论文中文题名: |
沸石咪唑酯骨架材料/聚磷酸铵对硅橡胶泡沫阻燃性能的影响研究
|
姓名: |
乔显婷
|
学号: |
20220226094
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085224
|
学科名称: |
工学 - 工程 - 安全工程
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2023
|
培养单位: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全工程
|
研究方向: |
消防科学与工程
|
第一导师姓名: |
王彩萍
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2023-06-19
|
论文答辩日期: |
2023-06-07
|
论文外文题名: |
Effect of zeolitic imidazolate frameworks/ammonium polyphosphate on flame retardant properties of silicone rubber foam study
|
论文中文关键词: |
硅橡胶泡沫 ; 沸石咪唑酯骨架材料 ; 聚磷酸铵 ; 协效阻燃 ; 催化成炭
|
论文外文关键词: |
Silicone rubber foam ; Zeolitic imidazolate frameworks ; Ammonium polyphosphate ; Synergistic flame retardant ; Catalytic carbon formation
|
论文中文摘要: |
︿
硅橡胶泡沫(SiFs)含有大量的C和H元素,遇明火会持续燃烧,产生的高温浓烟不仅损害人体健康且不利于救援工作的快速高效展开,为此提升其阻燃性能迫在眉睫。磷系阻燃剂聚磷酸铵(APP)在SiFs中阻燃效果明显,但其添加量相对较大影响原样SiFs的物理性能。因此,协同阻燃刻不容缓。近年来,沸石咪唑酯骨架材料(ZIFs)凭借比表面积大和孔隙率高等特点作为各种聚合物的高效阻燃添加剂。为此,本文使用熔融共混的方式成功制备SiFs复合材料,利用ZIFs和APP的协同阻燃作用,在降低APP添加量的同时还能提升复合材料阻燃性能。本论文主要研究成果如下:
通过溶剂热合成法制备了两种新型阻燃剂ZIFs,分别为ZIF-67和ZIF-8;将制备出的ZIF-67、ZIF-8、APP和ZIF-8/APP按一定比例进行添加到SiFs中,制备SiFs复合材料。
利用一系列的表征测试从形貌结构、晶型结构、元素组成和化学结构四个方面表明成功地制备了高纯度的ZIFs。紧接着,研究了ZIFs作为高效阻燃添加剂对SiFs阻燃性能的影响,并在二者中优选其一作为协效剂。实验表明ZIF-8对SiFs的阻燃效果优于ZIF-67,当ZIF-8添加量达到2%时,ZIF-8/SiFs复合材料的极限氧指数值得到明显的提升,热释放速率峰值(PHRR)和CO2释放量显著降低,同时抗拉强度和压缩强度较原样相比也得到了提升。
(3)将优选出的ZIF-8和APP按照不同比例复配,对比分析研究ZIF-8/APP/SiFs复合材料的燃烧行为。实验表明,当APP与ZIF-8的复配比例达到4:1时,其综合性能最优,不仅PHRR最低,比原样降低63.12%,而且到达烟释放速率峰值(PSPR)的时间延迟,较5% APP/SiFs复合材料相比,其PSPR下降18.87%。因此,在不改变材料原有性能的基础上,4% APP/1% ZIF-8/SiFs复合材料实现了阻燃抑烟力学性能最佳,充分发挥了APP与ZIF-8的协同作用。
(4)为了探究ZIF-8/APP对硅橡胶泡沫的阻燃机理,通过SEM、TG-DTG和TG-FTIR对比分析了燃烧前后的SiFs复合材料的微观形貌、结构组成、热稳定性和热解气体变化。从气相和凝聚相揭示其阻燃机理:APP和ZIF-8在SiFs复合材料燃烧的同时发生分解,生成了H2O、NH3、N2和CO2等不可燃气体,且ZIF-8热分解产生的ZnO与APP分解产生的磷酸酯类物质催化形成了连续致密的含磷/锌炭层,起到协同阻燃的效果。
﹀
|
论文外文摘要: |
︿
The silicone rubber foam (SiFs) contains a large number of C and H elements, which continue to burn in the open fire, the high temperature and smoke generated not only harm human health and is not conducive to the rapid and efficient development of rescue work, so it is urgent to improve its flame retardant performance. Among them, ammonium polyphosphate (APP) has obvious flame retardant effect in SiFs, but its excessive addition seriously affects the physical properties of the original sample. Therefore, collaborative flame retardant is urgent. In recent years, zeolitic imidazolate frameworks (ZIFs) have been used as highly effective flame retardant additives for various polymer composites due to their large surface area and high porosity. To this end, SiFs composite material was successfully prepared by melt blending in this paper. The synergistic flame retardant effect of ZIFs and APP was utilized to reduce the amount of APP and improve its flame retardant property. The main research results of this paper are as follows:
Two novel flame retardant ZIFs, ZIF-67 and ZIF-8, were prepared by solvothermal synthesis. The prepared ZIF-67, ZIF-8, APP and ZIF-8/APP were added to SiFs in a certain proportion to prepare composites.
