- 无标题文档
查看论文信息

论文中文题名:

 融合GNSS和GRACE数据反演区域陆地水储量变化研究    

姓名:

 刘鹏    

学号:

 21210226076    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 卫星大地测量    

第一导师姓名:

 段虎荣    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-14    

论文答辩日期:

 2024-06-01    

论文外文题名:

 Research on Inverting Regional Land Water Storage Changes by Integrating GNSS and GRACE Data    

论文中文关键词:

 GNSS ; GRACE/GFO ; 融合反演 ; 陆地水储量变化 ; 中国西南地区    

论文外文关键词:

 GNSS ; GRACE/GFO ; Fusion inversion ; Changes in terrestrial water storage ; Southwest China    

论文中文摘要:

       水是生物体所必需的组成部分,是自然界最重要的资源,是地球最不可少的物质之一。对区域水资源进行有效地监测,在科学研究和实际生活中都具有十分重要的意义。目前,监测陆地水储量的手段主要包括水文观测、GRACE/GFO和GNSS,尽管水文观测的精度较高,但难以获取所有水成分(如深层地下水等)的数据。GRACE/GFO虽然能够监测大范围的水储量信息,但是,受空间、时间分辨率的限制,其难以获取高频或局部区域的水储量信息。GNSS能有效地监测局部区域由地表质量变化导致的位移变化,被广泛应用于监测区域陆地水储量变化。然而,GNSS 测站分布的密集程度以及其观测数据中包含的复杂非水文信息等,会直接影响其反演陆地水储量变化的可靠性和分辨率。鉴于GNSS和GRACE/GFO在反演区域陆地储水量变化方面具有互补优势,本文借鉴“分解-重构”法(Decomposition and Reconstruction Method,DRM)的思想,基于负荷格林函数理论,提出了一种融合GNSS和GRACE/GFO数据反演陆地储水量变化的方法。利用中国西南地区的90个GNSS测站位移时间序列数据和GRACE/GFO数据反演了该地区的陆地水储量变化,并与基于广义三角帽(Generalized Three-cornered Hat,GTCH)的融合方法进行了对比,以验证DRM融合方法的性能。主要工作和结论如下:

       (1)利用GRACE/GFO和水文模型数据,反演了2003-2011年中国西南地区陆地水储量变化,以验证GRACE/GFO反演陆地水储量变化的性能。2003-2011年间,西南地区陆地水储量整体上呈先上升再下降的趋势,峰值位于2008年。利用经验模态分解对GRACE/GFO和GLDAS计算的西南地区水储量变化时间序列进行了分解,发现其具有约4年的年际水循环周期。GRACE/GFO可以很好地反映区域陆地水储量的长期变化趋势,但反演结果过于平滑,无法体现局部高频的水储量变化。

       (2)利用最小二乘法对2012-2022年西南地区GNSS水文负荷位移进行拟合,计算了其周期振幅和相位,结果表明西南地区水文负荷位移的年振幅和相位均呈现出明显的空间差异,整体上由北向南逐渐增大,在云南南部地区达到峰值。此外,本文利用独立分量分析对GNSS水文负荷位移信号进行了分解,表明西南地区的陆地水储量变化具有多尺度水文周期的特征。由第三、四个独立分量可以看出,GNSS水文负荷位移中还包含了大量复杂的非水文信息,对反演结果可能产生一定的影响。

       (3)使用GNSS和GRACE/GFO数据通过DRM融合方法反演了中国西南地区2012-2022年的陆地水储量变化。在空间分布上,基于DRM融合方法反演的陆地水储量变化综合了GNSS和 GRACE/GFO各自的优点,提高了反演结果的可靠性。在时序变化上,仅使用GNSS、GRACE/GFO和基于DRM融合方法的反演结果具有较为一致的季节性变化。仅使用GNSS、GRACE/GFO反演结果与降水的最佳相关性出现在滞后降水2个月时,相关系数分别为0.84和0.82,而基于DRM融合方法的反演结果仅滞后于降水1个月,相关系数为0.89,高于仅利用GNSS、GRACE/GFO的相关系数。这表明,基于DRM融合方法的反演结果对降水引起的陆地水储量变化的响应比仅使用GNSS和GRACE/GFO更为敏捷和准确。

