- 无标题文档
查看论文信息

题名:

 复合坚硬顶板分段水力压裂防冲机理与控制研究    

作者:

 贾冲    

学号:

 21103077014    

保密级别:

 秘密    

语种:

 chi    

学科代码:

 081901    

学科:

 工学 - 矿业工程 - 采矿工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2024    

学校:

 西安科技大学    

专业:

 矿业工程    

研究方向:

 煤岩动力灾害防治    

导师姓名:

 来兴平    

导师单位:

 西安科技大学    

提交日期:

 2025-01-10    

答辩日期:

 2024-12-04    

外文题名:

 Study on scour prevention mechanism and control of staged hydraulic fracturing with composite hard roof    

关键词:

 坚硬顶板 ; 冲击地压 ; 循环加卸载 ; 分段水力压裂 ; 裂隙扩展    

外文关键词:

 Hard roof ; Rock burst ; Cyclic loading and unloading ; Staged hydraulic fracturing ; Crack propagation    

摘要:

随着矿井开采条件日益复杂,煤矿生产面临的冲击地压问题愈发严峻,使得冲击地压的有效防治成为煤矿安全生产领域亟待解决的关键课题。本文以宽沟煤矿为研究背景,采用现场调研、理论分析、力学试验、物理模拟、数值计算、现场工程实践相结合的研究方法,掌握了煤层坚硬顶板周期破断的工作面采动影响下冲击地压链式发生规律,揭示了坚硬顶板条件下的冲击地压防治机理,分析了顶板周期破断加卸载采动影响的水力压裂分段长度科学选取方法,确定了煤层复合坚硬顶板冲击地压灾害水力压裂超前有效治理的关键参数,并完成了现场工业实践应用。主要研究成果如下:

(1)通过关键层层位判别与能量释放层位辨识综合确定了坚硬顶板条件下冲击地压矿井合理卸压层位。坚硬顶板条件下工作面宽度增加影响的弹性变形能具有明显增加的特征,且工作面宽度增加使采空区两侧应力与应变能密度集中程度普遍增加。由坚硬顶板周期破断影响的加卸载模型构建,推导了工作面开采的采动应力计算公式,掌握了采动应力峰值随着周期破断距离的增加而逐渐增大的特征,继而获得了坚硬顶板条件下的冲击地压链式发生规律,揭示了分段水力压裂的坚硬顶板断链防治冲击地压机理。

(2)基于煤岩组合体与不同岩性岩样组合体的力学试验,获取了组合体试样抗压强度、声发射累计能量大小均介于组合样的单一标准试样之间的特征,掌握了单一试样的强度越低其组合试样的该类元件破坏程度越高的规律。通过理论推导的顶板周期破断采动应力路径下的煤样加卸载力学试验分析,并引入加卸载响应比,掌握了不同周期破断步距采动影响应力路径下的煤样冲击效应及其加卸载响应规律。结合加卸载响应比的评价指标,得到其32.0m周期破断步距采动应力路径下的煤样可视为冲击煤样,继而获得了坚硬顶板周期破断的合理控制范围,形成了坚硬顶板条件下冲击地压防治的分段水力压裂断链尺寸确定方法。

(3)真三轴物理模拟分析所得细粒砂岩较中粒砂岩模拟试样压裂结束的裂缝扩展复杂程度较高,试样破坏程度明显。细粒砂岩模拟试样水力压裂过程中产生的大能量事件明显较高,且试样破坏程度大使得其能量热点区域的分布范围较广。15m、17m实际压裂高度时的细粒砂岩与中粒砂岩均达到有效压裂,考虑到模拟的实际压裂高度为15m时,其能量释放较为均衡,复合层上下层裂缝分布均有较好的扩展的特征,确定了宽沟煤矿坚硬顶板的合理压裂高度应位于煤层顶部上方15m位置处。

(4)通过对复合坚硬顶板条件下影响水力压裂效果的主要影响因素分析及其数值计算,掌握了多参量影响的复合坚硬顶板水力压裂裂缝扩展及其裂缝形态孕育规律。相同时间内15m压裂高度时单位高度的微震事件差值较小,且裂缝扩展呈现出较同步的到达复合坚硬岩层顶底部位置的特征。当水平应力存在明显的应力差时,裂缝更容易沿着最大主应力方向延伸,形成较为单一的裂缝形态。当压裂孔间距较小时相邻裂缝有效贯通,且当其压裂孔间距为50m时,缝累计扩展面积相对较高。随着压裂钻孔与最小主应力夹角的增大,其裂缝扩展沿层面累计长度普遍呈逐渐减小的变化趋势,裂缝扩展上下部与最大主应力夹角呈逐步增大的变化趋势。随着分段长度增加其缝间干扰作用逐渐减弱,当分段长度超过30m后的缝间干扰明显减弱,且裂缝扩展相对平整。基于多参量影响的裂缝扩展及其尺寸变化规律,确定了分段水力压裂钻孔间距、钻孔角度等的关键参数,实现了复合坚硬顶板分段水力压裂的参数优化与科学设定。

(5)运用坚硬顶板断链减灾的分段水力压裂冲击地压防治技术,实现了对坚硬岩层结构失稳尺度的精细调控。并采用“声-光-磁”联合监测方法,完成了水力压裂现场应用及其效果评价。水力压裂有效消除了诱发大能量事件的前兆迹象,其压裂后的大能量前兆信息的微震活动b值、A(b)值、P(b)值和S值变化幅度均相对较低,微震活动稳定。分段水力压裂后覆岩能量释放总量降低,微震大能量事件转化为占比更高的小能量事件,较于压裂前周期来压期间的支架最大工作阻力、平均工作阻力降幅分别达到9.28%、9.71%。同时,其覆岩电阻率明显下降,水力压裂有效覆盖坚硬顶板范围内,且坚硬顶板裂隙数量明显增多。坚硬顶板条件下分段水力压裂现场实施保障了工作面的安全高效开采,使其冲击地压得到有效防治。

