- 无标题文档
查看论文信息

论文中文题名:

 充填矿井储热库蓄/释热过程的热干扰研究    

姓名:

 杨紫桐    

学号:

 20204228090    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木水利    

研究方向:

 可再生能源利用    

第一导师姓名:

 张波    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-14    

论文答辩日期:

 2023-06-06    

论文外文题名:

 Study on the thermal interference of heat storage/release process in backfill heat storage reservoirs    

论文中文关键词:

 热干扰 ; 充填矿井储热库 ; 充填埋管换热器 ; 季节性储能 ; 蛇形埋管    

论文外文关键词:

 Thermal Interference ; Backfill Heat Storage Reservoir ; Backfill Heat Exchangers ; Seasonal Energy Storage ; Serpentine buried tube    

论文中文摘要:

“双碳”背景下大力开发太阳能为代表的可再生能源替代煤、石油和天然气等传统能源是我国能源结构调整的重要途径。我国具有极其丰富的太阳能资源,但存在不稳定性、周期性和间歇性的致命问题,规模化储能被认为是解决这一问题的关键。针对矿山开采形成的地下采空区,将地埋管换热器技术与矿井充填体技术相结合,借助已有矿井工程,构建具有蓄/释热功能的充填矿井储热库是利用地下空间实现规模化跨季节蓄热储能的新方法,但管群间热干扰会影响其蓄/释热性能而不容被忽视。因此,本文采用数值模拟的方法,对绝热型和非绝热型两种充填矿井储热库内部管群间热干扰的影响开展了量化研究。

利用COMSOL仿真模拟软件建立了绝热型和非绝热型储热库蛇形埋管充填体换热器的三维非稳态传热模型,并通过文献热响应试验数据验证了两种模型的可靠性。基于模型模拟了储热库埋管充填体换热器的蓄热/释热过程,分析了不同设计和运行参数等条件下储热库累积蓄/释热量及蓄/释热速率的变化规律。建立管间热干扰系数和层间热干扰系数量化研究了热物性参数、几何参数、运行参数以及地下水渗流等对储热库蓄/释热过程热干扰的影响;引入相对灵敏度讨论分析了储热库管间和层间热干扰对研究参数的敏感度。

针对绝热型充填储热库,研究了管间距、管径、充填体导热系数、比热容、传热流体入口流速和换热埋管层数对热干扰的影响。结果表明,管间热干扰系数Itub随蓄/释热时间呈现先下降后上升的变化趋势,整体变化不大(0.92~1),说明单层蛇形埋管管间热干扰影响较小。层间热干扰系数Ilay曲线呈单调显著递减,在蓄/释热阶段末分别低于0.2和0.65,说明多层蛇形埋管层间热干扰随着蓄/释热的进行严重恶化。通过相对灵敏度分析发现,层间热干扰系数Ilay对研究参数的敏感度明显高于管间热干扰系数Itub。层间热干扰系数Ilay对充填体比热容、管间距、充填体导热系数、埋管层数、管径和入口流速的敏感度依次降低,其中充填体比热容和管间距为正面影响,其余4个研究参数为负面影响。管间热干扰系数Itub在蓄/释热的大部分时间段对管间距最敏感。

针对非绝热型充填储热库,研究了地下水渗流速度、渗流方向、围岩温度、围岩导热系数和传热流体入口流速对热干扰的影响。结果显示,围岩温度和围岩导热系数对于管间和层间热干扰的影响较小,不同围岩温度和围岩导热系数其热干扰系数曲线几乎重合,整体变化仅在0.04之内。低渗流速度时(10-7m/s和5×10-7m/s),管间热干扰系数I′tub呈先上升后下降的趋势,高渗流速度时(10-6 m/s~10-5 m/s),管间热干扰系数I′tub和层间热干扰系数I′lay曲线呈单调递减,说明管间热干扰随蓄/释热的进行逐渐恶化。渗流方向由右到左的管间和层间热干扰明显弱于渗流方向由左到右。与绝热型充填储热库相类似地,传热流体入口流速的增大会加剧热干扰程度。

本论文构建了具有蓄/释热功能的充填矿井储热库为利用矿井采空区实施大规模地下储能提供了新思路,量化研究了关键设计运行参数对绝热型和非绝热型储热库热干扰的影响规律,为优化充填矿井储热库设计,降低热干扰提供了理论依据。

论文外文摘要:

The “double carbon” background vigorously developed solar energy as the representative of renewable energy to replace coal, oil and natural gas and other traditional energy is an important way to adjust China's energy structure. The country is extremely rich in solar energy resources, but suffers from the fatal problem of instability, cyclicity and intermittency, and large-scale energy storage is seen as the key to solving this problem. The combination of buried tube heat exchanger technology and backfill technology to build a filled heat storage reservoir with heat storage/release functions is a new way of using underground space to achieve large-scale inter-seasonal heat storage, but thermal interference between groups of tubes can affect their heat storage/release performance and cannot be ignored. Therefore, this paper uses numerical simulations to quantify the effect of thermal interference between groups of tubes inside two types of filled heat storage reservoirs, adiabatic and non-adiabatic.

Three-dimensional unsteady heat transfer models for adiabatic and non-adiabatic heat storage reservoir serpentine buried tube backfill heat exchangers were developed using COMSOL simulation software and the reliability of both models was verified by literature thermal response test data. Based on the model, the heat storage/release process of the buried tube backfill heat exchanger of the heat storage reservoir is simulated, and the variation law of the accumulated heat storage/release and the heat storage/release rate of the heat storage reservoir under different design and operation parameters are analyzed. Inter-tube thermal interference coefficients and inter-layer thermal interference coefficients were established to quantify the effects of thermal physical parameters, geometrical parameters, operational parameters and groundwater seepage on the thermal interference of heat storage/release processes in heat storage reservoirs. A discussion of relative sensitivity is introduced to analyze the sensitivity of inter-tube and inter-layer thermal interference in heat storage reservoirs to the studied parameters.

The effects of tube spacing, tube diameter, thermal conductivity of the backfill, specific heat capacity, heat transfer fluid inlet flow rate and the number of layers of heat transfer buried tubes on thermal interference are investigated for adiabatic backfill heat storage reservoirs. The results show that the inter-tube thermal interference coefficient Itub shows a trend of decreasing and then increasing with the time of heat storage/release, and the overall change is not significant (0.92~1), which indicates that the influence of inter-tube thermal interference is small for single-layer serpentine buried tubes. The inter-layer thermal interference coefficient Ilay curve is monotonically and significantly decreasing, and is below 0.2 and 0.65 at the end of the heat storage/release phase, respectively, indicating that the inter-layer thermal interference of multi-layer serpentine buried tubes deteriorates seriously with the progress of heat storage/release. The relative sensitivity analysis revealed that the inter-layer thermal interference coefficient Ilay is significantly more sensitive to the studied parameters than the inter-tube thermal interference coefficient Itub. The sensitivity of the inter-layer thermal interference coefficient Ilay to the specific heat capacity of the backfill, tube spacing, thermal conductivity of the backfill, number of buried tube layers, tube diameter and inlet flow rate decreases in descending order, with the specific heat capacity of the backfill and tube spacing having positive effects and the remaining four studied parameters having negative effects. The inter-tube thermal interference coefficient Itub is most sensitive to the tube spacing during most of the time period of heat storage/release.

The effects of groundwater seepage velocity, seepage direction, surrounding rock temperature, surrounding rock thermal conductivity and heat transfer fluid inlet flow rate on thermal interference are investigated for non-adiabatic backfill heat storage reservoirs. The results show that the influence of the surrounding rock temperature and the surrounding rock thermal conductivity on the thermal interference between tubes and layers is relatively small, with the thermal interference coefficient curves for different surrounding rock temperatures and surrounding rock thermal conductivities almost coinciding, and the overall variation is only within 0.04. At low seepage velocities (10-7m/s and 5×10-7m/s), the inter-tube thermal interference coefficient I′tub tends to increase and then decrease, while at high seepage velocities (10-6m/s to 10-5m/s), the inter-tube thermal interference coefficient I′tub and the inter-layer thermal interference coefficient I′lay curves are monotonically decreasing, indicating that the inter-tube thermal interference gradually deteriorates as the heat storage/release proceeds. Inter-tube and inter-layer thermal interference are significantly weaker in the right-to-left direction of seepage than in the left-to-right direction of seepage. Similarly to adiabatic backfill thermal storage, the increase in the inlet velocity of the heat transfer fluid increases the level of thermal interference.

