- 无标题文档
查看论文信息

论文中文题名:

 基于DSP的有源钳位正激变换器分析与设计    

姓名:

 黄泽武    

学号:

 18206204063    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085207    

学科名称:

 工学 - 工程 - 电气工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 电力电子    

第一导师姓名:

 岳改丽    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-19    

论文答辩日期:

 2021-06-01    

论文外文题名:

 Analysis and design of active clamp forward converter based on DSP    

论文中文关键词:

 正激变换器 ; 软开关 ; 有源钳位 ; 同步整流    

论文外文关键词:

 Forward converter ; Soft switch ; Active clamp ; Synchronous rectifier    

论文中文摘要:

     正激变换器作为一种高效率、高可靠性和低成本的隔离型DC/DC变换器,在工业生产和居民生活中得到了越来越广泛的应用,对其性能要求也越来越高。传统正激变换器的磁芯利用率低、副边二极管整流损耗大以及模拟控制下电路参数不便于灵活调整等问题进一步凸显出来,针对这些问题本文基于DSP对正激变换器的同步整流和软开关技术做了进一步研究。
      本文在分析传统正激变换器工作原理的基础上,对变压器原边的磁复位、开关管的软开关以及输出同步整流技术进行研究,从而改善正激变换器性能。首先通过分析高压侧和低压侧两种有源钳位拓扑的原理,指出了低压侧有源钳位正激变换器相对传统正激变换器的优点,确定选择低压侧有源钳位拓扑作为研究对象。然后研究了可以提高有源钳位正激变换器效率的同步整流技术和软开关技术。对于同步整流技术,通过分析目前几种常用的驱动方式的原理,结合本文的电路拓扑特点和设计要求,确定采用变压器辅助绕组电压驱动的同步整流方式。对于软开关技术,通过分析有源钳位正激变换器在一个周期内的工作模态,得出实现软开关和变压器磁芯复位需要满足的条件,并根据变换器的技术指标对有源钳位正激变换电路参数进行了设计。最后以TMS320F28035为主控芯片,完成了变换器主电路和控制电路的设计,在Matlab/Simulink仿真环境中搭建了电路的仿真模型,通过仿真验证了参数设计的正确性。
        在理论设计和仿真分析的基础上,设计制作了一款60W的实验样机,通过对实验样机的测试与波形分析,样机的各项性能指标达到了设计要求,验证了本文理论分析和参数设计的正确性,实现了变换器的软开关,使变换效率得以提高。
 

论文外文摘要:

    As an isolated DC / DC converter with high efficiency, high reliability and low cost, forward converter has been widely used in industrial production and residents' life, and its performance requirements are also higher and higher. The problems of traditional forward converter such as low utilization of magnetic core, high rectifier loss of secondary side diode and inconvenient adjustment of circuit parameters under analog control are further highlighted. To solve these problems for this article DSP forward converter of synchronous rectification and soft switching technology is based on doing further research.
      On the basis of analyzing the working principle of traditional forward converter, this paper studies the magnetic reset of the transformer's primary side, the soft switching of the switch tube and the output synchronous rectification technology, so as to improve the performance of the forward converter. First, by analyzing the principle of two active clamp topology on the high voltage side and the low side side, the advantages of the active clamp converter are compared with the traditional forward converter, and the active clamp topology at low voltage side is determined as the research object. Then the synchronous rectification technology and soft switching technology which can improve the efficiency of active clamp forward converter are studied. For synchronous rectification technology, by analyzing the principle of several commonly used driving modes and combining the circuit topology characteristics and design requirements of this paper, the synchronous rectification method using transformer auxiliary winding voltage is determined. For soft switching technology, by analyzing the working mode of active clamp forward converter in one cycle, the conditions that need to be satisfied for soft switching and transformer core reset are obtained. Based on the technical specifications of the converter, the parameters of active clamp forward converter circuit are designed. Finally, the main circuit and control circuit are designed with TMS320F28035 as the main control chip. The simulation model of the circuit is built in the Matlab/Simulink simulation environment, and the correctness of the parameter design is verified by simulation.
          Based on the theoretical design and simulation analysis, experimental design a prototype 60W through prototype testing and waveform analysis, prototype performance indicators meet the design requirements, verify the paper the theoretical analysis and design parameters. The correctness realizes the soft switching of the converter and improves the conversion efficiency.
 