A series of characterization tests showed that ZIFs with high purity were successfully prepared from four aspects: morphology, crystal structure, element composition and chemical structure. Then, the effect of ZIFs as high-efficiency flame retardant additives on the flame retardant properties of SiFs was studied, and one of the two was preferred as a synergist. The experimental results show that the flame retardant effect of ZIF-8 on SiFs was better than that of ZIF-67. When the dosage of ZIF-8 reaches 2%, the limiting oxygen index value of ZIF-8/SiFs composite was significantly increased, and the peak heat release rate (PHRR) and CO2 release amount were significantly decreased. At the same time, tensile strength and compressive strength were improved compared to the original.
The optimized ZIF-8 and APP were mixed in different proportions, and the combustion behavior of the composites containing ZIF-8/APP/SiFs was analyzed and compared. Experiments show that when the compound ratio of APP and ZIF-8 reaches 4:1, its comprehensive performance was the best, not only PHRR was the lowest, which was 63.12% lower than the original, but also the time delay to reach the peak smoke release rate (PSPR) was 18.87% lower than that of 5% APP/SiFs composite. Therefore, on the basis of not changing the original properties of the material, 4% APP/1% ZIF-8/SiFs composite achieves the best mechanical properties of flame retardant and smoke suppression, giving full play to the synergistic effect of APP and ZIF-8.
In order to explore the flame retardant mechanism of ZIF-8/APP on silicone rubber foam, the microscopic morphology, structural composition, thermal stability and pyrolysis gas changes of SiFs composite before and after combustion were analyzed by SEM, TG-DTG and TG-FTIR. The flame retardant mechanism was revealed from the gas phase and condensed phase: APP and ZIF-8 decompose during the combustion of SiFs composite material, and generate non-combustible gases such as H2O, NH3, N2 and CO2. Moreover, ZnO produced by thermal decomposition of ZIF-8 and phosphate esters produced by decomposition of ammonium polyphosphate catalyze the formation of continuous dense phosphorus/zinc carbon layer, which plays a synergistic flame retardant effect.