本研究对类似坚硬顶板条件下冲击地压矿井煤炭资源的安全开采及其科学防治具有良好的参考价值和科学借鉴。

外文摘要:

With the increasingly complex mining conditions, the problem of rock burst in coal mine production is becoming more and more serious, which makes the effective prevention and control of rock burst become a key issue to be solved urgently in the field of coal mine safety production. Taking Kuangou Coal Mine as the research background, this paper adopts the research methods of field investigation, theoretical analysis, mechanical test, physical simulation, numerical calculation and field engineering practice, grasps the chain occurrence law of rock burst under the influence of mining in the working face with periodic broken hard roof in coal seam, reveals the prevention mechanism of rock burst under the condition of hard roof, analyzes the scientific selection method of hydraulic fracturing segment length under the influence of periodic broken roof and unloading mining, and determines the key parameters for effective control of rock burst disaster in coal seam with composite hard roof. The main research results are as follows:

(1) The reasonable pressure relief horizon of rockburst mine under the condition of hard roof is comprehensively determined through the identification of key strata and energy release horizon. Under the condition of hard roof, the elastic deformation energy affected by the increase of working face width has the characteristics of obvious increase, and the increase of working face width makes the concentration degree of stress and strain energy density on both sides of goaf generally increase. Based on the loading and unloading model influenced by periodic breaking of hard roof, the formula for calculating the mining stress in working face mining is derived, and the characteristics that the peak value of mining stress increases gradually with the increase of periodic breaking distance are mastered, and then the chain occurrence law of rock burst under the condition of hard roof is obtained, revealing the mechanism of preventing rock burst by broken chain of hard roof in subsection hydraulic fracturing.

(2) Based on the mechanical test of coal-rock combination and rock sample combination with different lithology, the characteristics that the compressive strength and acoustic emission cumulative energy of the combination sample are between the single standard sample of the combination sample are obtained, and the law that the lower the strength of a single sample, the higher the damage degree of such components of the combination sample is mastered. Through the theoretical analysis of loading and unloading mechanics of coal samples under the stress path of roof periodic breaking mining, and introducing the loading and unloading response ratio, the impact effect of coal samples under the stress path affected by mining with different periodic breaking steps and its loading and unloading response law are mastered. Combined with the evaluation index of loading and unloading response ratio, it is concluded that the coal sample under the mining stress path with its 32.0m periodic breaking step can be regarded as an impact coal sample, and then the reasonable control range of periodic breaking of hard roof is obtained, and a method for determining the broken chain size of segmented hydraulic fracturing for preventing and controlling rock burst under the condition of hard roof is formed.

(3) Compared with the simulated sample of medium-grained sandstone, the fine-grained sandstone obtained by true triaxial physical simulation analysis has higher complexity of fracture propagation after fracturing, and the damage degree of the sample is obvious. The high-energy events produced in the hydraulic fracturing process of fine-grained sandstone simulation samples are obviously high, and the damage degree of the samples makes the distribution range of energy hot spots wider. Both fine-grained sandstone and medium-grained sandstone are effectively fractured at the actual fracturing height of 15m and 17m. Considering that the simulated actual fracturing height is 15m, the energy release is relatively balanced, and the fracture distribution in the upper and lower layers of the composite layer is well expanded, it is determined that the reasonable fracturing height of the hard roof in Kuangou Coal Mine should be 15m above the top of the coal seam.

(4) Through the analysis and numerical calculation of the main factors affecting the hydraulic fracturing effect under the condition of composite hard roof, the fracture propagation and fracture morphology inoculation law of hydraulic fracturing with composite hard roof affected by multiple parameters are mastered. At the same time, the difference of microseismic events per unit height is small when the fracturing height is 15m, and the fracture propagation shows the characteristics of reaching the top and bottom of composite hard rock stratum synchronously. When there is obvious stress difference in horizontal stress, cracks are more likely to extend along the direction of maximum principal stress, forming a relatively single crack shape. When the spacing of fracturing holes is small, adjacent fractures are effectively penetrated, and when the spacing of fracturing holes is 50m, the cumulative expansion area of fractures is relatively high. With the increase of the angle between the fracturing borehole and the minimum principal stress, the cumulative length of fracture propagation along the bedding plane generally decreases, and the angle between the upper and lower parts of fracture propagation and the maximum principal stress increases gradually. With the increase of segment length, the interference between cracks gradually weakens, and when the segment length exceeds 30m, the interference between cracks obviously weakens, and the crack propagation is relatively flat. Based on the law of fracture propagation and its size change influenced by multiple parameters, the key parameters such as drilling spacing and drilling angle of segmented hydraulic fracturing are determined, and the parameter optimization and scientific setting of segmented hydraulic fracturing with composite hard roof are realized.

(5) Using the segmented hydraulic fracturing rock burst prevention technology to reduce the disaster caused by broken chain of hard roof, the scale of structural instability of hard rock stratum is finely regulated. The field application of hydraulic fracturing and its effect evaluation are completed by using the "acoustic-optical-magnetic" joint monitoring method. Hydraulic fracturing effectively eliminates the precursor signs that induce high-energy events, and the changes of microseismic activity b value, A(b) value, P(b) value and S value of high-energy precursor information after fracturing are relatively low, and the microseismic activity is stable. After staged hydraulic fracturing, the total energy release of overlying strata decreased, and the large energy events of microseisms were transformed into small energy events with a higher proportion, which decreased by 9.28% and 9.71% respectively compared with the maximum working resistance and average working resistance of the support during periodic weighting before fracturing. At the same time, the resistivity of overlying strata decreased obviously, hydraulic fracturing effectively covered the hard roof, and the number of cracks in the hard roof increased obviously. The field implementation of segmented hydraulic fracturing under the condition of hard roof ensures the safe and efficient mining of the working face and effectively prevents its rock burst.