参考文献:

[1] 刘秉科. 高性能开关电源的设计探讨[J]. 电子制作,2021(04):87-89.

[2] 王冬菊. 浅谈两种直流稳压电源[J]. 电子世界,2018(09):191+193.

[3] 吕天文. 中国线性与开关电源的现状及发展趋势分析[J]. 电源世界,2011(12):8-9.

[4] 方赦. 高频开关电源的技术现状与发展趋势[J]. 通信电源技术,2019,36(05):239-240.

[5] 高士喜. 开关电源的工作原理及技术趋势探索[J]. 中国新技术新产品,2020(11):40-42.

[6] 贲洪奇,孟涛,杨威.《现代高频开关电源技术与应用》教材建设[J]. 中国电力教育, 2019(08):60-62.

[7] 刁明君. 开关电源的研究发展综述[J]. 通信电源技术,2018,35(07):89+93.

[8] 王思聪. 开关电源的基本原理与技术发展综述[J]. 价值工程,2018,37(14):269-271.

[9] Nasiri Abolfazl, Banaei Mohamad Reza. A new magnetron driving method using a phase-shifted active clamp forward converter for sulfur plasma tube applications [J]. IET Power Electronics,2020,14(2):80-85.

[10] 田淇元. 双管正激变换器的仿真与设计[J]. 电动工具,2020(04):17-22.

[11] 孙闯闯,嵇保健,洪峰. 一种同步整流有源钳位正激变换器的研究[J]. 电子器件,2020,43(01):88-93.

[12] Shijia Y, Zhanming Q, Ouyang Q, FangZi. P. An Improved Active-clamp ZVS Forward Converter Circuie [C]. IEEE PESC Cinf,2008:318-322.

[13] 刘克承,李斌. 一种新颖的同步整流有源钳位正激变换器电路[J]. 电力电子技术,2011,45(04):30-32

[14] 周睿. 有源钳位正激变换器的研究[D]. 中国矿业大学,2019.

[15] 陈光亮. 有源钳位正激软开关变换器设计研究[D]. 华南理工大学,2014.

[16] 戴融. 有源钳位正激变换器的分析与应用[D]. 安徽大学,2018.

[17] 安森美半导体发布新的650V碳化硅(SiC)MOSFET[J]. 电子质量,2021(02):61-62.

[18] Du K,Zhihua X,Ao L,etc. Tuning the electronic and optical properties of two-dimensional gallium nitride by chemical functionalization[J]. Vacuum,2021,185.

[19] 文龙. 基于氮化镓器件的星载高效率DC-DC变换器的实现[D]. 电子科技大学,2019.

[20] 旷建军. 开关电源中磁性元件绕组损耗的分析与研究[D]. 南京航空航天大学,2007.

[21] 高集成度数字电源控制器[J]. 今日电子,2018(06):67-68.

[22] STM32数字电源生态系统加快先进高效电源解决方案开发过程[J]. 单片机与嵌入式系统应用,2020,20(08):94.

[23] 冀晓霏,郭栋梁,牛亮,等. 基于PID算法的四开关数字电源的设计与实现[J]. 山西电子技术,2020(05):13-14+33.

[24] Swain Smaranika, Bhashyam Srikrishna, Koilpillai Ravinder D, etc. Digital power division multiplexed DD-OFDM using fundamental mode transmission in few-mode fiber [J]. Optics express,2020,28(12):105-110.

[25] 李梦娇. 基于数字PID控制的Boost DC-DC变换器的分析研究[D]. 西安电子科技大学,2018.

[26] 洪良,杜建华,王均,等. 非对称半桥LLC谐振变换器同步整流数字设计[J]. 电源学报,2018,16(04):113-119.

[27] 代璐. 基于同步整流技术的移相全桥倍流整流器研究[D]. 华中科技大学,2016.

