- 无标题文档
查看论文信息

论文中文题名:

 H型钢加固RC组合梁承载力性能研究    

姓名:

 汪勇    

学号:

 22204228117    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085900    

学科名称:

 工学 - 工程 - 土木水利    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木水利    

研究方向:

 土木工程防灾减灾理论与技术    

第一导师姓名:

 李强    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-13    

论文答辩日期:

 2025-06-05    

论文外文题名:

 Study on bearing capacity of RC composite beamsstrengthened with H-shaped steel    

论文中文关键词:

 H型钢 ; 承载力性能 ; 有限元分析 ; 刚度比 ; 加固组合梁    

论文外文关键词:

 H-beam ; load-bearing capacity performance ; finite element analysis ; tiffness ratio ; reinforcement composite beams    

论文中文摘要:

随着我国基础设施建设的不断完善,目前已进入建筑维护与改造的关键时期,H型钢加固RC组合梁,是一种新型装配式加固技术,具有施工效率高、承载性能优异等特点,适用于工业厂房的结构改造,具有广阔的应用前景,而迄今为止对于此类加固构件的研究体系尚不完整。因此,有必要对H型钢加固RC组合梁,采用试验研究与数值模拟相结合的方法研究论述其承载特性。主要研究内容与结论如下:

对5种不同抗弯刚度比的加固组合梁,和1根未加固的对照混凝土梁,进行三分点静力加载试验,旨在研究其抗弯承载性能,并为数值模拟研究提供试验数据基础。试验结果表明:经H型钢加固后的组合梁试件,其极限抗弯承载力较未加固梁提升幅度达6.2倍以上,展现出良好的加固效果;实测极限弯矩达到H型钢梁与混凝土梁理论计算值叠加结果的1.9~3.6倍,超叠加现象验证了加固方法具有优异的组合受力性能;加固组合梁初始刚度相比对照组提升7.6倍以上效果最为显著;加固组合梁的相对滑移量随着抗弯刚度比的增大而增大,抗弯刚度比在0.32~0.64区间内抗弯刚比对滑移影响成为次要因素;此加固方案在实现显著承载力提升的同时,兼具良好的延性性能。

基于ABAQUS数值模拟平台,对三分点静力加载试验进行模拟复现。利用试验结果,对比验证数值模型,结果表明:试验与模拟的混凝土损伤具有高度的一致性,加载全过程荷载位移曲线各个主要受力节点的平均误差均在10%以内,所以ABAQUS数值模型能够准确呈现三分点加载下加固组合梁的力学行为,通过验证的数值模型可作为有限元扩展参数研究的基础模型。

对通过验证的基础模型,增加参变量如:不同的剪跨比、改变箍板参数、增设加劲肋等。通过有限元软件计算结果分析得到以下结论:加固组合梁的抗剪承载力随剪跨比增大呈现先增后减小,其中三分点对称加载的工况下抗剪承载性能最佳,跨中单点加载时性能最弱;增设U型箍板可提升抗剪承载力约12%~15%,并且可有效降低试件的界面滑移16%~21%,提高试件延性性能;加劲肋与箍板同时使用可有效提升试件整体刚度1.5%~4.5%,并使得H型钢受力更为均匀,从而提高型钢有效利用率。

(4)基于分项叠加原理,提出了一种考虑U型箍板作用的组合梁极限抗剪承载力计算模型。该模型引入H型钢有效利用系数,以反映H型钢与混凝土梁的协同工作效应,同时结合箍板的应力状态与抗剪刚度比的关系引入箍板受力折减系数,对各分项优化。分析其理论计算值与试验结果和模拟结果吻合度较高,相对误差控制在10%以内,为工程加固设计提供了可靠的理论依据。

论文外文摘要:

