- 无标题文档
查看论文信息

论文中文题名:

 内部本质安全Buck-Boost变换器引燃能力评价及设计优化方法    

姓名:

 王骑    

学号:

 18206204069    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085207    

学科名称:

 工学 - 工程 - 电气工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 本质安全开关变换器    

第一导师姓名:

 赵永秀    

第一导师单位:

 西安科技大学    

第二导师姓名:

 王传良    

论文提交日期:

 2021-06-16    

论文答辩日期:

 2021-06-01    

论文外文题名:

 Ignition Capability Criterion and Optimal Design Method of Inner Intrinsically Safe Buck-Boost Converter    

论文中文关键词:

 开关变换器 ; 内部本质安全 ; 电感分断放电 ; 引燃能力 ; 设计优化方法    

论文外文关键词:

 switching converter ; inner intrinsically safe ; inductor-disconnected discharge ; ignition capability ; optimal design method    

论文中文摘要:

随着“智慧矿山”发展概念的提出与普及,数字信息化设备被大量应用于煤矿井下,对安全可靠、性能优越的本质安全开关电源的需求也更加紧迫。因此探究并得出开关电源内部分断引燃能力评价及设计优化方法,将进一步促进本安开关电源在煤矿井下等爆炸性环境中的应用与推广。

以Buck-Boost变换器为研究对象,深入分析其稳态运行时的工作模态与电气特性,推导出Buck-Boost变换器不同模态下电感峰值电流与输出纹波电压表达式。探究Buck-Boost变换器内部分断故障的最危险工况并建立其等效电路模型,通过IEC火花试验装置对该等效电路进行分断放电试验,发现电弧电压极限值随电感的增大而增大,电弧放电时间随分断初始电流与电感的增大而增大;对电极分断速度与电弧放电时间建模分析发现,电弧放电时间随电极分断速度增大而减小,并最终趋于稳定值。基于电感分断初始电流、电弧电压极限值等放电参数,推导出可描述电感分断放电引燃能力的临界引燃功率与临界引燃能量的数学表达式,得出简单电感电路分断放电引燃能力评价方法;结合Buck-Boost变换器的最危险工况等效电路,得出其内部引燃能力评价方法,发现仅当电弧功率极限值与电感储能分别小于对应临界引燃值时,该电路不具有引燃爆炸性气体的能力。结合此引燃能力评价方法与Buck-Boost变换器电气特性,提出了内部本质安全Buck-Boost变换器设计方法,得到同时满足变换器电气性能与内部本安要求的电感、电容及开关频率设计范围。为保证变换器工作于最危险工况时满足内部本安性能的输入电压范围最大,进一步提出了内部本质安全Buck-Boost变换器储能电感优化方法。

根据给定指标与所提出的设计优化方法,研制内部本质安全Buck-Boost变换器样机。对比分析所提出的引燃能力评价方法、能量判别式、功率判别式与爆炸性试验评价结果,验证了所提出的引燃能力评价方法及内部本质安全Buck-Boost变换器设计优化方法的可行性、可靠性与良好适用性。

论文外文摘要:

With the proposal of "smart mines", digital information electrical equipment is widely used in coal mines. The demand for safe, reliable, and superior performance intrinsically safe switching power supplies is also more urgent. Therefore, obtaining the inductor-disconnected discharge (IDD) ignition capability criterion and the optimal design method of the switching power supply will further promote the application of the intrinsically safe switching power supply in explosive environments such as coal mines.

The Buck-Boost converter is selected as the research object in the thesis, its working modes and electrical characteristics during operation are deeply analyzed. The expressions of inductance peak current and output ripple voltage in different modes are derived. The most dangerous IDD condition of the Buck-Boost converter is obtained, and its equivalent circuit model is established. The IDD behavior of the Buck-Boost converter is studied based on the International Electrotechnical Commission (IEC) spark test apparatus. It is found that the maximum arc voltage increase with the increase of the inductance, the arc discharge time increase with the increase of the initial arc current and inductance. By modeling the electrode disconnected speed and arc discharge time, it is found that the arc discharge time decreases with the increase of the electrode disconnected speed, and finally tends to a stable value. According to the discharge parameters such as the initial arc current and the maximum arc voltage, the expressions of the critical ignition power and the critical ignition energy can describe the ignition capability of the inductive breaking discharge are derived. The IDD ignition capability criterion of the simple inductive circuit is obtained. Combined with the most dangerous IDD condition equivalent circuit, the IDD ignition capability criterion of the Buck-Boost converter is obtained. The converter meets the demands of inner intrinsic safety performance only when the maximum arc power is less than the critical ignition power and the inductive energy is less than its critical value. By incorporating the proposed criterion and the electrical characteristics of the Buck-Boost converter, the design method for inner intrinsically safe Buck-Boost converters is obtained. The design range of inductance, capacitance and switching frequency that meets the demands of electric and inner intrinsic safety performance can be obtained based on the proposed design method. The optimal method for inner intrinsically safe Buck-Boost converters is proposed. After optimization, the converter will have the maximum input voltage safety margin of inner intrinsic safety performance in the most dangerous IDD conditions.