This thesis constructs a backfill heat storage reservoir with heat storage/release function to provide a new idea for the implementation of large-scale underground energy storage using mine void areas, and quantifies the influence of key design and operating parameters on the thermal interference of adiabatic and non-adiabatic heat storage reservoirs, providing a theoretical basis for optimizing the design of backfill heat storage reservoirs and reducing thermal interference.

参考文献:

[1] 吴巧生, 汪小英, 李世祥, 等. 能源消费经济学[M]. 北京: 科学出版社, 2013.

[2] Hu Y, Peng L, Li X, et al. A novel evolution tree for analyzing the global energy consumption structure[J]. Energy, 2018, 147: 1177-1187.

[3] Su X, Zhang X. A detailed analysis of the embodied energy and carbon emissions of steel-construction residential buildings in China[J]. Energy and Buildings, 2016, 119: 323-330.

[4] Moriarty P, Honnery D. Energy Efficiency or Conservation for Mitigating Climate Change[J]. Energies, 2019, 12(18): 3543-3559.

[5] Seow Y, Goffin N, Rahimifard S, et al. A ‘Design for Energy Minimization’ approach to reduce energy consumption during the manufacturing phase[J]. Energy, 2016, 109: 894-905.

[6] Ren F, Xia L. Analysis of China’s Primary Energy Structure and Emissions Reduction Targets by 2030 Based on Multiobjective Programming[J]. Mathematical Problems in Engineering, 2017, 2017: 1-8.

[7] Gu H, Cao Y, Elahi E, et al. Human health damages related to air pollution in China[J]. Environmental Science and Pollution Research, 2019, 26(13): 13115-13125.

[8] Yang X, Zhang J, Ren S, et al. Can the new energy demonstration city policy reduce environmental pollution, Evidence from a quasi-natural experiment in China[J]. Journal of Cleaner Production, 2021, 287: 125015.

[9] Zhang S, Worrell E, Crijns-Graus W. Cutting air Pollution by Improving Energy Efficiency of China’s Cement Industry[J]. Energy Procedia, 2015, 83: 10-20.

[10] 张乘源. “双碳”政策加码,光伏产业升温[J]. 环境经济, 2021, 000(21): 50-53.

[11] 姜克隽. 一个强有力的2050碳减排目标将非常有利于中国的社会经济发展[J]. 气候变化研究进展, 2019, 15(01): 103-106.

[12] Nwozor A, Oshewolo S, Owoeye G, et al. Nigeria’s quest for alternative clean energy development: A cobweb of opportunities, pitfalls and multiple dilemmas[J]. Energy Policy, 2021, 149: 112070.

[13] Wu Y, Zhang B, Wu C, et al. Optimal site selection for parabolic trough concentrating solar power plant using extended PROMETHEE method: A case in China[J]. Renewable Energy, 2019, 143: 1910-1927.

[14] Mitrasinovic A M. Photovoltaics advancements for transition from renewable to clean energy[J]. Energy, 2021, 237: 121510.

[15] Zhang Y, Ren J, Pu Y, et al. Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis[J]. Renewable Energy, 2020, 149: 577-586.

[16] Sawhney A. Striving towards a circular economy: climate policy and renewable energy in India[J]. Clean Technologies and Environmental Policy, 2021, 23(02): 491-499.

[17] Asgharian H, Baniasadi E. A review on modeling and simulation of solar energy storage systems based on phase change materials[J]. Journal of Energy Storage, 2019, 21: 186-201.

[18] Xu J, Wang R, Li Y. A review of available technologies for seasonal thermal energy storage[J]. Solar Energy, 2014, 103: 610-638.

[19] Kalaiselvam S, Parameshwaran R. Thermal Energy Storage Technologies[M] //Thermal Energy Storage Technologies for Sustainability. Elsevier, 2014: 57-64.

[20] 谢友泉, 高辉, 苏志国, 等. 废弃矿井资源的可再生能源开发利用[J]. 可再生能源, 2020, 38(03): 423-426.

[21] 钱七虎. 双碳目标下的能源地下工程[C] //2021第三届全国能源地下结构与工程学术研讨会. 深圳, 2021.

[22] 张辉, 侯宏娟, 汉京晓, 等. 跨季节地埋管储热性能模拟及分析[J]. 工程热物理学报, 2022, 43(05): 1148-1154.

[23] Zhang L, Xu P, Mao J, et al. A low cost seasonal solar soil heat storage system for greenhouse heating: Design and pilot study[J]. Applied Energy, 2015, 156: 213-222.