This study has good reference value and scientific reference for the safe mining and scientific prevention of coal resources in rockburst mines under similar hard roof conditions.

参考文献:

[1] 钱鸣高,许家林. 煤炭开采与岩层运动[J]. 煤炭学报, 2019,44(4):973-984.

[2] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019,44(5):1283-1305.

[3] 康红普,张镇,黄志增. 我国煤矿顶板灾害的特点及防控技术[J]. 煤矿安全, 2020,51(10):24-33,38.

[4] 潘一山,肖永惠,罗浩,等. 冲击地压矿井安全性研究[J]. 煤炭学报, 2023,48(5): 1846-1860.

[5] 袁亮,姜耀东,何学秋,等. 煤矿典型动力灾害风险精准判识及监控预警关键技术研究进展[J]. 煤炭学报, 2018,43(2):306-318.

[6] 窦林名,田鑫元,曹安业,等. 我国煤矿冲击地压防治现状与难题[J]. 煤炭学报, 2022,47(1):152-171.

[7] 齐庆新,潘一山,李海涛,等. 煤矿深部开采煤岩动力灾害防控理论基础与关键技术[J]. 煤炭学报, 2020,45(5):1567-1584.

[8] 冯彦军,康红普. 水力压裂起裂与扩展分析[J]. 岩石力学与工程学报, 2013,32(S2): 3169-3179.

[9] 李柱和,王利波,张志刚,等. 大采高工作面切顶卸压沿空掘巷的研究与应用[J]. 煤炭技术, 2022,41(8):40-45.

[10] 康晓峰. 特厚坚硬煤层深浅交替钻孔水力压裂弱化顶煤技术研究[J]. 煤炭工程, 2023,55(3):19-24.

[11] 刘永强. 水力压裂技术在初次放顶中对采动应力演化规律的影响[J]. 煤炭技术, 2022, 41(8):161-165.

[12] 窦林名, 刘贞堂, 曹胜根, 等. 坚硬顶板对冲击矿压危险的影响分析[J]. 煤矿开采, 2003,8(2):58-60, 66.

[13] 周超. 梯度载荷下煤层开采压转耦合诱冲机理与防治研究[D]. 北京:北京科技大学, 2021.

[14] 蓝航.浅埋煤层冲击地压发生类型及防治对策[J].煤炭科学技术, 2014,42(1):9-13.

[15] Cook N G W. The failure of rock[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1965, 2(4): 389-403.

[16] Singh S P. Burst energy release index[J]. Rock Mechanics and Rock Engineering, 1988, 21: 149-155.

[17] Kidybiński A. Bursting liability indices of coal[C]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon, 1981, 18(4): 295-304.

[18] 李玉生. 冲击地压机理及其初步应用[J]. 中国矿业大学学报, 1985,14(3):37-43.

[19] 齐庆新,高作志,王升. 层状煤岩体结构破坏的冲击矿压理论[J]. 煤矿开采,1998 (2):14-17.

[20] 窦林名,陆菜平,牟宗龙,等. 煤岩体的强度弱化减冲理论[J]. 河南理工大学学报:自然科学版, 2005,24(3):169-175.

[21] 窦林名,何江,曹安业,等. 煤矿冲击矿压动静载叠加原理及其防治[J]. 煤炭学报, 2015, 40(7): 1469-1476.

[22] 潘俊锋,宁宇,毛德兵,等. 煤矿开采冲击地压启动理论[J]. 岩石力学与工程学报,2012,31(3):586-596.

[23] 潘一山. 煤矿冲击地压扰动响应失稳理论及应用[J]. 煤炭学报,2018,43(8): 2091-2098.

[24] Gong Weili, Peng Yanyan, Wang Hu, et al. Fracture angle analysis of rock burst faulting planes based on true-triaxial experiment[J]. Rock Mechanics and Rock Engineering, 2015,48(3):1017-1039.

[25] Romashov A N, Tsygankov S S. Generalized model of rock bursts[J]. Journal of Mining Science, 1993, 28(5): 420-423.

[26] Ma Tianhui, Tang Chunan, Tang Shibin, et al. Rockburst mechanism and prediction based on microseismic monitoring[J]. International Journal of Rock Mechanics and Mining Sciences, 2018,110:177-188.

[27] Salamon M D G. Stability, instability and design of pillar workings[C]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts: Elsevier, 1970:613-631.

[28] 刘耀琪,曹安业,王崧玮,等. 基于微震群震动波能量衰减特性的冲击地压危险预测方法[J]. 煤炭学报, 2022, 47(4): 1523-1533.

[29] Xu Yuhang, Cai M. Influence of strain energy released from a test machine on rock failure process[J]. Canadian Geotechnical Journal, 2018, 55(6):777-791.

[30] Wang J A, Park H D. Comprehensive prediction of rockburst based on analysis of strainenergy in rocks[J]. Tunnelling and Underground Space Technology, 2001, 16(1): 49-57.

[31] 齐庆新,彭永伟,李宏艳,等. 煤岩冲击倾向性研究[J]. 岩石力学与工程学报, 2011, 30(S1): 2736-2742.

[32] Cai Wu, Dou Linming, Si Guangyao, et al. A principal component analysis/fuzzy comprehen-sive evaluation model for coal burst liability assessment[J]. International Journal of Rock Mechanics and Mining Sciences, 2016,81:62-69.

[33] 齐庆新,史元伟,刘天泉. 冲击地压粘滑失稳机理的实验研究[J]. 煤炭学报, 1997, 22(2):144-148.

[34] 窦林名,白金正,李许伟,等. 基于动静载叠加原理的冲击矿压灾害防治技术研究[J]. 煤炭科学技术, 2018, 46(10): 1-8.

[35] He Jiang, Dou Linming, Gong Siyuan, et al. Rock burst assessment and prediction by dynamic and static stress analysis based on micro-seismic monitoring[J]. International Journal of Rock Mechanics and Mining Sciences, 2017,93:46-53.

