论文中文题名: | 充填矿井储热库蓄/释热过程的热干扰研究 |
姓名: | |
学号: | 20204228090 |
保密级别: | 保密(1年后开放) |
论文语种: | chi |
学科代码: | 085213 |
学科名称: | 工学 - 工程 - 建筑与土木工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 可再生能源利用 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-14 |
论文答辩日期: | 2023-06-06 |
论文外文题名: | Study on the thermal interference of heat storage/release process in backfill heat storage reservoirs |
论文中文关键词: | |
论文外文关键词: | Thermal Interference ; Backfill Heat Storage Reservoir ; Backfill Heat Exchangers ; Seasonal Energy Storage ; Serpentine buried tube |
论文中文摘要: |
“双碳”背景下大力开发太阳能为代表的可再生能源替代煤、石油和天然气等传统能源是我国能源结构调整的重要途径。我国具有极其丰富的太阳能资源,但存在不稳定性、周期性和间歇性的致命问题,规模化储能被认为是解决这一问题的关键。针对矿山开采形成的地下采空区,将地埋管换热器技术与矿井充填体技术相结合,借助已有矿井工程,构建具有蓄/释热功能的充填矿井储热库是利用地下空间实现规模化跨季节蓄热储能的新方法,但管群间热干扰会影响其蓄/释热性能而不容被忽视。因此,本文采用数值模拟的方法,对绝热型和非绝热型两种充填矿井储热库内部管群间热干扰的影响开展了量化研究。 利用COMSOL仿真模拟软件建立了绝热型和非绝热型储热库蛇形埋管充填体换热器的三维非稳态传热模型,并通过文献热响应试验数据验证了两种模型的可靠性。基于模型模拟了储热库埋管充填体换热器的蓄热/释热过程,分析了不同设计和运行参数等条件下储热库累积蓄/释热量及蓄/释热速率的变化规律。建立管间热干扰系数和层间热干扰系数量化研究了热物性参数、几何参数、运行参数以及地下水渗流等对储热库蓄/释热过程热干扰的影响;引入相对灵敏度讨论分析了储热库管间和层间热干扰对研究参数的敏感度。 针对绝热型充填储热库,研究了管间距、管径、充填体导热系数、比热容、传热流体入口流速和换热埋管层数对热干扰的影响。结果表明,管间热干扰系数Itub随蓄/释热时间呈现先下降后上升的变化趋势,整体变化不大(0.92~1),说明单层蛇形埋管管间热干扰影响较小。层间热干扰系数Ilay曲线呈单调显著递减,在蓄/释热阶段末分别低于0.2和0.65,说明多层蛇形埋管层间热干扰随着蓄/释热的进行严重恶化。通过相对灵敏度分析发现,层间热干扰系数Ilay对研究参数的敏感度明显高于管间热干扰系数Itub。层间热干扰系数Ilay对充填体比热容、管间距、充填体导热系数、埋管层数、管径和入口流速的敏感度依次降低,其中充填体比热容和管间距为正面影响,其余4个研究参数为负面影响。管间热干扰系数Itub在蓄/释热的大部分时间段对管间距最敏感。 针对非绝热型充填储热库,研究了地下水渗流速度、渗流方向、围岩温度、围岩导热系数和传热流体入口流速对热干扰的影响。结果显示,围岩温度和围岩导热系数对于管间和层间热干扰的影响较小,不同围岩温度和围岩导热系数其热干扰系数曲线几乎重合,整体变化仅在0.04之内。低渗流速度时(10-7m/s和5×10-7m/s),管间热干扰系数I′tub呈先上升后下降的趋势,高渗流速度时(10-6 m/s~10-5 m/s),管间热干扰系数I′tub和层间热干扰系数I′lay曲线呈单调递减,说明管间热干扰随蓄/释热的进行逐渐恶化。渗流方向由右到左的管间和层间热干扰明显弱于渗流方向由左到右。与绝热型充填储热库相类似地,传热流体入口流速的增大会加剧热干扰程度。 本论文构建了具有蓄/释热功能的充填矿井储热库为利用矿井采空区实施大规模地下储能提供了新思路,量化研究了关键设计运行参数对绝热型和非绝热型储热库热干扰的影响规律,为优化充填矿井储热库设计,降低热干扰提供了理论依据。 |
论文外文摘要: |
The “double carbon” background vigorously developed solar energy as the representative of renewable energy to replace coal, oil and natural gas and other traditional energy is an important way to adjust China's energy structure. The country is extremely rich in solar energy resources, but suffers from the fatal problem of instability, cyclicity and intermittency, and large-scale energy storage is seen as the key to solving this problem. The combination of buried tube heat exchanger technology and backfill technology to build a filled heat storage reservoir with heat storage/release functions is a new way of using underground space to achieve large-scale inter-seasonal heat storage, but thermal interference between groups of tubes can affect their heat storage/release performance and cannot be ignored. Therefore, this paper uses numerical simulations to quantify the effect of thermal interference between groups of tubes inside two types of filled heat storage reservoirs, adiabatic and non-adiabatic. Three-dimensional unsteady heat transfer models for adiabatic and non-adiabatic heat storage reservoir serpentine buried tube backfill heat exchangers were developed using COMSOL simulation software and the reliability of both models was verified by literature thermal response test data. Based on the model, the heat storage/release process of the buried tube backfill heat exchanger of the heat storage reservoir is simulated, and the variation law of the accumulated heat storage/release and the heat