论文外文摘要:

        Water is an essential component of living organisms, the most important resource of nature and one of the most indispensable substances of the Earth. The effective monitoring of regional water resources is of great significance in both scientific research and practical life. At present, the means of monitoring terrestrial water storage mainly include hydrological observation, GRACE/GFO and GNSS. Although hydrological observation has higher accuracy, it is difficult to obtain data of all water components (e.g., deep groundwater, etc.); GRACE/GFO is able to monitor the information on water storage on a large scale, but it is difficult to obtain the information on water storage in the high-frequency or local area due to the limitation of spatial and temporal resolution. GNSS can effectively monitor displacement changes caused by changes in surface quality in local areas, and has been widely used to monitor changes in regional terrestrial water storage. However, the density of GNSS stations and the complexity of non-hydrological information contained in the observation results directly affect the reliability and resolution of the inversion of terrestrial water storage changes. In view of the complementary advantages of GNSS and GRACE/GFO in reflecting regional terrestrial water storage changes, this paper draws on the idea of the Decomposition and Reconstruction Method (DRM), and based on the theory of the load Green's function, proposes a method that integrates GNSS and GRACE/GFO. In this paper, a method is proposed to integrate GNSS and GRACE/GFO data to invert the change of terrestrial water storage. The terrestrial water storage changes in Southwest China were inverted using 90 GNSS station displacement time series data and GRACE/GFO data, and compared with the fusion method based on Generalised Three-cornered Hat (GTCH) to verify the performance of the DRM fusion method. The main work and conclusions are as follows:

          (1) Using GRACE/GFO and hydrological model data, we inverted the terrestrial water storage changes in Southwest China from 2003 to 2011 to verify the performance of GRACE/GFO in inverting the terrestrial water storage changes. During the period of 2003-2011, the terrestrial water storage in Southwest China showed an overall trend of increasing and then decreasing, and the peak was located in 2008. The time series of water storage changes in the southwest region calculated by GRACE/GFO and GLDAS were decomposed using empirical mode decomposition, and found to have an interannual water cycle of about 4 yr. GRACE/GFO can well reflect the long-term trend of regional terrestrial water storage, but the inversion results are too smooth to reflect the local high-frequency water storage changes.

          (2) The least squares method is used to fit the GNSS hydrological load displacements in the Southwest region from 2012 to 2022, and the cycle amplitude and phase are calculated. The results show that the annual amplitude and phase of the hydrological load displacements in the Southwest region show obvious spatial differences, and the overall gradual increase from the north to the south, which reaches the peak in the southern region of Yunnan. In addition, this paper decomposes the GNSS hydrological load displacement signals using independent component analysis, indicating that the terrestrial water storage changes in Southwest China are characterised by a multi-scale hydrological cycle. From the third and fourth independent components, it can be seen that the GNSS hydrological load displacement also contains a large amount of complex non-hydrological information, which may have a certain impact on the inversion results.

           (3) The terrestrial water storage changes in Southwest China from 2012 to 2022 were inverted using the DRM fusion method and GNSS and GRACE/GFO data. In terms of spatial distribution, the DRM fusion inversion of terrestrial water storage changes combines the respective advantages of GNSS and GRACE/GFO, which improves the reliability of the inversion results. In terms of temporal changes, the fusion inversion results using only GNSS, GRACE/GFO and DRM have more consistent seasonal changes. The best correlation between the inversion results using only GNSS and GRACE/GFO and precipitation occurs at a lag of 2 months, with correlation coefficients of 0.84 and 0.82, respectively, whereas the DRM fusion inversion results are only lagged by 1 month, with a correlation coefficient of 0.89, which is higher than that of the correlation coefficients of using only GNSS and GRACE/GFO. This indicates that the DRM fusion inversion method is more agile and accurate in responding to precipitation-induced changes in terrestrial water storage than using only GNSS and only GRACE/GFO.

