- 无标题文档
查看论文信息

题名:

 聚丙烯酸/壳聚糖超弹性水凝胶力学性能研究    

作者:

 剌焕军    

学号:

 22205224080    

保密级别:

 内部    

语种:

 chi    

学科代码:

 085500    

学科:

 工学 - 机械    

学生类型:

 硕士    

学位:

 工学硕士    

学位年度:

 2025    

学校:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

 智能材料及应用    

导师姓名:

 高扬    

导师单位:

 西安科技大学    

提交日期:

 2025-06-18    

答辩日期:

 2025-05-29    

外文题名:

 Research on the Mechanical Properties of Polyacrylic Acid/Chitosan Hyperelastic Hydrogels    

关键词:

 水凝胶 ; 聚丙烯酸 ; 壳聚糖 ; 超弹性 ; 有限元模拟 ; 力学性能    

外文关键词:

 Hydrogel ; Polyacrylic acid ; Chitosan ; Hyperelastic ; Finite element modeling ; Mechanical property    

摘要:

软材料因具有质量轻、响应速度快、变形大等优点,在现代科技领域中扮演着至关重要的角色。其中,水凝胶作为含有大量水分的高分子软材料,凭借其独特的三维网络结构和生物相容性在生物医学等领域展现出广泛的应用潜力。而在这些应用中,水凝胶通常会涉及到变形和失效,从而影响到材料稳定性和可靠性。因此,探究水凝胶在不同参数条件下的力学行为及影响规律,对水凝胶材料的设计和优化具有重要的指导意义。本文的主要研究内容如下:

首先,采用自由基聚合法制备了聚丙烯酸/壳聚糖双网络水凝胶,对水凝胶的溶胀率、含水量和压缩性能进行了测试,结果显示水凝胶的溶胀率和含水量分别可达1774%和94.6%,溶胀平衡状态下水凝胶的弹性模量最高可达112.1 kPa。

其次,对水凝胶的压缩性能进行了研究。基于Flory-Rehner自由能函数,推导并建立了水凝胶的超弹性本构模型,并编写用户自定义子程序UHYPER实现超弹性模型在ABAQUS软件中的定义。然后,建立了水凝胶的压缩有限元模型,模拟了其压缩行为,并验证了模型的合理性。基于该模型分析了含水量对水凝胶压缩性能的影响。当壳聚糖含量为5%,含水量为60%时,水凝胶满足伤口敷料应用的机械性能和含水量要求。

再次,分析了水凝胶在拉伸状态下的断裂性能。通过建立水凝胶的损伤模型,编写用户自定义子程序VUSDFLD实现其在ABAQUS软件中的定义,通过将拉伸实验数据与超弹性模型进行参数拟合,选取具有较优拟合效果的材料模型。建立水凝胶拉伸有限元模型,模拟其断裂行为,对模型进行网格无关性分析并验证其合理性。基于该模型分析了尺寸参数和预设缺口长度对水凝胶力学性能的影响。

最后,对水凝胶进行体外释药实验和粘附性能测试。结果表明,水凝胶在7天内的累积释药量接近93%,Higuchi和Korsmeyer-Peppas动力学模型与实验数据的拟合程度较高。通过180°剥离测试得到水凝胶与猪皮之间的粘附能为333.43 J/m2,对不同基材和人体皮肤也表现出较好的粘附性。这使得水凝胶在作为伤口敷料应用过程中不易脱落,为水凝胶的后续应用提供了一定的研究基础。

外文摘要:

Soft materials have become indispensable in modern scientific and technological arenas, owing to their remarkable attributes such as low mass, rapid response speed, and high deformability. Hydrogels, a type of polymeric soft material rich in water content, have demonstrated extensive application potential in fields like biomedicine, primarily due to their distinctive three-dimensional network structure and excellent biocompatibility. However, in practical applications, hydrogels often experience deformation and failure, thereby undermining the stability and reliability of the materials. Therefore, investigating the mechanical behavior of hydrogels under diverse parameter conditions and understanding the influencing mechanisms is of vital importance for the design and optimization of hydrogel materials. The primary research contents of this paper are detailed as follows:

Firstly, polyacrylic acid/chitosan double-network hydrogels were synthesized via radical polymerization. Subsequently, comprehensive tests were conducted on the swelling ratio, water content, and compressive properties of the hydrogels. The experimental results revealed that the swelling ratio and water content of the hydrogels could reach as high as 1774% and 94.6%, respectively. Notably, in the state of swelling equilibrium, the elastic modulus of the hydrogels could attain a maximum value of 112.1 kPa.