﹀
|
参考文献: |
︿
[1]秦旻, 王亚茹, 赵毅. 层状双金属氢氧化物阻燃高分子材料的制备及研究进展[J]. 化工新型材料, 2022, 50(10):5-9. [2] 张博宇, 王彦明, 张志晓, 等. 高分子材料制备及应用研究进展[J]. 山东化工, 2022, 51(15):58-59+62. [3] 阳志荣, 郑超, 唐舫成, 等. 基于新型高分子材料的加工成型技术应用[J]. 中国石油和化工标准与质量, 2022, 42(12):150-152. [4] 周泽立. 可生物降解高分子材料的分类及应用[J]. 科技展望, 2016, 26(33):110. [5] 唐书通, 张德虎, 任怡, 等. CNT-MF/硅橡胶泡沫复合材料的制备及介电性能[J]. 塑料工业, 2022, 50(01):163-168. [6] 王如平, 王彦明, 王泽虎, 等. 生物可降解高分子材料应用研究进展[J]. 山东化工, 2022, 51(05):98-99+103. [7] 郝丽娜, 张文广, 李莹莹. 功能高分子材料在工业领域中的应用及展望[J]. 天津化工, 2021, 35(05):16-17. [8] 刘聪, 肖藤, 邓佳明, 等. 新型石墨烯/硅橡胶纳米复合电介质泡沫材料的制备及介电性能评价[J]. 塑料工业, 2020, 48(08):145-150. [9] Lu Y, Wang J C, Wang L, et al. Construction of 3D carbon fiber/carbon nanotube/silicone rubber nanocomposites for stretchable conductors through interface host-guest dendrimers[J]. Composites Science and Technology, 2021, 205:108692. [10]蔡昌辰, 张凯, 孙茜, 等. 次磷酸铝/聚磷酸铵阻燃聚氨酯泡沫塑料的性能研究[J]. 塑料科技, 2020, 48(08):11-14. [11]张家辉, 王旭. 氧化石墨烯对聚氨酯泡沫阻燃性能影响的研究[J]. 中国胶粘剂, 2020, 29(04):53-56+65. [12]朱皓, 蓝敏杰, 文庆珍, 等. 乙烯基MQ硅树脂对室温硫化硅橡胶泡沫隔热材料性能的影响[J]. 高分子材料科学与工程, 2020, 36(10):15-20. [13]张贤珍, 姜其斌, 颜渊巍, 等. 有机硅泡沫材料的制备及性能研究进展[J]. 橡胶工业, 2020, 67(01):73-79. [14]夏乔琦, 李扬, 曹承飞, 等. 硅橡胶泡沫复合材料的制备、性能与应用[J]. 中国材料进展, 2018, 37(03):168-177+189. [15]马江敏, 裴新婷, 王思宇. 浅析高分子材料的阻燃技术[J]. 南方农机, 2017, 48(03):117+128. [16]章亮, 柴伟胜, 王珊珊, 等. 聚氯乙烯/竹炭贴面复合材料的燃烧特性研究[J]. 中国塑料, 2021, 35(01):37-46. [17]赵敏. 高分子材料火灾烟气的危害及控制[J]. 塑料工业,2004(06):53-55. [18]王天强, 闫宁, 周静, 等. 硅橡胶泡沫材料的研究进展[J]. 橡胶工业, 2017, 64(05):315-319. [19]谭宇, 姚进, 朱和平. 硅橡胶泡沫/空心玻璃微珠复合材料的制备及性能[J]. 精细化工, 2020, 37(08):1629-1635. [20]袁炜, 邰江, 段佳巍, 等. 硅橡胶防火封堵材料在核电领域的应用[J]. 有机硅材料, 2020, 34(01):59-63. [21]彭磊. 硅橡胶在电力系统外绝缘中的应用研究[J]. 通信电源技术, 2019, 36(04):23-24. [22]张茜, 赵丽, 裴勇兵, 等. 有机硅泡沫材料研究进展[J]. 杭州师范大学学报(自然科学版), 2016, 15(03):230-235. [23]王文博, 张广鑫, 梁西良, 等. 阻燃涂料中阻燃剂的研究进展[J]. 化学与粘合, 2021, 43(04):300-303. [24]杨晓龙, 刘晨曦, 李云东, 等. 磷酸硼协效膨胀型阻燃剂对聚丙烯阻燃性能的研究[J]. 塑料科技, 2022, 50(08):72-76. [25]仲雪莲, 俞胜龙, 孙艳兵, 等. 金属有机框架化合物的研究进展[J]. 能源化工, 2018, 39(05):53-58. [26]Nabipour H, Wang X, Song L, et al. Metal-organic frameworks for flame retardant polymers application: A critical review[J]. Composites Part A Applied Science and Manufacturing, 2020, 139(18):106113. [27]孔令聪, 孙雅榕, 谢雨, 等. 金属有机框架材料捕集二氧化碳技术进展及应用[J]. 新疆石油天然气, 2022, 18(02):78-83. [28]王胜, 刘鹏成. 锌基金属-有机框架材料CO2吸附性能研究进展[J]. 甘肃冶金, 2016, 38(01):58-60+72. [29]Zheng Y, Lu Y S, Zhou K Q. A novel exploration of metal-organic frameworks in flame-retardant epoxy composites[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(2):905-914. [30]任金忠, 李丽霞, 赵薇, 等. 