参考文献:

[1]Famiglietti J S,Lo M,Ho S L, et al.Satellites measure recent rates of groundwater depletion in California's Central Valley[J].Geophysical Research Letters, 2011, 38(3).

[2]孙冬营,刘新波,龙兴乐,等.基于WPI模型的中国水贫困时空异质性研究[J].南京工业大学学报(社会科学版), 2020, 19(05): 104-114+116.

[3]许厚泽.卫星重力研究:21世纪大地测量研究的新热点[J].测绘科学, 2001, 26(3): 3.

[4]李武东,郭金运,常晓涛,等.利用GRACE重力卫星反演2003~2013年新疆天山地区陆地水储量时空变化[J].武汉大学学报(信息科学版), 2017, 42(07): 1021-1026.

[5]李圳,章传银,柯宝贵,等.顾及GRACE季节影响的华北平原水储量变化反演[J].测绘学报, 2018, 47(7): 940-949.

[6]刘任莉,李建成,褚永海,等.利用GRACE地球重力场模型研究中国西南区域水储量变化[J].大地测量与地球动力学, 2012, 32(2): 39-43.

[7]冯伟,王长青,穆大鹏,等.基于GRACE的空间约束方法监测华北平原地下水储量变化[J].地球物理学报, 2017, 60(05): 1630-1642.

[8]姜卫平,夏传义,李昭,等.环境负载对区域GPS基准站时间序列的影响分析[J].测绘学报, 2014, 43(12): 1217-1223.

[9]何思源,谷延超,范东明,等.利用GPS垂直位移反演云南省陆地水储量变化[J].测绘学报, 2018, 47(03): 332-340.

[10]Reigber C,Balmino G,Schwintzer P, et al.A high-quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S)[J].Geophysical Research Letters, 2002, 29(14): 37-1-37-4.

[11]Wahr J,Molenaar M and Bryan F.Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE[J].Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30205-30229.

[12]Rodell M,Famiglietti J S,Wiese D N, et al.Emerging trends in global freshwater availability[J].Nature, 2018, 557(7707): 651-659.

[13]Swenson S and Wahr J.Post-processing removal of correlated errors in GRACE data[J].Geophysical research letters, 2006, 33(08): 8402-1-8402-4.

[14]Chen J,Wilson C,Famiglietti J, et al.Attenuation effect on seasonal basin-scale water storage changes from GRACE time-variable gravity[J].Journal of Geodesy, 2007, 81: 237-245.

[15]Duan X,Guo J,Shum C, et al.On the postprocessing removal of correlated errors in GRACE temporal gravity field solutions[J].Journal of Geodesy, 2009, 83: 1095-1106.

[16]Chambers D P,Wahr J,Tamisiea M E, et al.Ocean mass from GRACE and glacial isostatic adjustment[J].Journal of Geophysical Research: Solid Earth, 2010, 115(B11).

[17]汪汉胜,贾路路,Patrick W U,等.冰川均衡调整对东亚重力和海平面变化的影响[J].地球物理学报, 2010, 53(11): 2590-2602.

[18]Paulson A,Zhong S and Wahr J.Inference of mantle viscosity from GRACE and relative sea level data[J].Geophysical Journal International, 2007, 171(2): 497-508.

[19]Swenson S and Wahr J.Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment(GRACE) measurements of time-variable gravity[J].Journal of Geophysical Research: Solid Earth, 2002,107(B9): ETG3-1-ETG3-13.