According to the system and component parameters, the inner intrinsically safe Buck-Boost converter prototype is made by the proposed optimal design method. The proposed criterion is compared with the electric energy criterion, electric power criterion, and explosive test criterion. The feasibility, reliability, and applicability of the proposed criterion and optimal design method are verified.

参考文献:

[1]Ahirwal B, Vishwakarma R K. Study of temperature classification, spark ignition and drop test assessment on secondary cells for intrinsically safe equipment for explosive atmospheres[J]. Process Safety Progress, 2019, 38(4): 1-7.

[2]Yu W, Qiao Y, Zhang H, et al. Transformerless ultrasonic ranging system with the feature of intrinsic safety for explosive environment[J]. Sensors, 2018, 18(12): 1-17.

[3]Marellapudi A, Mauger M J, Kandula P, et al. Intrinsically-safe modular power converters for electric transportation[C]//2020 IEEE Transportation Electrification Conference and Expo: IEEE, 2020: 1-6.

[4]GB 3836.1-2010. 爆炸性环境 第1部分:设备通用要求[S]. 北京: 中国标准出版社, 2010.

[5]GB 3836.2-2010. 爆炸性环境 第2部分:由隔爆外壳“d”保护的设备[S]. 北京: 中国标准出版社, 2010.

[6]GB 3836.4-2010. 爆炸性环境 第4部分:由本质安全型“i”保护的设备[S]. 北京: 中国标准出版社, 2010.

[7]Singh J K, Banerjee G, Singh A K, et al. Modelling of design parameters of intrinsically safe instruments for the safety of oil, gas and coal industries[J]. International Journal of Oil Gas and Coal Technology, 2019, 22(3): 417-431.

[8]王国法, 王虹, 任怀伟, 等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报, 2018, 43(2): 295-305.

[9]柳军停. 输出本质安全型EC电路放电特性及非爆炸本安评价研究[D]. 徐州: 中国矿业大学, 2018.

[10]柯拉夫钦克(В·С·Кравченко). 安全火花电路[M]. 北京: 煤炭工业出版社, 1981.

[11]Dubaniewicz T H, Ducarme J P. Are Lithium ion cells intrinsically safe?[J]. IEEE Transactions on Industry Applications, 2013, 49(6): 2451-2460.

[12]Razus D, Movileanu C, Oancea D. Additive influence on ignition of stoichiometric ethylene-air mixture by break sparks[J]. Fuel, 2018, 232: 134-140.

[13]Uber C, Shekhar R, Felgner A, et al. Experimental investigation of low-voltage spark ignition caused by separating electrodes[J]. Journal of Loss Prevention in the Process Industries, 2017: 1-10.

[14]刘建华. 爆炸性气体环境下本质安全电路放电理论及非爆炸评价方法的研究[D]. 徐州: 中国矿业大学, 2008.

[15]孟庆海, 许允之, 胡天禄. 电感性本质安全电路电弧放电伏安特性分析[J]. 中国矿业大学学报, 1999, 28(4): 79-81.

[16]孟庆海, 牟龙华, 何学秋. 电感性本质安全电路动态伏安特性参数的确定[J]. 中国矿业大学学报, 2001, 30(3): 51-53.

[17]孟庆海, 胡天禄, 牟龙华. 本质安全电路低能电弧放电特性及参数[J]. 电工技术学报, 2000, 15(3): 28-30, 35.

[18]赵永秀, 刘树林, 马一博. 爆炸性试验电感电路分断放电特性分析与建模[J]. 煤炭学报, 2015, 40(7): 234-240.