ABSTRACT

With the continuous improvement of infrastructure construction in China, it has entered a critical period of building maintenance and transformation. H-shaped steel reinforced RC composite beam is a new type of assembled reinforcement technology, which has the characteristics of high construction efficiency and excellent bearing performance. It is suitable for the structural transformation of industrial plants and has broad application prospects. So far, the research system for such reinforced components is not complete. Therefore, it is necessary to study the bearing characteristics of RC composite beams strengthened with H-shaped steel by combining experimental research with numerical simulation. The main research contents and conclusions are as follows :

( 1 ) Three-point static loading tests were carried out on five reinforced composite beams with different flexural stiffness ratios and one unreinforced control concrete beam, aiming to study its flexural bearing capacity and provide experimental data basis for numerical simulation. The test results show that the ultimate flexural bearing capacity of the composite beam specimen strengthened by H-shaped steel is more than 6.2 times higher than that of the unstrengthened beam, showing a good reinforcement effect. The measured ultimate bending moment is 1.9 ~ 3.6 times of the superposition result of the theoretical calculation value of the H-shaped steel beam and the concrete beam. The super-superposition phenomenon verifies that the reinforcement method has excellent combined mechanical performance. The initial stiffness of the reinforced composite beam is more than 7.6 times higher than that of the control group. The relative slip of the reinforced composite beam increases with the increase of the bending stiffness ratio, and the influence of the bending stiffness ratio on the slip becomes a secondary factor in the range of 0.32 ~ 0.64. This reinforcement scheme has good ductility while achieving significant bearing capacity improvement.

( 2 ) Based on the ABAQUS numerical simulation platform, the three-point static loading test is simulated and reproduced. Using the test results, the numerical model is compared and verified. The results show that the concrete damage between the test and the simulation is highly consistent, and the average error of each main force node in the load displacement curve of the whole loading process is within 10 %. Therefore, the ABAQUS numerical model can accurately present the mechanical behavior of the reinforced composite beam under the three-point loading. The verified numerical model can be used as the basic model for the variable parameter research of the finite element model.

( 3 ) For the basic model of the verification, increase the parameters such as : different shear span ratio, with or without hoop plate, hoop plate section size, with or without stiffeners, etc. Through the analysis of the calculation results of the finite element software, the following conclusions are obtained : the shear bearing capacity of the reinforced composite beam increases first and then decreases with the increase of the shear span ratio. Among them, the mechanical performance is the best under the three-point symmetrical loading condition, and the performance is the weakest under the single-point loading in the middle of the span ; the addition of U-shaped hoop plate can increase the shear bearing capacity by about 12 % ~ 15 %, and can effectively reduce the interface slip of the specimen and improve the ductility of the specimen. The use of stiffeners and stirrups at the same time can effectively improve the overall stiffness of the specimen by 1.5 ~ 4.5 %, and improve the effective utilization rate of H-shaped steel.

( 4 ) Based on the principle of partial superposition, a calculation model of ultimate shear capacity of composite beams considering the effect of U-shaped stirrups is proposed. In this model, the effective utilization coefficient of H-shaped steel is introduced to reflect the cooperative working effect of steel and concrete. At the same time, the stress reduction coefficient of the hoop plate is introduced according to the relationship between the stress state of the hoop plate and the shear stiffness ratio, and each sub-item is optimized. The theoretical calculation value is in good agreement with the experimental results and simulation results, and the relative error is controlled within 10 %, which provides a reliable theoretical basis for engineering reinforcement design.

参考文献:

[1] 鲍学英,薛春燕,李子龙,等.铁路桥梁物化阶段碳排放计算及影响因素分析[J/OL].安全与环境学报,1-11[2025-01-07].

[2] 吴刚,曹徐阳,冯德成.面向城市更新的外附子结构式既有建筑抗震性能提升技术研究进展[J].建筑结构,2024,54(19):21-34.

[3] 刘举,张国凯,王振,等.温压炸药近爆作用下RC梁破坏特征和毁伤规律试验研究[J].兵工学报,2024,45(03):864-874.

[4] 段虹宇.浅谈建筑工程结构加固[J].建材与装饰,2018,(15):43.