[20]Chen J,Wilson C,Tapley B, et al.2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models[J].Journal of Geophysical Research: Solid Earth, 2009, 114(B5).

[21]Tapley B D,Bettadpur S,Watkins M, et al.The gravity recovery and climate experiment: Mission overview and early results[J].Geophysical research letters, 2004, 31(9).

[22]Long D,Pan Y,Zhou J, et al.Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models[J].Remote sensing of environment, 2017, 192: 198-216.

[23]钟敏,段建宾,许厚泽,等.利用卫星重力观测研究近5年中国陆地水量中长空间尺度的变化趋势[J].科学通报, 2009,54 (09): 1290-1294.

[24]Wahr J,Swenson S,Zlotnicki V, et al.Time-variable gravity from GRACE: First results[J].Geophysical Research Letters, 2004, 31(11).

[25]Ojha C,Werth S and Shirzaei M.Groundwater loss and aquifer system compaction in San Joaquin Valley during 2012–2015 drought[J].Journal of Geophysical Research: Solid Earth, 2019, 124(3): 3127-3143.

[26]Ali S,Liu D,Fu Q, et al.Improving the resolution of GRACE data for spatio-temporal groundwater storage assessment[J].Remote Sensing, 2021, 13(17): 3513.

[27]Rodell M and Li B.Changing intensity of hydroclimatic extreme events revealed by GRACE and GRACE-FO[J].Nature Water, 2023, 1(3): 241-248.

[28]Jiang Z,Hsu Y-J,Yuan L, et al.Hydrological drought characterization based on GNSS imaging of vertical crustal deformation across the contiguous United States[J].Science of The Total Environment, 2022, 823: 153663.

[29]丁一航,黄丁发,师悦龄,等.利用GPS和GRACE分析四川地表垂向位移变化[J].地球物理学报, 2018, 61(12): 4777-4788.

[30]刘任莉,李建成,姜卫平,等.联合GRACE与GPS比较山西省垂向地表形变[J].武汉大学学报(信息科学版), 2013, 38,(04): 426-430.

[31]Argus D F,Fu Y and Landerer F W.Seasonal variation in total water storage in California inferred from GPS observations of vertical land motion[J].Geophysical Research Letters, 2014, 41(6): 1971-1980.

[32]Ji K H and Herring T A.Correlation between changes in groundwater levels and surface deformation from GPS measurements in the San Gabriel Valley, California[J].Geophysical Research Letters, 2012, 39(1).

[33]van Dam T,Wahr J and Lavallée D.A comparison of annual vertical crustal displacements from GPS and Gravity Recovery and Climate Experiment (GRACE) over Europe[J].Journal of Geophysical Research: Solid Earth, 2007, 112(B3).

[34]Tregoning P,Watson C,Ramillien G, et al.Detecting hydrologic deformation using GRACE and GPS[J].Geophysical Research Letters, 2009, 36.

[35]张良镜,金双根,张腾宇.用GPS和卫星重力观测估计地表形变的季节性变化[J].大地测量与地球动力学, 2012,32 (02): 32-38.

[36]Fu Y,Argus D F and Landerer F W.GPS as an independent measurement to estimate terrestrial water storage variations in Washington and Oregon[J].Journal of Geophysical Research Solid Earth, 2015, 120(1): 552-566.

[37]Zhongshan J,Hsu Y J,Yuan L, et al.Monitoring time-varying terrestrial water storage changes using daily GNSS measurements in Yunnan, southwest China[J].Remote Sensing of Environment, 2020, 254: 112249.

[38]Jiang Z,Hsu Y-J,Yuan L, et al.Insights into hydrological drought characteristics using GNSS-inferred large-scale terrestrial water storage deficits[J].Earth and Planetary Science Letters, 2022, 578: 117294.

[39]Jiang Z,Hsu Y-J,Yuan L, et al.Estimation of daily hydrological mass changes using continuous GNSS measurements in mainland China[J].Journal of Hydrology, 2021, 598: 126349.