添加型阻燃剂阻燃聚乳酸的研究进展[J]. 塑料科技, 2021, 49(03):107-111. [31]马砺, 刘志超, 肖旸, 等. 含无机阻燃剂硅橡胶泡沫的阻燃及热分解特性研究[J]. 材料导报, 2019, 33(11):1836-1841. [32]段玉兵, 李鹏飞, 姚金霞, 等. 电力封堵用缩合型硅橡胶泡沫防火材料的制备及性能[J]. 合成橡胶工业, 2022, 45(03):213-217. [33]孙希路, 刘春霞, 李刚, 等. 白云母与玻璃粉配合对可瓷化阻燃硅橡胶泡沫性能的影响[J]. 有机硅材料, 2017, 31(04):257-262. [34]姜存华. 阻燃高分子材料的研究进展及其在工程领域的应用[J]. 化工设计通讯, 2020, 46(08):101+109. [35]闫钰. 含MCA微胶囊硅橡胶泡沫的阻燃性能研究[D].西安: 西安科技大学, 2020. [36]邓军, 李航, 康付如. 硼酸锌和镁铝水滑石对硅橡胶泡沫性能的影响[J]. 高分子材料科学与工程, 2020, 36(12):42-48. [37]张嬿妮, 陈少康, 康付如, 等. 含氢氧化铝RTV-2硅橡胶泡沫的阻燃抑烟性能研究[J]. 中国安全生产科学技术, 2018, 14(05):155-160. [38]Kang F R, Wang C P, Deng J, et al. Flame retardancy and smoke suppression of silicone foams with microcapsulated aluminum hypophosphite and zinc borate[J]. Polym Adv Technol, 2020,31:654-644. [39]Song L X, Lu A, Feng P J, et al. Preparation of silicone rubber foam using supercritical carbon dioxide[J]. Materials Letters, 2014, 121:126-128. [40]Tang W Y, Bai J W, Liao X, et al. Carbon Nanotube-Reinforced Silicone Rubber Nanocomposites and the Foaming Behavior in Supercritical Carbon Dioxide[J]. The Journal of Supercritical Fluids, 2018, 141:78-87. [41]Gao J, Wang J B, Xu H Y, et al. Preparation and properties of hollow glass bead filled silicone rubber foams with low thermal conductivity[J]. Materials & Design, 2013, 46:491-496. [42]邬继荣, 倪勇, 吴连斌, 等. 阻燃硅橡胶的研制[J]. 有机硅材料, 2004(04):10-12+48. [43]H. Hazwani D, Faiz A, Sami U, et al. Megat-Yusoff. Effects of talc on fire retarding, thermal degradation and water resistance of intumescent coating[J]. Applied Clay Science, 2017, 146:350-361. [44]Kang F R, Wang C P, Deng J, et al. Effects of talc/hollow glass beads on the flame retardancy of silicone foams[J]. Materials Research Express, 2019, 6:205-212. [45]孙凤勤, 洪玲. 可膨胀石墨对室温硫化硅橡胶性能的影响[J]. 化学通报, 2011, 74(04):376-379. [46]张贤珍. 阻燃有机硅泡沫材料的制备与性能研究[D].株洲: 湖南工业大学,2021. [47]Wu R F, Fan T, Chen J Y, et al. Synthetic Factors Affecting the Scalable Production of Zeolitic Imidazolate Frameworks[J]. ACS Sustainable Chemistry & Engineering, 2019 , 7:3632-3646. [48]王天龙, 张燕, 王新红, 等. 类沸石咪唑酯骨架材料(ZIFs)的研究进展[J]. 化工进展, 2015, 34(11):3959-3964+3978. [49]曾歆韵, 王晓泽, 伊有婷, 等. ZIF-8制备方法及其应用研究概述与展望[J]. 江西化工, 2023, 39(01):13-15+19. [50]毛晓妍, 王玉新, 汪翰阳, 等. 沸石咪唑酯骨架(ZIFs)的制备及性能研究进展[J]. 当代化工, 2018, 47(08):1698-1701. [51]张姝沁, 吴依, 李琳钰, 等. 锌基材料的制备及其应用进展研究[J]. 天津化工, 2021, 35(05):18-21. [52]Pan Y C, Liu Y Y, Zeng G F, et al. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system[J]. Chemical Communications, 2011, 47(7):2071-2073. [53]Qian J F, Sun F, Qin L Z. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals[J]. Materials Letters, 2012, 82:220-223. [54]卢珍, 尤晓夏, 张晓康, 等. 金属有机框架吸附材料的制备及表征[J]. 山西大同大学学报(自然科学版), 2021, 37(01):1-3+15. [55]Banerjee R, Phan A, Wang B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science[J]. 2008, 319:939-943. [56]商梦莉, 仇满德, 边旭. 金属有机骨架ZIF-67材料的合成及微结构调控研究[J]. 人工晶体学报, 2019, 48(12):2228-2234. [57]张永红, 冯芸, 刘晨江. ZIF-67的制备与表征—推荐一个综合化学实验[J]. 广东化工, 2020, 47(21):222-224. [58]Jose T, Hwang Y, Kim D W, et al. Functionalized zeolitic imidazolate framework F-ZIF-90 as efficient catalyst for the cycloaddition of carbon dioxide to allyl glycidyl ether[J]. Catalysis Today, 2015, 245:61-67. [59]乔萌, 牛建瑞, 钟为章, 等. 金属-有机骨架材料的制备及应用进展[J]. 河北工业科技, 2018, 35(01):72-76. [60]李歆, 梁淑君, 翟燕, 等. 微波辅助加热法制备ZIF-8工艺研究[J]. 化工新型材料, 2017, 45(10):145-147. [61]Butova V V, Budnik A P, Bulanova E A, et al. New microwave-assisted synthesis of ZIF-8[J]. Mendeleev Communications, 2016, 26(1):43-44. [62]Bao Q L, Lou Y B, Xing T T, et al. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) in aqueous solution via microwave irradiation[J]. Inorganic Chemistry Communications, 2013, 37:170-173. [63]Lee Y R, Jang M S, Cho H Y, et al. ZIF-8:A comparison of synthesis methods[J]. Chemical Engineering Journal, 2015, 271:276-280. [64]Pravas D, Mondloch J E, Karagiaridi O, et al. Beyond post-synthesis modification:Evolution of metal-organic frameworks via building block replacement[J]. Chem Soc Rev, 2014, 43:5896-5912. [65]王鹏, 张哲, 陈文清. 沸石咪唑酯骨架材料合成及应用研究进展[J]. 四川化工, 2021, 24(03):34-37. [66]冯凡, 曾坚贤, 黄小平, 等. 沸石咪唑骨架膜的制备及其应用进展[J]. 过程工程学报, 2022, 22(06):709-719. [67]Cho H Y, Kim J, Kim S N, et al. High yield 1-L scale synthesis of ZIF-8 via a sonochemical route[J]. Microporous&Mesoporous Materials, 2016, 169:180-184. [68]Seoane B, Zamaro J M, Tellez C, et al. Sonocrystallization of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and ZIF-20) [J]. Crystengcomm, 2012, 14(9):3103-3107. [69]Ba L T, Chin H Y, Chang B K, et al. Dye adsorption in ZIF-8:The importance of external surface area[J]. Microporous and Mesoporous Materials, 2019, 277:149-153. [70]王林郁, 黄学梅. MOFs及其衍生物用于阻燃聚合物材料的研究进展[J]. 化工新型材料, 2021, 49(11):68-73+78. [71]李宝洁, 朱元昭, 钟毅, 等. 聚磷腈改性沸石咪唑酯骨架材料的制备及其在聚酯阻燃中的应用[J]. 纺织学报, 2022, 43(11):104-112. [72]杨菲菲, 邢雪琦, 董振峰, 等. ZIF-8基复配型阻燃剂的制备及其对PET的阻燃效应研究[J]. 北京服装学院学报(自然科学版), 2022, 42(02):7-14. [73]杨宕莎, 王康琪, 朱妍妍, 等. 