[24] Xie H, Zhao J, Zhou H, et al. Secondary utilizations and perspectives of mined underground space[J]. Tunnelling and Underground Space Technology, 2020, 96: 103129.

[25] 刘浪, 辛杰, 张波, 等. 矿山功能性充填基础理论与应用探索[J]. 煤炭学报, 2018, 43(07): 1811-1820.

[26] Mesquita L, Mcclenahan D, Thornton J, et al. Drake Landing Solar Community: 10 Years of Operation[C] //ISES Solar World Conference. Abu Dhabi: International Solar Energy Society, 2017: 1-12.

[27] Elhashmi R, Hallinan K P, Chiasson A D. Low-energy opportunity for multi-family residences: A review and simulation-based study of a solar borehole thermal energy storage system[J]. Energy, 2020, 204: 117870.

[28] Li B, Zhang J, Ghoreishi-Madiseh S A, et al. Energy performance of seasonal thermal energy storage in underground backfilled stopes of coal mines[J]. Journal of Cleaner Production, 2020, 275: 122647.

[29] Ghoreishi-Madiseh S A, Hassani F, Abbasy F. Numerical and experimental study of geothermal heat extraction from backfilled mine stopes[J]. Applied Thermal Engineering, 2015, 90: 1119-1130.

[30] 张波, 薛攀源, 刘浪, 等. 深部充填矿井的矿床-地热协同开采方法探索[J]. 煤炭学报, 2021, 46(09): 2824-2837.

[31] Zhang X, Liu L, Liu L, et al. Numerical simulation of heat release performance of filling body under condition of heat extracted by fluid flowing in buried tube[J]. Journal of Central South University, 2019, 26(08): 2160-2174.

[32] Zhang X, Zhao M, Liu L, et al. Numerical simulation on heat storage performance of backfill body based on tube-in-tube heat exchanger[J]. Construction and Building Materials, 2020, 265: 120340.

[33] Zhao Y, Liu L, Wen D, et al. Experimental study of horizontal ground heat exchangers embedded in the backfilled mine stopes[J]. Geothermics, 2022, 100: 102344.

[34] Zhao Y, Liu L, Wen D, et al. Recycling waste material for backfill coupled heat exchanger systems in underground stopes of mines[J]. Energy and Buildings, 2022, 256: 111703.

[35] Lei X, Zheng X, Duan C, et al. Three-Dimensional Numerical Simulation of Geothermal Field of Buried Pipe Group Coupled with Heat and Permeable Groundwater[J]. Energies, 2019, 12(19): 3698.

[36] 刘业凤, 熊月忠, 艾永杰, 等. 不同管间距的垂直U型地埋管换热实验研究[J]. 能源工程, 2014(03): 67-71.

[37] Yuan Y, Cao X, Wang J, et al. Thermal interaction of multiple ground heat exchangers under different intermittent ratio and separation distance[J]. Applied Thermal Engineering, 2016, 108: 277-286.

[38] Gultekin A, Aydin M, Sisman A. Effects of arrangement geometry and number of boreholes on thermal interaction coefficient of multi-borehole heat exchangers[J]. Applied Energy, 2019, 237: 163-170.

[39] Gultekin A, Aydin M, Sisman A. Thermal performance analysis of multiple borehole heat exchangers[J]. Energy Conversion and Management, 2016, 122: 544-551.

[40] Zhang L, Zhao L, Yang L, et al. Analyses on soil temperature responses to intermittent heat rejection from BHEs in soils with groundwater advection[J]. Energy and Buildings, 2015, 107: 355-365.

[41] Jin G, Li Z, Guo S, et al. Thermal performance analysis of multiple borehole heat exchangers in multilayer geotechnical media[J]. Energy, 2020, 209: 118236.

[42] 张波, 杨紫桐, 刘浪, 等. 深部矿井埋管充填体换热器蓄/释热过程中的热干扰问题[J]. 煤炭学报, 2023, 48(03): 1155-1168.

[43] 朱凤志. SCZ型水砂充填支架的特点及主要参数的确定[J]. 煤矿机械, 1985, 3(04): 20-25.

[44] 缪协兴, 巨峰, 黄艳利, 等. 充填采煤理论与技术的新进展及展望[J]. 中国矿业大学学报, 2015, 44(03): 391-399+429.

[45] 缪协兴, 张吉雄. 井下煤矸分离与综合机械化固体充填采煤技术[J]. 煤炭学报, 2014, 39(08): 1424-1433.