[40]Carlson G,Werth S and Shirzaei M.Joint inversion of GNSS and GRACE for terrestrial water storage change in California[J].Journal of Geophysical Research: Solid Earth, 2022, 127(3): e2021JB023135.

[41]Li W,Dong J,Wang W, et al.The Crustal Vertical Deformation Driven by Terrestrial Water Load from 2010 to 2014 in Shaanxi–Gansu–Ningxia Region Based on GRACE and GNSS[J].Water, 2022, 14(6): 964.

[42]Li X,Zhong B,Li J, et al.Joint inversion of GNSS and GRACE/GFO data for terrestrial water storage changes in the Yangtze River Basin[J].Geophysical Journal International, 2023, 233(3): 1596-1616.

[43]Yang X,Yuan L,Jiang Z, et al.Investigating terrestrial water storage changes in Southwest China by integrating GNSS and GRACE/GRACE-FO observations[J].Journal of Hydrology: Regional Studies, 2023, 48: 101457.

[44]Duan H,Guo J,Chen L, et al.Vertical crustal deformation velocity and its influencing factors over the Qinghai–Tibet Plateau based on satellite gravity data[J].Earth and Planetary Physics, 2022, 6(4): 366-377.

[45]黄海兰.利用ICESat和GRACE卫星观测数据确定极地冰盖变化[D].武汉大学, 2011.

[46]Chao B F and Gross R S.Changes in the Earth's rotation and low-degree gravitational field induced by earthquakes[J].Geophysical Journal International, 1987, 91(3): 569-596.

[47]冯伟,LEMOINE J-M,钟敏,等.利用重力卫星GRACE监测亚马逊流域2002-2010年的陆地水变化[J].地球物理学报, 2012, 55(03): 814-821.

[48]高春春,陆洋,史红岭,等.基于 GRACE RL06 数据监测和分析南极冰盖 27 个流域质量变化[J].地球物理学报, 2019, 62(03): 864-882.

[49]Luthcke S B,Sabaka T,Loomis B, et al.Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution[J].Journal of Glaciology, 2013, 59(216): 613-631.

[50]陈威,钟敏,冯伟,等.基于GRACE/GRACE-FO和Swarm卫星研究2002-2020年南极和格陵兰岛冰盖质量时空变化[J].地球物理学报, 2022,65 (03): 952-964.

[51]李琼,罗志才,钟波,等.利用GRACE时变重力场探测2010年中国西南干旱陆地水储量变化[J].地球物理学报, 2013, 56(06): 1843-1849.

[52]赵鸿彬.红海海平面变化特征与机制分析[D].西南交通大学,2019.

[53]Syed T H,Famiglietti J S,Rodell M, et al.Analysis of terrestrial water storage changes from GRACE and GLDAS[J].Water Resources Research, 2008, 44(2).

[54]Chen J,Wilson C and Tapley B.Contribution of ice sheet and mountain glacier melt to recent sea level rise[J].Nature Geoscience, 2013, 6(7): 549-552.

[55]Landerer F W and Swenson S.Accuracy of scaled GRACE terrestrial water storage estimates[J].Water resources research, 2012, 48(4).

[56]庞校光.联合GRACE与GNSS解译区域地下水储量变化研究[D].长安大学,2021.

[57]Zhang T and Jin S.Estimate of glacial isostatic adjustment uplift rate in the Tibetan Plateau from GRACE and GIA models[J].Journal of Geodynamics, 2013, 72: 59-66.

[58]鄂栋臣,詹必伟,姜卫平,等.应用GAMIT/GLOBK软件进行高精度GPS数据处理[J].极地研究, 2005, 17(03): 173-182.

[59]Wang L,Chen C,Thomas M, et al.Increased water storage of Lake Qinghai during 2004–2012 from GRACE data, hydrological models, radar altimetry and in situ measurements[J].Geophysical Journal International, 2018, 212(1): 679-693.