纳米ZIF-8@短碳纤维的制备及其对环氧复合材料阻燃、抑烟和力学性能的影响[J]. 复合材料学报, 2022, 39(04):1559-1569. [74]Xu W Z, Wang G S, Liu C Y, et al. Zeolitic imidazolate framework-8 was coated with silica and investigated as a flame retardant to improve the flame retardancy and smoke suppression of epoxy resin[J]. RSC Advances, 2018, 8: 2575–2585. [75]王华伟. 钴基金属有机骨架材料对热塑性聚氨酯阻燃体系性能的影响及机理研究[D].北京: 北京化工大学, 2020. [76]Cheng J J, Ma D, Li S X, et al. Preparation of Zeolitic Imidazolate Frameworks and Their Application as Flame Retardant and Smoke Suppression Agent for Rigid Polyurethane Foams[J]. POLYMERS, 2020, 12, 347. [77]Hou Y B, Hu W Z, Gui Z, et al. Preparation of Metal-Organic Frameworks and Their Application as Flame Retardants for Polystyrene[J]. Industrial & Engineering Chemistry Research, 2017, 56(8):2036-2045. [78]林小樟, 金晶, 张明鑫, 等. 聚磷酸铵/ZIF-67协效阻燃环氧树脂研究[J]. 塑料工业, 2020, 48(09):131-134. [79]闫弘毅. ZIF-67杂化物的制备及其对环氧树脂阻燃性能的影响[D].合肥: 安徽建筑大学, 2021. [80]Wang M W, Peng G X, Chen C L, et al. Synergistic modification of ZIF and silica on carbon spheres to enhance the flame retardancy of composites coatings[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642(5):128645. [81]Zhang N E, Zhang J, Hong Y, et al. A novel organic-inorganic hybrid K-HBPE@APP performing excellent flame retardancy and smoke suppression for polypropylene[J]. Journal of Hazardous Materials, 2019, 373(5):856-865. [82]孙为, 刘福春, 郝永胜. 聚磷酸铵对环氧涂层的阻燃性能和防腐蚀机理研究[J]. 塑料科技, 2022, 50(06):96-102. [83]Xue B X, Yang S, Qin R H, et al. Effect of a graphene-APP composite aerogel coating on the polyester fabric for outstanding flammability[J]. Progress in Organic Coatings, 2022, 172:107130. [84]范友华, 王勇, 邓腊云, 等. 硼酸协同多聚磷酸铵改性桉木胶合板的阻燃性能[J]. 中南林业科技大学学报, 2022, 42(05):150-159. [85]张炎, 林凤龙, 吴银财, 等. 焦磷酸哌嗪/聚磷酸铵对硅灰石增强聚丙烯的阻燃应用研究[J]. 塑料工业, 2022, 50(05):177-183+206. [86]Yin G Z, Yang X M, Hobson J, et al. Bio-based poly (glycerol-itaconic acid)/PEG/APP as form stable and flame-retardant phase change materials[J]. Composites Communications, 2022, 30:101057. [87]Sun Q, Wang J L, Meng X, et al. A novel high-efficient P/N/Si-containing APP-based flame retardant with a silane coupling agent in its molecular structure for epoxy resin[J]. Chinese Journal of Chemical Engineering, 2023, 55:137-147. [88]任金忠, 曹建蕾, 李丽霞, 等. APP/改性微晶纤维素协同阻燃PLA的性能[J]. 塑料科技, 2022, 50(02):31-34. [89]高山嵩. 三氧化钼与聚磷酸铵协同阻燃聚氨酯软泡的制备与性能研究[D].广汉: 中国民用航空飞行学院, 2022. [90]张权东, 岳维政, 邵珠宝, 等. 聚磷酸铵/Zn-Fe-LDH协效阻燃环氧树脂研究[J]. 