[46] 戚庭野, 冯国瑞, 郭育霞, 等. 煤矿膏体充填材料性能随龄期变化的试验研究[J]. 采矿与安全工程学报, 2015, 32(01): 42-48.

[47] 孙琦, 张向东, 张淑坤. 矿山固体废弃物制备高强度膏体充填材料的实验研究[J]. 非金属矿, 2015, 38(01): 42-44.

[48] Zhang X, Zhao M, Liu L, et al. Phase-change heat storage backfill: Experimental study on rheological properties of backfill slurry with paraffin added[J]. Construction and Building Materials, 2020, 262: 120736.

[49] Zhang X, Xu M, Liu L, et al. Experimental study on thermal and mechanical properties of cemented paste backfill with phase change material[J]. Journal of Materials Research and Technology, 2020, 9(02): 2164-2175.

[50] Zhang X, Xu M, Liu L, et al. The Concept, Technical System and Heat Transfer Analysis on Phase-Change Heat Storage Backfill for Exploitation of Geothermal Energy[J]. Energies, 2020, 13(18): 4755.

[51] 张小艳, 赵成林, 刘利, 等. 添加石蜡的复合充填材料流变性能实验研究[J]. 山西建筑, 2019, 45(08): 87-88.

[52] 张小艳, 王杰, 韩子怡, 等. 添加石蜡的复合充填材料热学性能实验研究[J]. 山西建筑, 2019, 45(09): 95-97.

[53] 李圣腾. 矿山非均匀沉降胶结充填体热学性能研究[D]. 西安: 西安科技大学, 2020.

[54] Wang M, Liu L, Zhang X, et al. Experimental and numerical investigations of heat transfer and phase change characteristics of cemented paste backfill with PCM[J]. Applied Thermal Engineering, 2019, 150: 121-131.

[55] 王美, 刘浪, 张波, 等. 矿山载/蓄冷功能性充填基础理论[J]. 煤炭学报, 2020, 45(4): 1336-1347.

[56] 顼永亮. 地埋管回填材料及孔径对传热性能影响分析[D]. 上海: 东华大学, 2016.

[57] 王荣, 杨晨磊, 董世豪, 等. 回填材料热物性对地埋管换热器换热性能影响综述[J]. 建筑热能通风空调, 2021, 40(04): 35-40.

[58] 崔煜蓉, 陈帅. 不同形式地埋管换热器运行性能影响因素研究[J]. 节能技术, 2021, 39(05): 418-421+431.

[59] Zhou Y, Zhang Y, Xu Y. Influence of grout thermal properties on heat-transfer performance of ground source heat exchangers[J]. Science and Technology for the Built Environment, 2018, 24(05): 461-469.

[60] Indacoechea-Vega I, Pascual-Munoz P, Castro-Fresno D, et al. Durability of geothermal grouting materials considering extreme loads[J]. Construction and Building Materials, 2018, 162: 732-739.

[61] Li X, Tong C, Duanmu L, et al. Study of a U-tube heat exchanger using a shape-stabilized phase change backfill material[J]. Science and Technology for the Built Environment, 2017, 23(03): 430-440.

[62] Zhang M, Liu X, Biswas K, et al. A three-dimensional numerical investigation of a novel shallow bore ground heat exchanger integrated with phase change material[J]. Applied Thermal Engineering, 2019, 162: 114297.

[63] Bottarelli M, Bortoloni M, Su Y. Heat transfer analysis of underground thermal energy storage in shallow trenches filled with encapsulated phase change materials[J]. Applied Thermal Engineering, 2015, 90: 1044-1051.

[64] Chen F, Mao J, Chen S, et al. Efficiency analysis of utilizing phase change materials as grout for a vertical U-tube heat exchanger coupled ground source heat pump system[J]. Applied Thermal Engineering, 2018, 130: 698-709.

[65] 宋胡伟, 陈晓春. 地下水渗流速度对地埋管地源热泵系统的影响[J]. 制冷与空调, 2017, 17(11): 17-20+9.

[66] Gong J, Li Z, Zhang W, et al. Analysis of thermal interaction coefficient for multiple borehole heat exchangers in layered soil considering groundwater seepage[J]. Applied Thermal Engineering, 2022, 207: 118166.

[67] 王子阳, 张仪萍, 战国会, 等. 有渗流时埋管换热器传热模型[J]. 浙江大学学报, 2012, 46(08): 1450-1456.