[36] 章梦涛. 冲击地压失稳理论与数值模拟计算[J]. 岩石力学与工程学报, 1987, (3): 197-204.

[37] Xie Heping, Pariseau W G. Fractal character and mechanism of rock burst[J]. International Journal of Rock Mechanics & Mining Sciences, 1993, 30(4): 343-350.

[38] 姜福兴,冯宇,王建超. 高地应力特厚煤层“蠕变型”冲击机理研究[J]. 岩土工程学报, 2015,37(10):1762-1768.

[39] 李夕兵,宫凤强,王少锋,等. 深部硬岩矿山岩爆的动静组合加载力学机制与动力判据[J]. 岩石力学与工程学报, 2019,38(4):708-723.

[40] 姜耀东,王涛,宋义敏,等. 煤岩组合结构失稳滑动过程的实验研究[J]. 煤炭学报, 2013,38(2):177-182.

[41] 朱斯陶,马玉镇,姜福兴,等. 特厚煤层分层开采底煤整体滑移失稳型冲击地压发生机理研究[J]. 采矿与安全工程学报, 2021,38(01):31-40.

[42] Cai Wu, Bai Xianxi, Si Guangyao, et al. A Monitoring Investigation into Rock Burst Mechanism Based on the Coupled Theory of Static and Dynamic Stresses[J]. Rock Mechanics and Rock Engineering, 2020,53:5451-5471.

[43] Yang Yushun, Wei Sijiang, Li Kui. Inverse analysis of dynamic failure characteristics ofroadway surrounding rock under rock burst[J]. Energy Science & Engineering, 2021,9:2298-2310.

[44] 赵毅鑫,周金龙,刘文岗. 新街矿区深部开采临空巷道受载特征及冲击失稳规律分析[J]. 煤炭学报, 2020,45(5):1595¬1606.

[45] 郭高川,杨永康. 引潮力诱发冲击地压的机理研究[J]. 太原理工大学学报, 2021, 52(4):534¬541.

[46] 来兴平,贾冲,崔峰,等. 急倾斜巨厚煤层群难采资源开采的覆岩破断与能量释放规律[J]. 煤炭学报, 2023,48(S1):1-14.

[47] 来兴平,贾冲,崔峰,等. 急倾斜巨厚煤层开采深度影响的覆岩能量演化规律研究[J]. 岩石力学与工程学报, 2023,42(2):261-274.

[48] 崔峰,张随林,来兴平,等. 急倾斜巨厚煤层组开采煤岩体联动诱冲机制与防冲调控[J]. 岩石力学与工程学报, 2023,42(S1):3226-3241.

[49] 来兴平,许慧聪,陈建强,等. 急斜采动夹持岩柱能量异化特征及其调控方法[J].采矿与安全工程学报, 2021,38(03):429-438.

[50] Haramy K Y, McDonnell J P. Causes and control of coal mine bumps[M]. US Department of the Interior, Bureau of Mines, 1988.

[51] Butra J, Kudełko J. Rockburst hazard evaluation and prevention methods in Polish copper mines[J]. Cuprum: czasopismo naukowo-techniczne górnictwa rud, 2011:5-20.

[52] 谭云亮,张明,徐强,等. 坚硬顶板型冲击地压发生机理及监测预警研究[J]. 煤炭科学技术, 2019,47(1):166-172.

[53] 谭云亮,张修峰,肖自义,等. 冲击地压主控因素及孕灾机制[J].煤炭学报, 2024, 49(01):367-379.

[54] 张俊文,董续凯,柴海涛,等. 厚煤层一次采全高低位厚硬岩层垮落致冲机理与防治[J]. 煤炭学报,2022,47(2):734-744.

[55] 高明仕,徐东,贺永亮,等. 厚硬顶板覆岩冲击矿震影响的远近场效应研究[J]. 采矿与安全工程学报,2022,47(2):734-744.

[56] 张宏伟,曹煜,朱峰,等. 坚硬顶板孤岛工作面冲击地压机理及前兆判别[J]. 煤田地质与勘探, 2018,46(2):118-123.

[57] Zhang Junwen, Dong Xukai, Bai Junjie, et al. The mechanism and prevention of rockburst induced by the instability of the composite hard-roof coal structure and roof fractures[J]. Engineering Fracture Mechanics, 2024, 310:110512.

[58] Wang Jianchao, Jiang Fuxing, Meng Xiangjun, et al. Mechanism of Rock Burst Occurrence in Specially Thick Coal Seam with Rock Parting[J]. Rock Mechanics and Rock Engineering, 2016,49:1953-1965.

[59] Cao Minghui, Yang Shengqi, Du Shigui, et al. Study on fault-slip process and seismic mechanism under dynamic loading of hard roof fracture disturbance[J]. Engineering Failure Analysi, 2024, 163, 108598.

[60] Yang Zengqiang, Liu Chang, Zhu Hengzhong, et al. Mechanism of rock burst caused by fracture of key strata during irregular working face mining and its prevention methods[J]. International Journal of Mining Science and Technology, 2019,29:889-897.

[61] Jia Chong, Lai Xingping, Cui Feng, et al. Mechanism of Rock Burst and Its Dynamic Control Measures in Extra-Thick Coal Seam Mining from below the Residual Coal Seam to below the Gob[J]. Lithosphere, 2022,8179501.

[62] 谭云亮,郭伟耀,辛恒奇, 等. 煤矿深部开采冲击地压监测解危关键技术研究[J]. 煤炭学报, 2019, 44(1): 160-172.

[63] 齐庆新,马世志,孙希奎,等. 煤矿冲击地压源头防治理论与技术架构[J]. 煤炭学报, 2023,48(5):1861-1874.

[64] 齐庆新,雷毅,李宏艳,等. 深孔断顶爆破防治冲击地压的理论与实践[J]. 岩石力学与工程学报, 2007, 26(S1):3522-3527.