[60]Li X,Zhong B,Li J, et al.Inversion of GNSS Vertical Displacements for Terrestrial Water Storage Changes Using Slepian Basis Functions[J].Earth and Space Science, 2023, 10(2): e2022EA002608.

[61]Dill R and Dobslaw H.Numerical simulations of global-scale high-resolution hydrological crustal deformations[J].Journal of Geophysical Research: Solid Earth, 2013, 118(9): 5008-5017.

[62]Chanard K,Fleitout L,Calais E, et al.Toward a global horizontal and vertical elastic load deformation model derived from GRACE and GNSS station position time series[J].Journal of Geophysical Research: Solid Earth, 2018, 123(4): 3225-3237.

[63]Panda D,Kundu B,Gahalaut V K, et al.Seasonal modulation of deep slow-slip and earthquakes on the Main Himalayan Thrust[J].Nature communications, 2018, 9(1): 4140.

[64]Li X,Zhong B,Li J, et al.Inversion of terrestrial water storage changes from GNSS vertical displacements using a priori constraint: A case study of the Yunnan Province, China[J].Journal of Hydrology, 2023, 617: 129126.

[65]姜卫平,王锴华,李昭,等.GNSS坐标时间序列分析理论与方法及展望[J].武汉大学学报(信息科学版), 2018, 43(12): 2112-2123.

[66]武艳强,黄立人.时间序列处理的新插值方法[J].大地测量与地球动力学, 2004, 24(04): 43-47.

[67]Wang W,Zhao B,Wang Q, et al.Noise analysis of continuous GPS coordinate time series for CMONOC[J].Advances in space research, 2012, 49(5): 943-956.

[68]Li W,Dong J,Wang W, et al.Regional Crustal Vertical Deformation Driven by Terrestrial Water Load Depending on CORS Network and Environmental Loading Data: A Case Study of Southeast Zhejiang[J].Sensors, 2021, 21(22): 7699.

[69]Liu N,Dai W,Santerre R, et al.A MATLAB-based Kriged Kalman Filter software for interpolating missing data in GNSS coordinate time series[J].Gps Solutions, 2018, 22: 1-8.

[70]Mardia K V,Goodall C,Redfern E J, et al.The kriged Kalman filter[J].Test, 1998, 7: 217-282.

[71]Rodell M,Houser P,Jambor U, et al.The global land data assimilation system[J].Bulletin of the American Meteorological society, 2004, 85(3): 381-394.

[72]Liu B,Yu W,Dai W, et al.Estimation of terrestrial water storage variations in Sichuan-Yunnan region from GPS observations using independent component analysis[J].Remote Sensing, 2022, 14(2): 282.

[73]Huang S,Huang Q,Leng G, et al.Variations in annual water-energy balance and their correlations with vegetation and soil moisture dynamics: A case study in the Wei River Basin, China[J].Journal of Hydrology, 2017, 546: 515-525.

[74]Torrence C and Compo G P.A practical guide to wavelet analysis[J].Bulletin of the American Meteorological society, 1998, 79(1): 61-78.

[75]Grinsted A,Moore J C and Jevrejeva S.Application of the cross wavelet transform and wavelet coherence to geophysical time series[J].Nonlinear processes in geophysics, 2004, 11(5/6): 561-566.

[76]Huang N E,Shen Z,Long S R, et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 1998, 454(1971): 903-995.

[77]Tavella P and Premoli A.Estimating the instabilities of N clocks by measuring differences of their readings[J].Metrologia, 1994, 30(5): 479.

[78]姚朝龙,李琼,罗志才,等.利用广义三角帽方法评估GRACE反演中国大陆地区水储量变化的不确定性[J].地球物理学报, 2019, 62(03): 883-897.

[79]Yan X,Zhang B,Yao Y, et al.GRACE and land surface models reveal severe drought in eastern China in 2019[J].Journal of Hydrology, 2021, 601: 126640.