[5] 石广召.浅谈建筑施工污染对环境质量造成的影响[J].清洗世界,2022,38(07):103-107.

[6] 刘航编著.建筑结构加固技术及工程应用[M].北京:中国建筑工业出版社,2021.01.

[7] GB50367-2013.混凝土结构加固设计规范[S].北京:中国建筑工业出版社,2013.

[8] GBJGJ138-2016组合结构设计规范[S].北京:中国建筑工业出版社,2016.

[9] 聂建国,沈聚敏.滑移效应对钢-混凝土组合梁弯曲强度的影响及其计算[J].土木工程学报,1997,(1): 31-36

[10] 聂建国,谭英,王洪全.钢-高强混凝土组合梁栓钉剪力连接件的设计计算[J].清华大学学报(自然科学版),1999,(12): 94-98

[11] 聂建国,李红有,唐亮.高强钢-混凝土组合梁受弯性能试验研究[J].建筑结构学报,2009,(2): 64-69

[12] 刘劲,丁发兴,蒋丽忠,付磊,黄琰.负弯矩荷载下钢-混凝土组合梁抗弯刚度研究[J].铁道科学与工程学报,2019,第16卷(9): 2281-2289

[13] Zhang J, Hu X, Fu W, et al. Experimental and theoretical study on longitudinal shear behavior of steel-concrete composite beams[J]. Journal of Constructi-onal Steel Research, 2020, 171(4): 106.

[14] 彭刚.工字型钢—混凝土连续组合梁受弯性能分析及负弯矩区承载力计算[D].湘潭大学,2013.

[15] 于瀚淞,王小平,李涛等.T型钢-混凝土组合梁试验研究与有限元分析[J].武汉理工大学学报,2023,45(10).

[16] 梁炯丰,邓洁,刘小娟等.装配式预制型钢部分外部混凝土梁受弯性能试验研究[J].混凝土,2023,(09).

[17] 沈炫,卢亦焱,宗帅等.U型钢加固钢筋混凝土梁损伤演化分析[J].土木工程与管理学报,2022,39(05).

[18] 赵考重,许洁,王永强.H型钢加固混凝土板共同工作性能试验研究[J].建筑结构,2020,50(06).

[19] 钱威,杨锋,王培成,等.锚焊U形钢板加固钢筋混凝土梁的抗弯性能研究[J].建筑结构,2021,51(16):86-92.

[20] 张延年,王柳,刘新等.粘贴角钢加固T型混凝土梁受弯性能试验[J].沈阳建筑大学学报(自然科学版),2014,30(04).

[21] Aykac S, Kalkan I, Aykac B, et al. Strengthening and repair of reinforced concrete beams using external steel plates[J]. Journal of Structural Engineering, 2013, 139(6): 929-939.

[22] Ren X S, Zhou B. Design and analysis of a reinforced concrete beam retrofitted by externally bonded H-type steel member[J]. Procedia Engineering, 2011,14:2133-2140.

[23] Su R K L,Zhu Y. Experimental and numerical studies of external steel plate strengthened reinforced concrete coupling beams[J]. Engineering structures, 2005, 27(10): 1537-1550.

[24] 刘立新,陈伟,李晓芬.锚贴钢板加固钢筋混凝土梁受弯性能试验研究[J].郑州大学学报(工学版),2006.27(1).

[25] ONG KCG, Mays G C, Cusens A R. Flexural tests of steel-concrete open sandwiches[J]. Magazine of Concrete Research, 1982, 34(120): 130-138.

[26] 聂建国,赵洁.钢板-混凝土组合加固钢筋混凝土简支梁试验研究[J].建筑结构学报,2008,29.

[27] 聂建国,王宇航.钢板-混凝土组合受弯加固梁疲劳性能试验研究[J].建筑结构学报.2011,32(2):1-9.

[28] N.E.Shanmugam,F.ASCE,K.Baskar.Steel-Concrete Composite Plate Girders Subject to Shear Loading[J].Journal of Structural Engineering,Sep.,2003:1230-1242.