Secondly, the compression properties of hydrogel were studied. Grounded on the Flory-Rehner free energy function, a hyperelastic constitutive model for the hydrogels was deduced and established. To implement this model within the ABAQUS software, a user-defined subroutine named UHYPER was meticulously developed. Subsequently, a compressive finite element model of the hydrogels was constructed to simulate their compressive behavior, and the validity of the model was rigorously verified. Leveraging this model, the impact of water content on the compressive properties of the hydrogels was systematically analyzed. It was found that when the chitosan content was set at 5% and the water content was 60%, the hydrogels satisfied the mechanical property and water content requirements essential for wound dressing applications.

Thirdly, the fracture properties of hydrogel in tensile state were analyzed. A damage model for the hydrogels was devised. A user-defined subroutine, VUSDFLD, was programmed to enable its definition within the ABAQUS software. By fitting the tensile test data with the hyperelastic model, a material model with superior fitting performance was selected. A tensile finite element model of the hydrogels was then established to simulate their fracture behavior. A mesh independence analysis was performed on the model to ensure its accuracy, and its rationality was verified. Based on this model, the effects of structural size and preset notch length on the mechanical properties of the hydrogels were investigated.

Finally, in vitro drug release experiments and adhesion performance tests were carried out on the hydrogels. The results indicated that the cumulative drug release of the hydrogels within 7 days approached 93%. The Higuchi and Korsmeyer-Peppas kinetic models exhibited a high degree of consistency with the experimental data. The adhesion energy between the hydrogels and pigskin, as determined by the 180° peeling test, was measured to be 333.43 J/m². Moreover, the hydrogels demonstrated good adhesion to various substrates and human skin. This characteristic ensures that the hydrogels remain firmly in place when applied as wound dressings, thereby providing a certain research basis for the subsequent application of hydrogel.

参考文献:

[1] Zheng B H, Zhou H W, Wang Z, et al. Fishing net-inspired mutiscale ionic organohydrogels with outstanding mechanical robustness for flexible electronic devices[J]. Advanced Functional Materials, 2023, 33(28): 2213501.

[2] 刘文博, 王韫, 朵有宁, 等. 基于柔性传感的软体机器人交互研究进展[J]. 机器人, 2024, 46(02): 195-218.

[3] Lim H R, Kim H S, Qazi R, et al. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment[J]. Advanced Materials, 2020, 32(15): 1901924.

[4] 秦广照, 贾博清, 王斌, 等. 水凝胶力学性能强化及典型应用研究进展[J]. 应用力学学报, 2024, 41(03): 485-498.

[5] 许雨芩, 杨建军, 吴庆云, 等. 抗菌型高分子水凝胶研究进展[J]. 化工新型材料, 2022, 50(09): 218-224.

[6] Liu C L, Fu L H, Jiang T, et al. High-strength and self-healable poly (acrylic acid) /chitosan hydrogel with organic-inorganic hydrogen bonding networks[J]. Polymer, 2021, 230: 12406.

[7] Tang D F, Du J X, Zhao X J, et al. The effect of antimicrobial peptide HX-12C on the properties of chitosan/polyacrylic acid hydrogel[J]. Journal of Applied Polymer Science, 2024, 141(16): e55265.

[8] Conejo-Cuevas G, Lopes A C, Badillo I, et al. Self-healing, piezoresistive and temperature responsive behaviour of chitosan/polyacrylic acid dynamic hydrogels[J]. Journal of Colloid and Interface Science, 2025, 678: 320-333.

[9] Shi M Y, Jiang L J, Yu C J, et al. A robust polyacrylic acid/chitosan cryogel for rapid hemostasis[J]. Sci China Tech Sci, 2022, 65: 1029-1042.

[10] Zhu Y, Li X M, Zhao Z J, et al. Highly stretchable, transparent and adhesive ionogel based on chitosan-poly (acrylic acid) double networks for flexible strain sensors[J]. Gels, 2022, 8(12): 797.

[11] Yu W, Cui Y, Han M, et al. Mussel-inspired chemistry in producing mechanically robust and bioactive hydrogels as skin dressings[J]. Materials Today Chemistry, 2023, 27: 101272.