塑料工业,2021,49(06):51-55. [91]杨柳, 叶志斌, 艾梁辉, 等. 聚磷酸铵/氢氧化铝对聚氨酯的协同阻燃作用[J]. 合成材料老化与应用, 2020, 49(05):1-5. [92]丁丁, 徐文总, 闫弘毅. 壳聚糖/ZIF-67杂化物的制备及其对环氧树脂阻燃抑烟性能的影响[J]. 中国塑料, 2022, 36(12):31-37. [93]Xu W Z, W X L , Liu Y C, et al. Improving fire safety of epoxy filled with graphene hybrid incorporated with zeolitic imidazolate framework/layered double hydroxide[J]. Polymer Degradation and Stability, 2018, 154:27-36. [94]刘海涛, 丁颖, 徐丽慧, 等. ZIF-8/CdS复合材料对亚甲基蓝的光催化降解[J]. 环境化学, 2023, 42(01):288-297. [95]Xu B, Xu W, Wang G, et al. Zeolitic imidazolate frameworks-8 modified graphene as a green flame retardant for reducing the fire risk of epoxy resin[J]. Polymers For Advanced Technologies, 2018, 29(6):1733-1743. [96]任腾飞, 朱竹军, 董鸿波, 等. 树脂包覆ZIF-67衍生物制备Co-基氮掺杂多孔碳材料作为氧还原反应催化剂的研究[J]. 化学通报, 2022, 85(07):822-826. [97]赵广震, 宁珂, 史慧敏, 等. ZIF-8衍生柔性多孔炭材料的制备及其电容性能研究[J]. 材料研究与应用, 2022, 16(04):537-545. [98]Ren Y L, Wang Y L, Wang L J,et al. Evaluation of intumescent fire retardants and synergistic agents for use in wood flour/recycled polypropylene composites[J]. Construction and Building Materials, 2015, 76:273-278. [99]GB/T2408-2008燃烧性能的测定水平法和垂直法. [100]Qi X L, Zhou D D, Zhang J, et al. Simultaneous improvement of mechanical and fire-safety properties of polymer composites with phosphonate-loaded MOF additives[J]. ACS applied materials & interfaces, 2019, 11(22):20325–32. [101]Wang S H, Li J S, Wang W J, et al. Silicone filled halloysite nanotubes for polypropylene composites: Flame retardancy, smoke suppression and mechanical property[J]. Composites Part A Applied Science and Manufacturing, 2021, 140:106170. [102]Wang L C, Jiang J Q, Jiang P Ket al. Synthesis, characteristic of a novel flame retardant containing phosphorus, silicon and its application in ethylene vinyl-acetate copolymer (EVM) rubber[J]. Journal of Polymer Research, 2010, 17:891-902. [103]Yan S P, Jia D, Yu Y, et al. Influence of γ-irradiation on mechanical behaviors of poly methyl-vinyl silicone rubber foams at different temperatures[J]. Mechanics of Materials, 2020, 151:103639. [104]李明晗, 曹帅, 蔡家斌, 等. 硅溶胶-APP复合阻燃剂对辐射松木材阻燃的研究[J]. 安徽农业大学学报, 2022, 49(02):213-218. [105]Wang X, Wang S, Wang W, et al. The flammability and mechanical properties of poly (lactic acid) composites containing Ni-MOF nanosheets with polyhydroxy groups[J]. Composites Part B Engineering, 2019, 183:107568. [106]王荣珍, 童周禹, 张月, 等. 过渡金属化合物在聚合物阻燃中的研究进展[J]. 化工新型材料, 2022, 50(02):42-46.
﹀
|
中图分类号: |
TQ333.93
|
开放日期: |
2023-06-19
|