storage/release rate of the heat storage reservoir under different design and operation parameters are analyzed. Inter-tube thermal interference coefficients and inter-layer thermal interference coefficients were established to quantify the effects of thermal physical parameters, geometrical parameters, operational parameters and groundwater seepage on the thermal interference of heat storage/release processes in heat storage reservoirs. A discussion of relative sensitivity is introduced to analyze the sensitivity of inter-tube and inter-layer thermal interference in heat storage reservoirs to the studied parameters. The effects of tube spacing, tube diameter, thermal conductivity of the backfill, specific heat capacity, heat transfer fluid inlet flow rate and the number of layers of heat transfer buried tubes on thermal interference are investigated for adiabatic backfill heat storage reservoirs. The results show that the inter-tube thermal interference coefficient Itub shows a trend of decreasing and then increasing with the time of heat storage/release, and the overall change is not significant (0.92~1), which indicates that the influence of inter-tube thermal interference is small for single-layer serpentine buried tubes. The inter-layer thermal interference coefficient Ilay curve is monotonically and significantly decreasing, and is below 0.2 and 0.65 at the end of the heat storage/release phase, respectively, indicating that the inter-layer thermal interference of multi-layer serpentine buried tubes deteriorates seriously with the progress of heat storage/release. The relative sensitivity analysis revealed that the inter-layer thermal interference coefficient Ilay is significantly more sensitive to the studied parameters than the inter-tube thermal interference coefficient Itub. The sensitivity of the inter-layer thermal interference coefficient Ilay to the specific heat capacity of the backfill, tube spacing, thermal conductivity of the backfill, number of buried tube layers, tube diameter and inlet flow rate decreases in descending order, with the specific heat capacity of the backfill and tube spacing having positive effects and the remaining four studied parameters having negative effects. The inter-tube thermal interference coefficient Itub is most sensitive to the tube spacing during most of the time period of heat storage/release. The effects of groundwater seepage velocity, seepage direction, surrounding rock temperature, surrounding rock thermal conductivity and heat transfer fluid inlet flow rate on thermal interference are investigated for non-adiabatic backfill heat storage reservoirs. The results show that the influence of the surrounding rock temperature and the surrounding rock thermal conductivity on the thermal interference between tubes and layers is relatively small, with the thermal interference coefficient curves for different surrounding rock temperatures and surrounding rock thermal conductivities almost coinciding, and the overall variation is only within 0.04. At low seepage velocities (10-7m/s and 5×10-7m/s), the inter-tube thermal interference coefficient I′tub tends to increase and then decrease, while at high seepage velocities (10-6m/s to 10-5m/s), the inter-tube thermal interference coefficient I′tub and the inter-layer thermal interference coefficient I′lay curves are monotonically