[68] 於仲义, 陈焰华, 胡平放. 基于渗流型传热机制的地埋管换热特性研究[J]. 湖南大学学报, 2009, 36(12): 63-68.

[69] Wang S, Gao J, Zhang X, et al. Experimental and numerical investigations on the thermal behavior of ground heat exchanger in stratified soils across unsaturated and saturated layers[J]. Applied Thermal Engineering, 2021, 195: 117163.

[70] Guan Y, Zhao X, Wang G, et al. 3D dynamic numerical programming and calculation of vertical buried tube heat exchanger performance of ground-source heat pumps under coupled heat transfer inside and outside of tube[J]. Energy and Buildings, 2017, 139: 186-196.

[71] Guo L, Zhang J, Li Y, et al. Experimental and numerical investigation of the influence of groundwater flow on the borehole heat exchanger performance: A case study from Tangshan, China[J]. Energy and Buildings, 2021, 248: 111199.

[72] 张琳琳, 赵蕾, 杨柳. 渗流作用下垂直埋管换热器钻孔内外耦合传热计算与分析[J]. 化工学报, 2015, 66(04): 1290-1300.

[73] Zhou Y, Wu Z, Wang K. An analytical model for heat transfer outside a single borehole heat exchanger considering convection at ground surface and advection of vertical water flow[J]. Renewable Energy, 2021, 172: 1046-1062.

[74] Wang Y, Liu Z, Yuan X, et al. Investigation of the influence of groundwater seepage on the heat transfer characteristics of a ground source heat pump system with a 9-well group[J]. Building Simulation, 2019, 12(05): 857-868.

[75] Lu H, Qi C, Li C. A light barricade for tailings recycling as cemented paste backfill[J]. Journal of Cleaner Production, 2020, 247: 119388.

[76] Thompson B D, Bawden W F, Grabinsky M W. In situ measurements of cemented paste backfill at the Cayeli Mine[J]. Canadian Geotechnical Journal, 2012, 49(07): 755-772.

[77] Zhang X, Xu M, Liu L, et al. Experimental study on thermal and mechanical properties of cemented paste backfill with phase change material[J]. Journal of Materials Research and Technology, 2020, 9(02): 2164-2175.

[78] 薛远. H59黄铜皮秒激光打孔过程温度场数值模拟及试验研究[D]. 镇江: 江苏大学, 2017.

[79] 张海琳, 余跃进, 胡纯良. 地埋管地源热泵地埋管管径的选取[J]. 暖通空调, 2012, 42(12): 114-117.

[80] Chen K, Zheng J, Li J, et al. Numerical study on the heat performance of enhanced coaxial borehole heat exchanger and double U borehole heat exchanger[J]. Applied Thermal Engineering, 2022, 203: 117916.

[81] Li C, Cleall P J, Mao J, et al. Numerical simulation of ground source heat pump systems considering unsaturated soil properties and groundwater flow[J]. Applied Thermal Engineering, 2018, 139: 307-316.

[82] 杨世铭, 陶文铨. 传热学(第四版)[M]. 北京: 高等教育出版社, 2011.

[83] 宋占璞, 张丹, 方海东, 等. 大体积混凝土水化热温度变化光纤监测技术研究[J]. 工程地质学报, 2014, 22(02): 244-249.

[84] 毋林林, 康天合, 尹博, 等. 粉煤灰膏体充填材料水化放热特性的微量热测试与分析[J]. 煤炭学报, 2015, 40(12): 2801-2806.

[85] 李政. 地埋管管群在分层岩土中的换热性能模拟研究[D]. 内蒙古: 内蒙古科技大学, 2020.

[86] 罗健. 系统灵敏度理论导论[M]. 西安: 西北工业大学出版社, 1988.

[87] 张小艳, 文德, 赵玉娇, 等. 矿山蓄热/储能充填体的热-力性能与传热过程[J]. 煤炭学报, 2021, 46(10): 3158-3171.

[88] 王俊清, 袁艳平, 曹晓玲, 等. 基于混合解换热模型的地源热泵系统井群热干扰特性[J]. 农业工程学报, 2016, 32(10): 194-200.

[89] Al-Ameen Y, Ianakiev A, Evans R. Thermal performance of a solar assisted horizontal ground heat exchanger[J]. Energy, 2017, 140: 1216-1227.

中图分类号:

 TK02    

开放日期:

 2024-06-15    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式