[80]Koot L,Viron O d and Dehant V.Atmospheric angular momentum time-series: characterization of their internal noise and creation of a combined series[J].Journal of Geodesy, 2006, 79: 663-674.

[81]Galindo F J and Palacio J.Post-processing ROA data clocks for optimal stability in the ensemble timescale[J].Metrologia, 2003, 40(3): S237.

[82]Farrell W.Deformation of the Earth by surface loads[J].Reviews of Geophysics, 1972, 10(3): 761-797.

[83]Wang H,Xiang L,Jia L, et al.Load Love numbers and Green's functions for elastic Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust 2.0[J].Computers & Geosciences, 2012, 49: 190-199.

[84]沈云中,许厚泽.不适定方程正则化算法的谱分解式[J].大地测量与地球动力学, 2002, 22(03): 10-14.

[85]Adusumilli S,Borsa A,Fish M, et al.A decade of water storage changes across the contiguous United States from GPS and satellite gravity[J].Geophysical Research Letters, 2019, 46(22): 13006-13015.

[86]Lai Y R,Wang L,Bevis M, et al.Truncated singular value decomposition regularization for estimating terrestrial water storage changes using GPS: A case study over Taiwan[J].Remote Sensing, 2020, 12(23): 3861.

[87]Golub G H,Heath M and Wahba G.Generalized cross-validation as a method for choosing a good ridge parameter[J].Technometrics, 1979, 21(2): 215-223.

[88]Xu P.Iterative generalized cross-validation for fusing heteroscedastic data of inverse ill-posed problems[J].Geophysical Journal International, 2009, 179(1): 182-200.

[89]Tang H and Sun W.Analytical equations for an infinite series involving low-order associated Legendre functions in geoscience[J].Journal of Geodesy, 2021, 95: 1-26.

[90]章传银,王伟,甘卫军,等.利用CORS站网监测三峡地区环境负荷引起的地壳形变与重力场时空变化[J].武汉大学学报(信息科学版), 2018, 43(09): 1287-1294.

[91]Jin H,Gao Y,Su X, et al.Contemporary crustal tectonic movement in the southern Sichuan‐Yunnan block based on dense GPS observation data[J].Earth and Planetary Physics, 2019, 3(1): 53-61.

[92]Long D,Shen Y,Sun A, et al.Drought and flood monitoring for a large karst plateau in Southwest China using extended GRACE data[J].Remote Sensing of Environment, 2014, 155: 145-160.

[93]Guo F,Jiang G,Yuan D, et al.Evolution of major environmental geological problems in karst areas of Southwestern China[J].Environmental Earth Sciences, 2013, 69: 2427-2435.

[94]成帅,袁林果,姜中山,等.应用GPS数据和Slepian基函数反演川云渝地区陆地水储量变化[J].地球物理学报, 2021,64(04): 1167-1180.

[95]庞佳.联合GPS和GRACE数据研究陆地水储量变化和地表负荷位移[D].西南交通大学,2022.

[96]李妍,李春.2015年1月中国南方大范围持续暴雨的过程分析[J].中国海洋大学学报:自然科学版, 2019, 49(07): 11-19.

[97]周莉,蔡荣辉,兰明才,等.2011-2012年冬季西南地区干旱的时空分布特征及其动力成因诊断[J].湖北农业科学, 2018, 57(13): 28-33+45.

[98]Ming F,Yang Y,Zeng A, et al.Spatiotemporal filtering for regional GPS network in China using independent component analysis[J].Journal of Geodesy, 2017, 91(4): 419-440.

[99]Hsu Y-J,Fu Y,Bürgmann R, et al.Assessing seasonal and interannual water storage variations in Taiwan using geodetic and hydrological data[J].Earth and Planetary Science Letters, 2020, 550: 116532.

中图分类号:

 P228    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式