[29] 周凌宇,方蛟鹏,莫玲慧,等.装配式槽钢-混凝土组合梁受弯性能研究[J].铁道科学与工程学报,2024,21(07):2839-2851.

[30] 方侠敏,许小伟,伍培根.T型钢-混凝土组合结构加固内力计算与分析[J].施工技术,2010,39(S2):228-230.

[31] 赵洁,聂建国.钢板-混凝土组合加固钢筋混凝土梁的非线性有限元分析[J].计算力学学报.2009,26(6):906-912.

[32] 陈旺,汪莹,曾小鱼,等.闭口型压型钢板-再生混凝土组合板纵向剪切性能研究[J].施工技术(中英文),2023,52(22):6-12.。

[33] 李军.钢板-混凝土组合加固钢筋混凝土梁二次受力抗弯性能研究[D].重庆交通大学,2013.

[34] 范涛.外包钢加固钢筋混凝土构件的计算及有限元分析[D].西南交通大学,2006.

[35] 麦志亨.双侧槽钢加固钢筋混凝土梁正截面抗弯性能研究[D].广州大学,2020.

[36] 李大伟.H型钢—混凝土组合梁滑移性能分析[D].天津大学,2008.

[37] 刘筱钰.U型钢-混凝土组合梁受力性能试验研究及理论分析[D].湖南大学,2022.

[38] 孙方.对拉螺栓锚固槽钢加固RC梁抗弯性能研究[D].东南大学,2019.

[39] 张鼎钧.二次成型钢与混凝土组合梁二次受力性能研究[D].东南大学,2017.

[40] 赵燚.新型U形钢—混凝土组合梁力学性能及设计方法[D].重庆大学,2020.

[41] 王蒙.简支H型钢加固混凝土组合梁刚度分析和截面优化设计[D].天津大学,2009.

[42] 杨延岐.外包U型钢—混凝土组合深梁试验研究[D].长春工程学院,2020.

[43] 赵倩倩.外包U型钢与混凝土组合梁主次梁节点抗剪机理分析与试验研究[D].山东建筑大学,2011

[44] 王晓晔.外包U型钢—混凝土组合梁与方钢管混凝土柱节点静动力性能的试验研究与理论分析[D].山东建筑大学,2010.

[45] 杨勇.型钢混凝土粘结滑移基本理论及应用研究[D].西安建筑科技大学,2004.

[46] 朱天怡,宋晓冰.平面外弯剪作用下双钢板混凝土简支梁挠度计算方法[J].徐州工程学院学报(自然科学版),2023,38(01):34-41.

[47] 聂建国,吕国斌,曹冬才,等.钢—混凝土组合梁变形计算的一般公式[J].哈尔滨建筑工程学院学报,1993,(S1):243-247.

[48] 聂建国,沈聚敏,余志武.考虑滑移效应的钢-混凝土组合梁变形计算的折减刚度法[J].土木工程学报,1995,(06):11-17.

[49] 聂建国,沈聚敏,袁彦声.钢─混凝土简支组合梁变形计算的一般公式[J].工程力学,1994,(01):21-27.

[50] AISC.Specification for Structural Steel Buildings:ANSI/AISC360-16[S].Chicago:American Institute of Steel Construction,2016.

[51] EC4 Eurocode4(EC4),2004.Design of steel and concrete structures,Part1-1:General rules and rules for buildings[S].EN1994-4-4:2004,Brussels,European Committee for Standardization.

[52] 迟冰.型钢加固混凝土组合梁抗剪试验研究和理论分析[D].天津大学,2009.

[53] Bresler B, Pister K. Strength of concrete under combined stresses[J]. 1956.

[54] MeganTCHIDI,FLORENT(齐弟).型钢加固混凝土组合梁弯剪作用下的试验研究和理论分析[D].天津大学,2007.

[55] 杨醒乾.锚贴U形钢箱加固混凝土梁抗剪性能研究[D].武汉大学,2017.