[65] 荣海,于世棋,王雅迪,等. 坚硬覆岩的结构失稳运动规律及其对冲击地压的影响[J]. 采矿与岩层控制工程学报, 2022,4(6):063026.

[66] 赵志鹏,闫瑞兵,丛俊余. 坚硬顶板超前深孔预裂爆破类型及效果评价分析[J]. 煤炭科学技术,2023,51(3):68-76.

[67] 赵善坤. 深孔顶板预裂爆破力构协同防冲机理及工程实践[J]. 煤炭学报, 2021,46(11): 3419-3432.

[68] Petr Konicek, Kamil Soucek, Lubomir Stas, et al. Long-hole destress blasting for rockburst control during deep underground coal mining[J]. International Journal of Rock Mechanics & Mining Sciences, 2013,61:141-153.

[69] 赵善坤. 深孔顶板预裂爆破与定向水压致裂防冲适用性对比分析[J]. 采矿与安全工程学报, 2021,38(4):706-719.

[70] 黄炳香, 赵兴龙, 陈树亮,等. 坚硬顶板水力压裂控制理论与成套技术[J]. 岩石力学与工程学报, 2017, 36(12):2954-2970.

[71] 康红普, 冯彦军. 定向水力压裂工作面煤体应力监测及其演变规律[J]. 煤炭学报, 2012, 37(12): 1953-1959.

[72] 于斌,高瑞,夏彬伟,等. 大空间坚硬顶板地面压裂技术与应用[J]. 煤炭学报, 2021,46(3): 800-811.

[73] 潘俊锋,康红普,闫耀东,等. 顶板 “人造解放层”防治冲击地压方法、机理及应用[J]. 煤炭学报,2023,48(2):636-648.

[74] 郑凯歌,袁亮,杨森,等. 基于分区弱化的复合坚硬顶板冲击地压分段压裂区域防治研究[J]. 采矿与安全工程学报, 2023,40(2):322-333.

[75] 郑凯歌,杨俊哲,李彬刚,等. 基于垮落充填的坚硬顶板分段压裂弱化解危技术[J]. 煤田地质与勘探, 2021,49(5):77-87.

[76] 赵善坤, 张广辉, 柴海涛,等. 深孔顶板定向水力压裂防冲机理及多参量效果检验[J]. 采矿与安全工程学报, 2019,36(6): 1247-1255.

[77] 潘俊锋,马文涛,刘少虹,等. 坚硬顶板水射流预制缝槽定向预裂防冲技术试验[J]. 岩石力学与工程学报, 2021,40(8):1591-1602.

[78] 郑建伟,鞠文君,吕大钊,等. 顶板条带弱化法防治中央大巷冲击地压机制及实践[J]. 煤炭学报,2023,48(3):1169-1178.

[79] 李海,杜涛涛,孙秉成,等. 坚硬顶板磨砂射流轴向切顶防冲技术研究[J]. 采矿与岩层控制工程学报, 2023,5(5):053044.

[80] 杨胜利,李杨,王兆会,等. 充填体支撑作用下坚硬顶板运动模式与控制方法[J]. 采矿与安全工程学报, 2023,40(5):1057-1066.

[81] 吴学明,马小辉,吕大钊,等. 彬长矿区“井上下”立体防治冲击地压新模式[J]. 煤田地质与勘探,2023,51(3):19-26.

[82] Ouyang Zhihua, Elsworth Derek, Li Qiang. Characterization of hydraulic fracture with inflated dislocation moving within a semi-infinite medium[J]. Journal of China University of Mining and Technology, 2007, 17(2): 220-225.

[83] 王耀锋,何学秋,王恩元,等.水力化煤层增透技术研究进展及发展趋势[J].煤炭学报,2014,39(10):1945-1955.

[84] 苏现波,马耕,郭红玉,等. 煤矿井下水力强化理论与技术[M]. 北京:科学出版社,2015:7-8,9-10.

[85] 柴希伟. 水平井分段压裂完井管柱及配套工具的研究[D]. 成都:西南石油大学, 2015.

[86] Dees J M, Freet T G, Hollabaugh G S. Horizontal well stimulation results in the austin chalk formation[J]. Pearsall Field,Texas. SPE 20683,1990:655-678.

[87] 王永昌,姜必武,马延风,等. 安塞油田低渗透砂岩油藏重复压裂技术研究[J]. 石油钻采工艺, 2005,27(5):81-83,99-100.

[88] 冯彦军,康红普. 定向水力压裂控制煤矿坚硬难垮顶板试验[J]. 岩石力学与工程学报, 2012,31(6):1148-1155.

[89] 于斌. 大同矿区综采40a开采技术研究[J]. 煤炭学报, 2010,35(11):1772-1777.

[90] 康红普,冯彦军,张震,等. 煤矿井下定向钻孔水力压裂岩层控制技术及应用[J]. 煤炭科学技术, 2023,51(1):31-44.

[91] 王金安,李大钟,尚新春. 采空区坚硬顶板流变破断力学分析[J]. 北京科技大学学报, 2011,33(2):142-148.

[92] 闫少宏,宁宇,康立军,等. 用水力压裂处理坚硬顶板的机制及试验研究[J]. 煤炭学报, 2000,25(1):32-35.

[93] 邓广哲,王世斌,黄炳香. 煤岩水压裂缝扩展行为特性研究[J]. 岩石力学与工程学报, 2004,23(20):3489-3493.

[94] 黄炳香,程庆迎,刘长友,等. 煤岩体水力致裂理论及其工艺技术框架[J]. 采矿与安全工程学报, 2011,28(2):167-173.

[95] 王永亮,刘娜娜,王昊. 水力压裂分段射孔簇多裂缝空间偏转模拟研究[J]. 煤炭科学技术, 2023,51(9):160-169.

[96] 牛同会. 分段水力压裂弱化采场坚硬顶板围岩控制技术研究[J]. 煤炭科学技术, 2022,50(8):50-59.