[19]赵永秀, 刘树林, 王孟, 等. 基于安全火花试验装置的电感分断电弧电阻建模研究[J]. 电子学报, 2017, 45(5): 56-61.

[20]Shcherba A A, Suprunovska N I. Study features of transients in the circuits of semiconductor discharge pulses generators with nonlinear electro-spark load[C]//IEEE International Conference on Intelligent Energy & Power Systems: IEEE, 2014: 50-54.

[21]付垚. 电感分断电弧放电机理及建模研究[D]. 西安: 西安科技大学, 2017.

[22]Fan W, Wu S. A new computation model of contact breaking arc duration[C]//2015 Ieee International Conference on Information and Automation (ICIA): IEEE, 2015: 2604-2609.

[23]孟庆海, 王进己. 本质安全电感电路电弧放电时间双正态分布[J]. 电工技术学报, 2017, 32(2): 119-124.

[24]Hasegawa M, Tokumitsu S. Influences of contact opening speeds up to 200 mm/s and external magnetic field application on break arc duration characteristics of AgSnO2 contacts in DC 14V load conditions up to around 10A[J]. IEEE Transactions on Components Packaging & Manufacturing Technology, 2018, 8(3): 375-382.

[25]Hasegawa M, Tokumitsu S. Influences of external magnetic field application and increased contact opening speeds on break arc duration characteristics of AgSnO2 contacts in DC inductive load conditions[C]//2017 IEEE Holm Conference on Electrical Contacts: IEEE, 2017: 200-205.

[26]梁慧敏, 林景波, 翟国富. 触点分离初速度与电弧能量关系的研究[J]. 哈尔滨工业大学学报, 2006(3): 374-378.

[27]Korytchenko K V, Essmann S, Markus D, et al. Numerical and experimental investigation of the channel expansion of a low-energy spark in the air[J]. Combustion Science & Technology, 2019, 191(12): 2136-2161.

[28]Yoshida K, Tanimoto S. An Experimental study of arc duration and transition from metallic to gaseous phase in Ag alloy break arc[C]// IEEE Holm Conference on Electrical Contacts, 2007: 134-139.

[29]Uimanov I V, Mesyats G A. Numerical simulation of the liquid-metal jet formation and droplet pinch-off in the cathode spot of a vacuum arc[J]. Journal of Physics Conference Series, 2019: 1-8.

[30]D'auzay C T, Papapostolou V, Ahmed S F, et al. On the minimum ignition energy and its transition in the localised forced ignition of turbulent homogeneous mixtures[J]. Combustion and Flame, 2019, 201: 104-117.

[31]Huang L, Wang Y, Pei S, et al. Effect of elevated pressure on the explosion and flammability limits of methane-air mixtures[J]. Energy, 2019, 186: 1-9.

[32]Shekhar R, Boeck L R, Uber C, et al. Ignition of a hydrogen-air mixture by low voltage electrical contact arcs[J]. Combustion and Flame, 2017, 186: 236-246.

[33]Shekhar R, Uber C. Modelling of sparking contacts for hazardous area applications[C]//61st IEEE Holm Conference on Electrical Contacts: IEEE, 2015: 347-352.

[34]Uber C, Hilbert M, Felgner A, et al. Electrical discharges caused by opening contacts in an ignitable atmosphere – Part I: Analysis of electrical parameters at ignition limits[J]. Journal of Loss Prevention in the Process Industries, 2019, 61: 114-121.

[35]Uber C, Runge T, Brunzendorf J, et al. Electrical discharges caused by opening contacts in an ignitable atmosphere – Part II: Spectroscopic investigation and estimation of temperatures[J]. Journal of Loss Prevention in the Process Industries, 2019, 61: 213-219.

[36]Takenaka K, Ishikawa Y, Mizuno Y, et al. Arc discharge-induced ignition of combustibles placed on a damaged AC power supply cord[J]. Energies, 2020, 13(681): 1-15.

[37]Yang Z, Yu X, Zhu H, et al. Effect of spark discharge energy scheduling on ignition under quiescent and flow conditions[J]. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 2020, 234(12): 2878-2891.

[38]Essmann S, Markus D, Grosshans H, et al. Experimental investigation of the stochastic early flame propagation after ignition by a low-energy electrical discharge[J]. Combustion and Flame, 2020, 211: 44-53.

[39]刘树林, 刘健. 本质安全开关变换器[M]. 北京: 科学出版社, 2008: 25-30.