[56] 钟新谷.钢箱-混凝土组合结构[M].科学出版社,2012.

[57] 钟新谷,舒小娟,沈明燕,莫时旭,谢文.钢箱-混凝土组合梁弯曲性能试验研究[J].建筑结构学报,2006.

[58] 莫时旭,钟新谷,沈明燕等.钢箱-混凝土组合梁抗剪性能试验研究[J].桥梁建设,2007,183(06):13-16.

[59] GB50010-2010.混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.[62]JGJ138-2016.组合结构设计规范[S].北京:中国建筑出版社,2016.

[60] 段盟君.考虑粘结-滑移的胶粘型钢-混凝土组合梁弯曲性能研究[D].西南交通大学,2021.

[61] 周彬. 后加下托H型钢—混凝土组合梁的工程加固实例研究[D]. 上海: 同济大学, 2006.

[62] 桑大勇,王仁义,刘立新.锚贴钢板加固钢筋混凝土梁受剪性能的试验研究[J].建筑结构,2007,37(S1):294-297.

[63] Ali M S M, Oehlers D J, Bradford M A. Debonding of steel plates adhesively bonded to the compression faces of RC beams[J]. Construction and Building Materials, 2005, 19(6): 413-422.

[64] GB/T2975-2018. 钢及钢产品力学性能试验取样位置及试样制备[S]. 北京: 中国标准出版社, 2018.

[65] GB/T228.1-2010. 金属材料拉伸试验第一部分:室温试验方法[S]. 北京:中国建筑工业出版社, 2010.

[66] Lubliner J, Oliver J, Oller S, et al. A plastic-damage model for concrete[J]. International Journal of solids and structures, 1989, 25(3): 299-326.

[67] Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of engineering mechanics, 1998, 124(8): 892-900.

[68] 过镇海,张秀琴,张达成,等.混凝土应力-应变全曲线的试验研究[J].建筑结构学报,1982,(01):1-12.

[69] 杨红,苏星宇,赵银.不同强度钢筋受压屈曲性能及材料本构模型[J].工程力学,2023,40(10):112-128.

[70] 邹慧辉,李明,段建,等.钢筋动态本构模型及模型参数研究[J].兵器装备工程学报,2022,43(08):193-202.

[71] Zhao G, Li A. Numerical study of a bonded steel and concrete composite beam[J]. Computers & Structures, 2008, 86(19-20):1830-1838.

[72] 王力,霍越群,涂劲.钢-混凝土组合梁截面刚度的分析[J].哈尔滨工业大学学报,2006,(02):199-202.

[73] 杨超,李青宁,丰维方,等.钢—混凝土组合梁的等效截面[J].四川建筑科学研究,2012,38(01):37-39.

[74] ROEDER C W, HAJJAR J F. Composite beam design: A historical perspective[J]. Journal of Structural Engineering, 1990, 116(12): 3329-3351.

[75] OEHLERS D J, BRADFORD M A. Composite steel and concrete structural members: Fundamental behaviour[M]. Oxford: Pergamon Press, 1995.

[76] 徐世烺, 李庆华, 王海龙. 基于断裂力学的混凝土结构抗剪承载力分析[J]. 工程力学, 2010, 27(5): 78-85.

[77] European Committee for Standardization. EN 1994-1-1: Eurocode 4: Design of composite steel and concrete structures Part 1-1: General rules and rules for buildings[S]. Brussels: CEN, 2004.

[78] 中华人民共和国住房和城乡建设部. 钢管混凝土结构技术规范: GB 50936-2014[S]. 北京: 中国建筑工业出版社, 2014.

[79] 中华人民共和国住房和城乡建设部. GB 50017-2017 钢结构设计标准[S]. 北京: 中国建筑工业出版社, 2017.

[80] 方超.型钢加固混凝土组合梁抗弯承载力的试验研究和理论分析[D].天津大学,2007.

中图分类号:

 TU375.1    

开放日期:

 2025-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式