[97] Zhang Feiteng, Wang Xiangyu, Bai Jianbiao, et al. Study on Hydraulic Fracture Propagation in Hard Roof Under Abutment Pressure[J]. Rock Mechanics and Rock Engineering, 2022, 55: 6321-6338.

[98] Liu Jiangwei, Liu Changyou, Yao Qiangling, et al. The position of hydraulic fracturing to initiate vertical fractures in hard hanging roof for stress relief[J]. International Journal of Rock Mechanics and Mining Sciences, 2020,132,104328.

[99] Xia Binwei, Zhang Xuan, Yu Bin, et al. Weakening effects of hydraulic fracture in hard roof under the influence of stress arch[J]. International Journal of Mining Science and Technology, 2018,28:951-958.

[100] Xing Yuekun, Huang Bingxiang, Li Binghong, et al. Investigations on the Directional Propagation of Hydraulic Fracture in Hard Roof of Mine: Utilizing a Set of Fractures and the Stress Disturbance of Hydraulic Fracture[J]. Lithosphere, 2021,4328008.

[101] Xia Binwei, Zhou Yanmin, Zhang Xingguo, et al. Physical and numerical investiga tions of target stratum selection for ground hydraulic fracturing of multiple hard roofs[J]. International Journal of Mining Science and Technology, 2024,34,699-712.

[102] Huang Bingxiang, Liu Jiangwei, Zhang Quan. The reasonable breaking location of overhanging hard roof for directional hydraulic fracturing to control strong strata behaviors of gob-side entry[J]. International Journal of Rock Mechanics and Mining Sciences, 2018,103:1-11.

[103] 来兴平,王春龙,单鹏飞,等. 采动覆岩破坏演化特征模型实验与分析[J]. 西安科技大学学报, 2016,36(2):151-156.

[104] 高明忠,王明耀,谢晶,等. 深部煤岩原位扰动力学行为研究[J]. 煤炭学报, 2020,45(8):2691-2703.

[105] 王新丰,高明中,李隆钦. 深部采场采动应力、覆岩运移以及裂隙场分布的时空耦合规律[J]. 采矿与安全工程学报, 2016,33(4):604-610.

[106] 刘伟韬,穆殿瑞,谢祥祥,等. 倾斜煤层底板采动应力分布规律及破坏特征[J]. 采矿与安全工程学报, 2018,35(4):756-764.

[107] 薛东杰,周宏伟,王子辉,等. 不同加载速率下煤岩采动力学响应及破坏机制[J]. 煤炭学报, 2016,41(3):595-602.

[108] 庞义辉,王国法,李冰冰. 深部采场覆岩应力路径效应与失稳过程分析[J]. 岩石力学与工程学报, 2020,39(4):682-694.

[109] 郭依宝,周宏伟,荣腾龙,等. 采动应力路径下深部煤体扰动特征[J]. 煤炭学报, 2018,43(11):3072-3079.

[110] 杨继华, 盛谦, 朱泽奇, 等. 地下岩体洞室群地震响应的加、卸载响应比分析[J]. 岩土力学, 2012,33(7):2127-2132.

[111] 夏冬, 杨天鸿, 王培涛, 等. 干燥及饱和岩石循环加卸载过程中声发射特征试验研究[J]. 煤炭学报, 2014, 39(7):1243-1247.

[112] 张浪平, 尹祥础, 梁乃刚, 等. 加卸载响应比与损伤变量关系研究[J]. 岩石力学与工程学报, 2008,27(9):1874-1881.

[113] Wang Yu, Liu Dongqiao, Han Jianqiang, et al. Effect of fatigue loading-confining stress unloading rate on marble mechanical behaviors: An insight into fracture evolution analyses[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020,12(6):1249-1262.

[114] 高真平, 李庶林, 黄波, 等. 岩石破坏前的损耗比及加卸载响应比特性研究[J]. 地下空间与工程学报, 2017,13(1):35-40.

[115] 李庶林, 周梦婧, 高真平, 等. 增量循环加卸载下岩石峰值强度前声发射特性试验研究[J]. 岩石力学与工程学报, 2019,38(4):724-735.

[116] Peng Kang, Zhou Jiaqi, Zou Quanle, et al. Effects of stress lower limit during cyclic loading and unloading on deformation characteristics of sandstones[J]. Construction and Building Materials, 2019,217:202-215.

[117] Wang Jie, Song Weidong, Cao Shuai, et al. Mechanical properties and failure modes of stratified backfill under triaxial cyclic loading and unloading[J]. International Journal of Mining Science and Technology, 2019,29:809-814.

[118] 夏彬伟,刘仕威,欧昌楠,等. 综放采动应力路径下单裂隙砂岩力学特性试验研究[J]. 煤炭科学技术,2022,50(2):95-105.

[119] 崔峰,贾冲,来兴平,等. 基于加卸载响应比的冲击地压矿井急倾斜巨厚煤层推进速度研究[J]. 煤炭学报,2022,47(2):745-761.

[120] Zhang Yuebing, Li Quangui, Hu Qianting, et al. Pore wetting process characterization of equalsized granular coals by using LFNMR technology[J]. Fuel, 2022, 313:107887.

[121] 李全贵,邓羿泽,胡千庭,等. 煤岩水力压裂物理试验研究综述及展望[J]. 煤炭科学技术, 2022,50(12):62-72.

[122] 唐鹏飞,刘宇,齐士龙. 大尺寸致密砂岩露头水力压裂物理模拟实验[J]. 断块油气田, 2021,28(3):397-402.

[123] 杨典森,周云,周再乐. 含界面储层水力压裂试验与数值模拟研究进展[J]. 岩石力学与工程学报, 2022,41(9):1771-1794.

[124] 侯振坤. 龙马溪组页岩水力压裂试验及裂缝延伸机理研究[D]. 重庆:重庆大学, 2018.

[125] 孟尚志,侯冰,张健,等. 煤系“三气”共采产层组压裂裂缝扩展物模试验研究[J]. 煤炭学报, 2016,41(1):221-227.