decreasing, indicating that the inter-tube thermal interference gradually deteriorates as the heat storage/release proceeds. Inter-tube and inter-layer thermal interference are significantly weaker in the right-to-left direction of seepage than in the left-to-right direction of seepage. Similarly to adiabatic backfill thermal storage, the increase in the inlet velocity of the heat transfer fluid increases the level of thermal interference. This thesis constructs a backfill heat storage reservoir with heat storage/release function to provide a new idea for the implementation of large-scale underground energy storage using mine void areas, and quantifies the influence of key design and operating parameters on the thermal interference of adiabatic and non-adiabatic heat storage reservoirs, providing a theoretical basis for optimizing the design of backfill heat storage reservoirs and reducing thermal interference. |
参考文献: |
[1] 吴巧生, 汪小英, 李世祥, 等. 能源消费经济学[M]. 北京: 科学出版社, 2013. [10] 张乘源. “双碳”政策加码,光伏产业升温[J]. 环境经济, 2021, 000(21): 50-53. [11] 姜克隽. 一个强有力的2050碳减排目标将非常有利于中国的社会经济发展[J]. 气候变化研究进展, 2019, 15(01): 103-106. [20] 谢友泉, 高辉, 苏志国, 等. 废弃矿井资源的可再生能源开发利用[J]. 可再生能源, 2020, 38(03): 423-426. [21] 钱七虎. 双碳目标下的能源地下工程[C] //2021第三届全国能源地下结构与工程学术研讨会. 深圳, 2021. [22] 张辉, 侯宏娟, 汉京晓, 等. 跨季节地埋管储热性能模拟及分析[J]. 工程热物理学报, 2022, 43(05): 1148-1154. [25] 刘浪, 辛杰, 张波, 等. 矿山功能性充填基础理论与应用探索[J]. 煤炭学报, 2018, 43(07): 1811-1820. [30] 张波, 薛攀源, 刘浪, 等. 深部充填矿井的矿床-地热协同开采方法探索[J]. 煤炭学报, 2021, 46(09): 2824-2837. [36] 刘业凤, 熊月忠, 艾永杰, 等. 不同管间距的垂直U型地埋管换热实验研究[J]. 能源工程, 2014(03): 67-71. [42] 张波, 杨紫桐, 刘浪, 等. 深部矿井埋管充填体换热器蓄/释热过程中的热干扰问题[J]. 煤炭学报, 2023, 48(03): 1155-1168. [43] 朱凤志. SCZ型水砂充填支架的特点及主要参数的确定[J]. 煤矿机械, 1985, 3(04): 20-25. [44] 缪协兴, 巨峰, 黄艳利, 等. 充填采煤理论与技术的新进展及展望[J]. 中国矿业大学学报, 2015, 44(03): 391-399+429. [45] 缪协兴, 张吉雄. 井下煤矸分离与综合机械化固体充填采煤技术[J]. 煤炭学报, 2014, 39(08): 1424-1433. [46] 戚庭野, 冯国瑞, 郭育霞, 等. 煤矿膏体充填材料性能随龄期变化的试验研究[J]. 采矿与安全工程学报, 2015, 32(01): 42-48. [47] 孙琦, 张向东, 张淑坤. 矿山固体废弃物制备高强度膏体充填材料的实验研究[J]. 非金属矿, 2015, 38(01): 42-44. [51] 张小艳, 赵成林, 刘利, 等. 添加石蜡的复合充填材料流变性能实验研究[J]. 山西建筑, 2019, 45(08): 87-88. [52] 张小艳, 王杰, 韩子怡, 等. 添加石蜡的复合充填材料热学性能实验研究[J]. 山西建筑, 2019, 45(09): 95-97. [53] 李圣腾. 矿山非均匀沉降胶结充填体热学性能研究[D]. 西安: 西安科技大学, 2020. [55] 王美, 刘浪, 张波, 等. 矿山载/蓄冷功能性充填基础理论[J]. 煤炭学报, 2020, 45(4): 1336-1347. [56] 顼永亮. 地埋管回填材料及孔径对传热性能影响分析[D]. 上海: 东华大学, 2016. [57] 王荣, 杨晨磊, 董世豪, 等. 回填材料热物性对地埋管换热器换热性能影响综述[J]. 建筑热能通风空调, 2021, 40(04): 35-40. [58] 崔煜蓉, 陈帅. 不同形式地埋管换热器运行性能影响因素研究[J]. 节能技术, 2021, 39(05): 418-421+431. [65] 宋胡伟, 陈晓春. 地下水渗流速度对地埋管地源热泵系统的影响[J]. 制冷与空调, 2017, 17(11): 17-20+9. [67] 王子阳, 张仪萍, 战国会, 等. 有渗流时埋管换热器传热模型[J]. 浙江大学学报, 2012, 46(08): 1450-1456. [68] 於仲义, 陈焰华, 胡平放. 基于渗流型传热机制的地埋管换热特性研究[J]. 湖南大学学报, 2009, 36(12): 63-68. [72] 张琳琳, 赵蕾, 杨柳. 渗流作用下垂直埋管换热器钻孔内外耦合传热计算与分析[J]. 化工学报, 2015, 66(04): 1290-1300. [78] 薛远. H59黄铜皮秒激光打孔过程温度场数值模拟及试验研究[D]. 镇江: 江苏大学, 2017. [79] 张海琳, 余跃进, 胡纯良. 地埋管地源热泵地埋管管径的选取[J]. 暖通空调, 2012, 42(12): 114-117. [82] 杨世铭, 陶文铨. 传热学(第四版)[M]. 北京: 高等教育出版社, 2011. [83] 宋占璞, 张丹, 方海东, 等. 大体积混凝土水化热温度变化光纤监测技术研究[J]. 工程地质学报, 2014, 22(02): 244-249. [84] 毋林林, 康天合, 尹博, 等. 粉煤灰膏体充填材料水化放热特性的微量热测试与分析[J]. 煤炭学报, 2015, 40(12): 2801-2806. [85] 李政. 地埋管管群在分层岩土中的换热性能模拟研究[D]. 内蒙古: 内蒙古科技大学, 2020. [86] 罗健. 系统灵敏度理论导论[M]. 西安: 西北工业大学出版社, 1988. [87] 张小艳, 文德, 赵玉娇, 等. 矿山蓄热/储能充填体的热-力性能与传热过程[J]. 煤炭学报, 2021, 46(10): 3158-3171. [88] 王俊清, 袁艳平, 曹晓玲, 等. 基于混合解换热模型的地源热泵系统井群热干扰特性[J]. 农业工程学报, 2016, 32(10): 194-200. |
中图分类号: | TK02 |
开放日期: | 2024-06-15 |