版), 2023, 46(09): 1160-1165+1177.

[35] 魏凌涛, 王翔宇, 邱彬, 等. 基于自适应预瞄路径的自动驾驶车辆寻迹和避障控制[J]. 机械工程学报, 2022, 58(06): 184-193.

[36] 王艺, 蔡英凤, 陈龙, 等. 基于模型预测控制的智能网联汽车路径跟踪控制器设计[J]. 机械工程学报, 2019, 55(08): 136-144+153.

[37] 寇发荣, 郑文博, 张新乾, 等. 采用状态扩展MPC与转角补偿的无人车路径跟踪控制[J]. 机械科学与技术, 2023, 42(09): 1533-1541.

[38] 张亮修, 张铁柱, 吴光强. 考虑误差校正的智能车辆路径跟踪鲁棒预测控制[J]. 西安交通大学学报, 2020, 54(03): 20-27.

[39] 唐斌, 尹玥, 江浩斌, 等. 基于RMPC的商用车车道保持跟踪控制[J]. 江苏大学学报(自然科学版), 2022, 43(03): 256-262.

[40] 梁忠超, 张欢, 赵晶, 等. 基于自适应MPC的无人驾驶车辆轨迹跟踪控制[J]. 东北大学学报(自然科学版), 2020, 41(06): 835-840.

[41] Fu T, Zhou H, Liu Z. NMPC-Based Path Tracking Control Strategy for Autonomous Vehicles With Stable Limit Handling[J]. IEEE Transactions on Vehicular Technology, 2022, PP(12): 12499-12510.

[42] Yin C, Xu B, Chen X, et al. Nonlinear Model Predictive Control for Path Tracking Using Discrete Previewed Points[J]. IEEE International Conference on Intelligent Transportation Systems, 2020, PP: 1-6.

[43] Cheng S, Li L, Chen X, et al. Model-Predictive-Control-Based Path Tracking Controller of Autonomous Vehicle Considering Parametric Uncertainties and Velocity-Varying [J]. IEEE Transactions on Industrial Electronics, 2020, PP (99): 1-1.

[44] 顾青, 白国星, 孟宇, 等. 基于非线性模型预测控制的自动泊车路径跟踪[J]. 工程科学学报, 2019, 41(07): 947-954.

[45] 白国星, 刘丽, 孟宇, 等. 基于非线性模型预测控制的移动机器人实时路径跟踪[J]. 农业机械学报, 2020, 51(09): 47-52.

[46] 孙晓强, 王玉麟, 胡伟伟, 等. 基于轮胎分段仿射辨识模型的车辆行驶状态估计策略研究[J]. 汽车工程, 2023, 45(07): 1212-1221.

[47] 闵德垒, 童汝亭, 危银涛. 考虑轮胎非线性的横摆角速度计算与车辆稳定性控制[J].中国机械工程, 2023, 34(21): 2521-2530.

[48] 许男, 张紫薇, 杨宇航, 等. 考虑参数不确定性的UniTire轮胎模型与车辆稳定性分析[J]. 机械工程学报, 2022, 58(16): 247-257.

[49] 黄通, 高钦和, 刘志浩, 等. 重载子午轮胎非线性特性研究与模型修正[J]. 华中科技大学学报(自然科学版), 2021, 49(10): 42-46.

[50] Bakker E, Nyborg L, Pacejka H B. Tyre modelling for use in vehicle dynamics studies[J]. SAE transactions, 1987: 190-204.

[51] 吴文娟. 基于相平面的车辆稳定性分析与协调控制研究[D]. 重庆大学, 2021.

[52] 李楚琳, 唐雪梅, 杨朝阳, 等. 基于前轮转角约束自适应模型预测控制的路径跟踪研究[J]. 汽车实用技术, 2022, 47(02): 69-75.

[53] 高自群, 谢桂芝, 周兵, 等. 多方法融合的汽车质心侧偏角估计[J]. 浙江大学学报(工学版), 2023, 57(12): 2391-2400.

[54] 王成, 屈小贞, 孙晓帮. 分布式驱动电动汽车的横向稳定性控制研究[J]. 现代制造工程, 2023(11): 63-69.

[55] 张树培, 张生, 张玮, 等. 基于稳定度指标的分布式驱动车辆转向稳定性控制研究[J]. 汽车技术, 2022(02): 28-35.

[56] 许男, 李小雨. 复合工况下四轮驱动电动汽车操纵稳定性控制[J]. 机械工程学报, 2021, 57(08): 205-220.

[57] 罗正. 电动轮驱动汽车差动助力转向与稳定性协调控制[D].吉林大学, 2019.

[58] 龚建伟, 姜岩, 徐威. 无人驾驶车辆模型预测控制[M]. 北京: 北京理工大学出版社, 2014: 36-73.

[59] 李兆凯, 刘新宁, 彭国轩, 等. 无人驾驶车辆路径跟踪混合控制策略研究[J]. 汽车技 术, 2024(03): 37-46.

[60] Gao F, Zhao F, Zhang Y. Research on Path Tracking and Yaw Stability Coordination Control Strategy for Four-Wheel Independent Drive Electric Trucks [J]. Processes, 2023, 11(08).

[61] 张亮修, 吴光强, 郭晓晓. 自主车辆线性时变模型预测路径跟踪控制[J]. 同济大学学报 (自然科学版), 2016, 44(10): 1595-1603.

[62] 胡家铭, 胡宇辉. 基于模型预测控制的无人驾驶履带车辆轨迹跟踪方法研究[J]. 兵工学报, 2019, 40(03): 456-463.

[63] Wang Y, Farah H, Yu R, et al. Characterizing behavioral differences of autonomous vehicles and human-driven vehicles at signalized intersections based on Waymo Open Dataset[J]. Transportation research record, 2023, 2677(11): 324-337.

[64] 郑文博. 智能车辆局部路径规划与路径跟踪控制研究[D].西安科技大学, 2022.

中图分类号:

 U461.1    

开放日期:

 2026-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式