[126] 张帆,马耕,刘晓,等. 煤岩起裂压力和水力压裂裂缝扩展机制实验研究[J]. 煤田地质与勘探, 2017,45(6):84-89.

[127] 姜玉龙,梁卫国,李治刚,等. 煤岩组合体跨界面压裂及声发射响应特征试验研究[J]. 岩石力学与工程学报, 2019,38(5):875-887.

[128] 李树刚,魏宗勇,林海飞,等. 煤与瓦斯共采三维大尺度物理模拟实验系统的研制与应用[J]. 煤炭学报,2019,44(1):236-245.

[129] 吴拥政,杨建威. 煤矿砂岩横向切槽真三轴定向水力压裂试验[J]. 煤炭学报, 2020,45(3):927-935.

[130] 赵兴龙,黄炳香. 基于应力增速与应力梯度的水压致裂应力扰动评价研究 采矿与安全工程学报, 2021,38(6):1167-1177.

[131] 李勇,陈涛,马啸天,等. 煤层顶板间接压裂裂缝扩展机制及影响因素[J]. 煤炭科学技术, 2024,52(02):171-182.

[132] 程利兴,张镇,姜鹏飞,等. 基于顶板水力压裂卸压的应力场响应机制研究及应用[J]. 采矿与安全工程学报, 2023,40(4):722-729.

[133] 冯国瑞,樊一江,王朋飞,等. 基于离散元法的类岩石材料水力压裂裂缝扩展规律研究[J]. 煤炭学报, 2024,49(5):2231-2246.

[134] 龚涛. 煤矿坚硬顶板地面水力压裂的目标层判定和控制强矿压显现机理[D]. 重庆:重庆大学, 2020.

[135] 梁运培,李其罡,黄旭超,等. 基于颗粒流的倾斜厚煤层坚硬顶板运动失稳规律及水力弱化参数研究[J]. 岩石力学与工程学报, 2024,43(s1):3428-3438.

[136] 刘泉声,甘亮,吴志军,等. 基于零厚度黏聚力单元的水力压裂裂隙空间分布影响分析[J]. 煤炭学报,2018,43(S2):393-402.

[137] 梁卫国,杨健锋,廉浩杰,等. 基于黏聚型裂纹本构关系的煤岩水力压裂韧性破坏模型[J]. 煤炭学报, 2019,44(1):263-270.

[138] 朱海燕,黄楚淏,唐煊赫. 裂缝性页岩储层水力压裂多簇裂缝扩展的FEM-DFN 数值模拟[J]. 岩石力学与工程学报, 2023,42(s1):3496-3507.

[139] 马海峰,程志恒,张科学,等. 千米深井高瓦斯煤层W-S-W水力压裂强化增透试验研究[J]. 煤炭学报, 2017,42(7):1757-1764.

[140] 付海峰,黄刘科,张丰收,等. 射孔模式对水力压裂裂缝起裂与扩展的影响机制研究[J]. 岩石力学与工程学报, 2023,42(s1):3496-3507.

[141] 杨兆中,张丹,易良平,等. 多层叠置煤层压裂裂缝纵向扩展模型与数值模拟[J]. 煤炭学报, 2021,46(10):3268-3277.

[142] 郭大立,赵金洲,吴刚,等. 水力压裂优化设计方法研究[J]. 西南石油学院学报, 1999,21(4):61-63.

[143] 李国旗,叶青,李建新,等. 煤层水力压裂合理参数分析与工程实践[J]. 煤炭学报, 2019,44(2):384¬396.

[144] 姜福兴,王博,翟明华,等. 煤层超高压定点水力压裂防冲试验研究[J]. 岩土工程学报, 2015,37(3):526-631.

[145] 贾文超,张明杰,梁锡明,等. 地应力与孔隙压力对定向水力压裂效果影响研究[J]. 煤炭科学技术,2018,46(12):151-157.

[146] 余鑫,边俊奇,刘长友. 基于动压巷道围岩控制的临空侧顶板压裂释能参数确定[J]. 采矿与岩层控制工程学报, 2022,4(1):013016.

[147] 刘少虹,潘俊锋,王洪涛,等. 基于冲击启动过程的近场围岩冲击危险性电磁波 CT 评估方法[J]. 煤炭学报, 2019, 44(02): 384-396.

[148] 贺虎,窦林名,巩思园,等. 冲击矿压的声发射监测技术研究[J]. 岩土力学, 2011, 32(4): 1262-1268.

[149] 蔡武,窦林名,李振雷,等. 矿震应力波速度层析成像评估冲击危险的验证[J]. 地球物理学报, 2016, 59(01): 252-262.

[150] Wang Changbin, Cao Anye, Zhu Guangan, et al. Mechanism of rock burst induced by faultslip in an island coal panel and hazard assessment using seismic tomography: a case study from Xuzhuang colliery, xuzhou, china[J]. Geosciences Journal, 2017, 21(3): 469-481.

[151] Cao Anye, Dou Linming, Wang Changbin, et al. Microseismic precursory characteristics of rock burst hazard in mining areas near a large residual coal pillar: A case study from Xuzhuang coal mine, Xuzhou, China[J]. Rock Mechanics Rock Engineering, 2016, 49(11):1-16.

[152] Lu Yiyu, Gong Tao, Xia Binwei, et al. Target stratum determination of surface hydraulic fracturing for far-field hard roof control in underground extra-thick coal extraction: a case study[J]. Rock Mechanics and Rock Engineering, 2018, 52: 2725-2740.

[153] 罗文,杨俊彩,高振宇. 强矿压矿井定向长孔分段压裂技术研究及应用[J]. 煤炭科学技术, 2018,46(11):43-49.

[154] 吕玉磊,郑凯歌,白俊杰. 顶板定向长钻孔分段水力压裂防冲技术研究[J]. 煤炭工程, 2022,54(10):68-74.