[12] Zhang X M, Yao Y Y, Wu Y, et al. Enhancement and mechanism of mechanical properties and functionalities of polyacrylamide/polyacrylic acid hydrogels by 1D and 2D nanocarbon[J]. Journal of Colloid and Interface Science, 2025, 679: 79-90.

[13] Mu D N, Xing J F. The preparation of double network hydrogel with high mechanical properties by photopolymerization under the green LED irradiation and enhancement of wet adhesion by tannic acid[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 671: 131656.

[14] Lv H M,Cao H R, Xu M, et al. Study on the mechanical properties of hydrogels enhanced by acryloyl-functionalized polyethyleneimine cross-links[J]. Journal of Applied Polymer Science, 2024, 141(31): e55726.

[15] Bardajee G R, Dianatnejad N, O. Mahmoodi N, et al. Mechanical properties and development of silver Nanoparticle-enhanced Alginate-polyacrylamide double network Hydrogel [J]. Journal of Polymer Research, 2024, 31: 343.

[16] Zheng S J, You H, Li H, et al. A model for fracture of temperature-sensitive hydrogel with diffusion and large deformation[J]. Engineering Fracture Mechanics, 2023, 281: 109138.

[17] Chen Y F, Zhang H H, Chen J H, et al. Hyperelastic model for polyacrylamide‑gelatin double network shape‑memory hydrogels[J]. Acta Mechanica Sinica, 2021, 37: 748-756.

[18] Guetta O, Rittel D. Hyperelastic modeling of solid methyl cellulose hydrogel under quasi-static compression[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 124: 104857.

[19] Nian X C, Yang Q S, Rao W. Constitutive modeling for hydrogel composites with arbitrary fiber distribution[J]. Composite Structures, 2023, 321: 117283.

[20] Shokrollahi Y, Dong P F, T. Gamage P, et al. Finite element-based machine learning model for predicting the mechanical properties of composite hydrogels[J]. Applied Sciences, 2022, 12(21): 10835.

[21] Nemani P, Ayyagari R S, Dayal P. A nonlinear continuum framework for constitutive modeling of active polymer gels[J]. Mechanics of Materials, 2024, 190: 104908.

[22] Shen Z H, Zhang C R, Wang T, et al. Advances in functional hydrogel wound dressings: A review[J]. Polymers, 2023, 15(9): 2000.

[23] Bashir S, Hina M, Iqbal J, et al. Fundamental concepts of hydrogels: synthesis, properties, and their applications[J]. Polymers, 2020, 12(11): 2702.

[24] Gholamali I. Stimuli-responsive polysaccharide hydrogels for biomedical applications: A review[J]. Regenerative Engineering and Translational Medicine, 2019, 7: 97-114.

[25] C.M. Kwok K, Koong L F, Chen G H, et al. Mechanism of arsenic removal using chitosan and nanochitosan[J]. Journal of Colloid and Interface Science, 2014, 416: 1-10.

[26] Dai M, Zheng X L, Xu X, et al. Chitosan-alginate sponge: preparation and application in curcumin delivery for dermal wound healing in rat[J]. Journal of Biomedicine and Biotechnology, 2009, 2009: 1-8.

[27] 顾榴俊. 聚四氟乙烯及其应用研究进展[J]. 浙江化工, 2020, 51(3): 1-5.

[28] Lv R L, Cao X, Zhang T Y, et al. A highly stretchable, self-healing, self-adhesive polyacrylic acid/chitosan multifunctional composite hydrogel for flexible strain sensors[J]. Carbohydrate Polymers, 2024, 351: 123111.

[29] Singh B, Kumar A. Graft and crosslinked polymerization of polysaccharide gum to form hydrogel wound dressings for drug delivery applications[J]. Carbohydrate Research, 2020, 489: 107949.

[30] Ren J, Yang X C, Yao M Q, et al. Preparation and characterization of CS/(β-CD)/PAA composite hydrogels for controlled drug delivery[J]. Letters in Drug Design & Discovery, 2015, 12(6): 512-517.

[31] Wang Y M, Wang J, Yuan Z Y, et al. Chitosan cross-linked poly (acrylic acid) hydrogels: Drug release control and mechanism[J]. Colloids and Surfaces B: Biointerfaces, 2017, 152: 252-259.

[32] Hong W, Zhao X H, Zhou J X, et al. A theory of coupled diffusion and large deformation in polymeric gels[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5): 1779-1793.