[28] Appulse Power Inc. Patent Issued for Flyback Converter with Synchronous Rectifier Controller (USPTO 10,756,640) [J]. Electronics Newsweekly,2020,30(11):112-118.

[29] 胡鹏飞. 基于移相全桥和同步整流技术的大功率开关电源研究[D]. 华南理工大学,2018.

[30] 张文林. 适用于Flyback变换器的同步整流控制器的设计[D]. 电子科技大学,2018.

[31] 张弘雨,全书海,李占鹏,等. 适用于大功率DC/DC的新型无源无损缓冲电路[J]. 电力电子技术,2019,53(05):104-106.

[32] 朱立波. 双向全桥LLC谐振变换器的混合式控制策略[D]. 燕山大学,2018.

[33] 刘和平,陈红岩,苗轶如,等. 混合式LLC电路谐振与同步整流数字式控制[J]. 中国电机工程学报,2015,35(09):2272-2278.

[34] 袁润清. 基于软开关技术单原边绕组双输入全桥变换器的研究[D]. 南京航空航天大学,2015.

[35] 王洪宝. 单端高效正激变换器的研究[D].辽宁工业大学,2015.

[36] 李洪珠,刘歆俣,李洪璠,等. 正激变换器磁集成分析与设计准则[J]. 中国电机工程学报,2019,39(12):3667-3676.

[37] 薛伟民,陈乾宏. 有源钳位正激变换器寄生参数对软开关和直流偏磁的影响[J]. 电工电能新技术,2017,36(05):75-80.

[38] 吴华栋,杨碧石. 基于同步整流技术的分析与研究[J]. 电子测试,2019(23):48-49+54.

[39] 赵辛. 大功率同步整流电源设计要点分析[J]. 电子测试,2019(02):65-66+115.

[40] 黄卓,周涛. 同步整流有源钳位正激式DC/DC变换器的设计与实现[J]. 电子元器件与信息技术,2018,2(06):80-84.

[41] EFORE OYJ, Patent Issued for Synchronous Rectifier Control Using Sensing of Alternating Current Component (USPTO 9768701) [J]. Journal of Engineering,2017,30(11):20-25.

[42] 赵鹤广. 有源钳位正激式电动汽车DC-DC变换器电路设计[D]. 河北科技大学,2019.

[43] Silanna Asia Pte Ltd, Patent Issued for Active Clamp Circuit (USPTO 10,461,626)[J]. Electronics Newsweekly,2019,25(05):35-41.

[44] Dialog Semiconductor Inc. Patent Issued for Adaptive Synchronous Rectifier Sensing Deglitch (USPTO 10,797,610) [J]. Electronics Newsweekly,2020,(10):45-50.

[45] 吴华栋,杨碧石. 基于同步整流技术的分析与研究[J]. 电子测试,2019(23):48-49+54.

[46] Jing-Yuan Lin, Yi-Feng Lin, Sih-Yi Lee. A Novel Multi-Element Resonant Converter with Self-Driven Synchronous Rectification [J]. Energies,2019,12(4):88-82.

[47] 李建杨,王俊峰,王凯. 单端反激式DC/DC变换器同步整流技术研究[J]. 通信电源技术,2019,36(01):14-16+24.

[48] 吕征宇,李佳晨,杨华. 新型LLC谐振变换器数字同步整流驱动方式[J]. 电机与控制学报,2018,22(01):16-22.

[49] 何俊杰. 基于软开关技术的开关电源研究与设计[D]. 江西理工大学,2018.

[50] Energy, New Findings from China University of Mining and Technology in the Area of Energy Described (Design Method for the Coil-System and the Soft Switching Technology for High-Frequency and High-Efficiency Wireless Power Transfer Systems) [J]. Telecommunications Weekly, 2018,14(2):77-81.

[51] Navid Molavi, Ehsan Adib, Hosein Farzanehfard. Soft-switched non-isolated high step-up DC–DC converter with reduced voltage stress [J]. IET Power Electronics, 2016, 9(8):99-103.

中图分类号:

 TM461    

开放日期:

 2021-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式