[155] 王泽阳,郑凯歌,王豪杰,等. 定向长钻孔分段水力压裂技术在冲击地压防治中的应用[J]. 中国煤炭, 2022,48(7):68-78.

[156] 李建军,刘文岗,杜君武,等. 定向长钻孔分段水力压裂技术在布尔台煤矿的应用[J]. 煤矿安全, 2022,53(4):94-102.

[157] 王春林,郑凯歌,王豪杰,等. 坚硬顶板首采工作面初采阶段水力压裂综合治理技术研究[J]. 煤炭工程, 2023,55(5):63-69.

[158] 邱远舰. 地面水平井分段压裂诱发微震响应与防冲效果评价研究[D]. 徐州:中国矿业大学, 2023.

[159] 詹庆超. 东滩煤矿巨厚顶板定向长钻孔分段水力压裂矿震防治技术研究[D]. 青岛:山东科技大学, 2020.

[160] 夏永学,潘俊锋,谢非,等. 井下超长水平孔分段压裂防冲机理及效果[J]. 煤炭学报, 2022,47(S1):115-124.

[161] 钱鸣高,石平五,许家林. 矿山压力与岩层控制[M]. 徐州:中国矿业大学出版社,2010.

[162] 朱志洁. 大同矿区坚硬顶板运动特征及对综放工作面矿压影响研究[D]. 阜新:辽宁工程技术大学, 2015.

[163] 徐芝纶. 弹性力学下[M]. 北京:高等教育出版社,2006.

[164] 于辉. 近距离煤层开采覆岩结构运动及矿压显现规律研究[D]. 北京:中国矿业大学,2015.

[165] 王新丰. “刀把式”采场顶板破断机理及力学演化特征的面长效应研究[D]. 淮南:安徽理工大学, 2015.

[166] Jia Chong, Lai Xingping, Cui Feng, et al. Mining pressure distribution law and disaster prevention of isolated island working face under the condition of hard “umbrella arch”[J]. Rock Mechanics and Rock Engineering, 2024.

[167] Xie Heping, Li Liyun, Peng Ruidong, et al. Energy analysis and criteria for structural failure of rocks[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2009,1(1):11-20.

[168] 谢广祥,常聚才,华心祝. 开采速度对综放面围岩力学特征影响研究[J]. 岩土工程学报, 2007,29(7):963-967.

[169] 李海涛,宋力,周宏伟,等. 率效应影响下煤的冲击特性评价方法及应用[J]. 煤炭学报,2015,40(12): 2763-2771.

[170] 李海涛,宋力,周宏伟,等. 多加载速率影响下煤强度的非线性演化机制试验研究及应用[J]. 岩石力学与工程学报,2015,35(S1):2978-2989.

[171] 杨敬虎,孙少龙,孔德中. 高强度开采工作面矿压显现的面长和推进速度效应[J]. 岩土力学,2015,36(S2):2978-2989.

[172] 尹祥础,尹灿. 非线性系统的失稳前兆与地震预报——响应比理论及其应用[J]. 中国科学(B 辑),1991,21(5):512-518.

[173] Yin Xiangchu, Yin Can. The precursor of instability for nonliner system and its application to earthquake prediction[J]. Science in China, 1991,34(8):977-986.

[174] 李世愚,和泰名,尹祥础.岩石断裂力学导论[M]. 合肥:中国科技大学出版社,2010.

[175] 史小萌,刘保国,亓轶. 水泥石膏胶结相似材料在固-流耦合试验中的适用性[J]. 岩土力学,2015,36(9):2624-2638.

[176] 林海飞,龙航 ,李树刚,等. 煤体瓦斯吸附解吸与压裂渗流全过程真三轴试验系统研发与应用[J]. 岩石力学与工程学报, 2022,41(s2):3294-3305.

[177] Pater C J D, Beugelsdijk L J L. Experiments and numerical simulation of hydraulic fracturing in naturally fractured rock[C]// Paper ARMA 780 Presented at the 40th U.S. Symposium on Rock Mechanics. Anchorage,Alaska. [S.l.]:[s.n.],2005.

[178] Kim C M, Abass H H. Hydraulic fracture initiation from horizontal wellbores: Laboratory Experiments[C]// Symposium on Rock Mechanics. Norman,Oklahoma, [s.n.],1991.

[179] 程利兴. 千米深井巷道围岩水力压裂应力转移机理研究及应用[D]. 北京:中国矿业大学, 2021.

[180] Amir Ghaderi, Jaber Taherishakib. The distinct element method (DEM) and the extended finite element method (XFEM) application for analysis of interaction betweenhydraulic and natural fractures[J]. Journal of Petroleum Science and Engineering, 2018,171:422-430.

[181] Damjanac B, Detournay C, Cundall P A. Application of particle and lattice codes to simulation of hydraulic fracturing[J]. Computational Particle Mechanics, 2016, 3(2): 249-261.

[182] 赵凯凯. 坚硬顶板区域水力压裂裂缝三维扩展机理研究[D]. 北京:煤炭科学研究总院, 2021.

[183] 来兴平,贾冲,胥海东,等. 急倾斜深埋巨厚煤层掘巷冲击地压前兆特征及其灾害防治[J]. 煤炭学报, 2024,49(1):337-350.

[184] Gutenberg B, Richter C F. Frequency of earthquakes in California[J]. Bulletin of the Seismological Society of America, 1994, 34(4):185-188.

[185] 夏永学,康立军,齐庆新, 等.基于微震监测的5个指标及其在冲击地压预测中的应用[J].煤炭学报,2010,35(12):2011-2016.

[186] 吴佳翼,曹学锋. 全球地震活动性的定量研究(二)—1964至1983年全球6级以上地震活动的分析[J]. 地震学报,1987,12(3):146-168.

[187] 谷继成,魏富胜.论地震活动性的定量化地震活动度[J].中国地震,1987,10(3):14-24.

中图分类号:

 TD325    

开放日期:

 2027-01-10    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式