[40]孟庆海, 许允之, 李素英. 电感性电路本质安全性能判别式的研究[J]. 矿业安全与环保, 1999(4): 11-12, 15.

[41]孟庆海, 牟龙华, 王崇林,等. 本质安全电路的功率判别式[J]. 中国矿业大学学报, 2004, 33(3): 58-60.

[42]Lu H, Liu F, Wang K, et al. Numerical Study on the Minimum Ignition Energy of a Methane-air Mixture[J]. Fuel, 2021, 285: 1-9.

[43]王进己. 电感性本质安全电路电弧放电时间分析及评价方法研究[D]. 北京: 北方工业大学, 2018.

[44]朱世安. 人工神经网络在本质安全电路判定中的应用研究[D]. 北京: 煤炭科学研究总院, 2004.

[45]刘树林, 汪子为, 钟明航, 等. 基于Matlab的Boost变换器输出本安性能评价系统[J]. 煤炭学报, 2017(S1): 282-287.

[46]樊京. 基于Simplorer的非爆炸性本安电路仿真方法研究[J]. 电气防爆, 2012, 188(2): 1-4.

[47]于月森,戚文艳,胡义涛,等. 复合电路的放电特性研究[J]. 煤矿安全, 2013, 44(9): 54-57.

[48]孟庆海,牟龙华. 本质安全电感电容复合电路电弧放电特性的研究[J]. 煤炭学报, 2004(4): 510-512.

[49]庄小豫. 本质安全型电源及电路火花放电防爆机理与测试方法研究[D]. 天津: 天津大学, 2014.

[50]李者, 王东, 李仲强, 等. 煤矿本安系统认证关键技术[J]. 煤矿安全, 2011, 42(12): 45-47.

[51]刘树林, 刘健. 本质安全Boost变换器的非爆炸内部本质安全判据[J]. 煤炭学报, 2008(6): 109-114.

[52]刘树林. 本质安全开关变换器基础理论及关键技术研究[D]. 西安: 西安科技大学, 2007.

[53]Liu S, Wu H, Wang C, et al. Inner intrinsically safe criterion and design considerations of buck converter based on equivalent inductance[J]. Electric Power Components and Systems, 2019, 47(3): 248-260.

[54]刘树林, 崔强, 李勇. Buck变换器的输出短路火花放电能量及输出本质安全判据[J]. 物理学报, 2013(16): 438-447.

[55]杨玉岗, 李娜. 交错并联磁集成Buck变换器的本质安全特性研究[J]. 电工电能新技术, 2011, 30(4): 8-12.

[56]佟为明, 王进己, 金显吉. Buck变换器内部本质安全性能评价判别式研究[J]. 强激光与粒子束, 2019, 31(4): 24-28.

[57]于月森, 戚文艳, 伍小杰. 软火花电路的本安特性及优化分析[J]. 煤炭学报, 2014, 39(10): 2134-2140.

[58]于月森, 张望, 孟庆海, 等. 截止型保护方式下容性电路短路火花放电模型及分析[J]. 煤炭学报, 2013, 38(3): 517-521.

[59]于月森, 柳军停, 修俊瑞, 等. 截止型EC电路火花放电模型及其特性分析[J]. 煤炭学报, 2016, 41(9): 2380-2387.

[60]李艳, 刘树林. 改进型本安Buck变换器的分析与设计[J]. 西安科技大学学报, 2019, 39(2): 360-365.

[61]杨玉岗, 祁鳞, 吴建鸿. 三相交错并联磁集成Boost变换器的内部本质安全特性[J]. 电工技术学报, 2014, 29(4): 54-62.

[62]Hu W, Zhang F, Xu Y, et al. Output voltage ripple analysis and design considerations of intrinsic safety flyback converter based on energy transmision modes[J]. Journal of Power Electronics, 2014, 14: 908-917.

[63]钟久明. Buck-Boost变换器的本质安全特性分析及优化设计[D]. 西安: 西安科技大学, 2006.

[64]Sanjaya Maniktala. 精通开关电源设计[M]. 北京: 人民邮电出版社, 2015: 29-30.

[65]刘树林, 刘健, 钟久明. Buck-Boost变换器的能量传输模式及输出纹波电压分析[J]. 电子学报, 2007(5): 838-843

中图分类号:

 TD68    

开放日期:

 2021-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式