[33] Hong W, Zhao X H, Suo Z G. Large deformation and electrochemistry of polyelectrolyte gels[J]. Journal of the Mechanics and Physics of Solids, 2010, 58(4): 558-577.

[34] Flory P J. Thermodynamics of high polymer solutions[J]. The Journal of Chemical Physics, 1942, 10: 51-61.

[35] Flory P J, Rehner J. Statistical mechanics of cross-linked polymer networks II. swelling[J]. The Journal of Chemical Physics, 1943(11): 521-526.

[36] Hong W, Zhao X H, Zhou J X, et al. A theory of coupled diffusion and large deformation in polymeric gels[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5): 1779-1793.

[37] Li C H, Guan G Y, Reif R, et al. Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography[J]. Journal of The Royal Society Interface, 2012, 9(70): 831–841.

[38] Saleh B, Dhaliwal K H, Portillo-Lara R, et al. Local immunomodulation using an adhesive hydrogel loaded with miRNA-Laden nanoparticles promotes wound healing[J]. Small, 2019, 15(36): 1902232.

[39] Uramaya K, Takigawa T, Masuda T. Poisson's ratio of poly (vinyl alcohol) gels Macromolecules[J]. Macromolecules, 1993, 26(12): 3092-3096.

[40] Haque M A, Kurokawa T, Gong J P. Anisotropic hydrogel based on bilayers: color, strength, toughness, and fatigue resistance[J]. Soft Matter, 2012, 8: 8008-8016.

[41] Guimarães C F, Gasperini L, Marques A P, et al. The stiffness of living tissues and its implications for tissue engineering[J]. Nature Reviews Materials, 2020, 5: 351-370.

[42] 刘新东, 郝际平. 连续介质损伤力学[M]. 北京: 国防工业出版社, 2011: 5.

[43] 王永廉. 损伤变量的定义与测量[J]. 强度与环境, 1989(06): 28-33.

[44] 刘宝琛. 实验断裂、损伤力学测试技术[M]. 北京: 机械工业出版社, 1994: 27.

[45] Pérez-Aparicio R, Schiewek M, López Valentín J, et al. Local chain deformation and overstrain inreinforced elastomers: an NMR study[J]. Macromolecules, 2013, 46(14): 5549-5560.

[46] Garishin O C, Moshev V V. Damage model of elastic rubber particulate composites[J]. Theoretical and Applied Fracture Mechanics, 2002, 38(1): 63-69.

[47] 刘鸿文. 材料力学I[M]. 北京: 高等教育出版社, 2017: 241.

[48] Horgan C O, Murphy J G. Plane stress problems for isotropic incompressible hyperelastic materials[J]. Journal of Elasticity, 2024, 156: 455-471.

[49] Chagnon G, Marckmann G, Verron E. A comparison of the Hart-Smith model with Arruda-Boyce and Gent formulations for rubber elasticity[J]. Rubber Chemistry and Technology, 2004, 77(4): 724-735.

[50] 王勖成, 邵敏. 有限单元法基本原理和数值方法[M]. 北京: 清华大学出版社, 1997: 15.

[51] Bai R B, Yang Q S, Tang J D, et al. Fatigue fracture of tough hydrogels[J]. Extreme Mechanics Letters, 2017, 15: 91-96.

[52] Zou G P, Chen H. Path-dependent J-integrals under mixed-mode loads of mode I and mode II[J]. Theoretical and Applied Fracture Mechanics, 2018, 96: 380-386.

[53] Shahani A R, Shooshtar H, Baghaee, M. On the determination of the critical J-integral in rubber-like materials by the single specimen test method[J]. Engineering Fracture Mechanics, 2017, 184: 101-120.

[54] Rink M, Andena L, Marano C. The essential work of fracture in relation to J-integral[J]. Engineering Fracture Mechanics, 2014, 127: 46-55.

[55] Lee D J, Donovan J A. Critical J-integral and tearing energies for fracture of reinforced natural rubber[J]. Theoretical and Applied Fracture Mechanics, 1985, 4(2): 137-147.

[56] Inglis C E. Stresses in a plate due to the presence of cracks and sharp corners[J]. Transactions of the Institution of Naval Architects, 1913, 55: 219-241.

[57] Saadatidizaji Z, Sohrabi N, Mohammadi R, et al. Tetracycline hydrochloride loaded-alginate based nanoparticle-hydrogel beads for potential wound healing applications: In vitro drug delivery, release kinetics, and antibacterial activity[J]. International Journal of Biological Macromolecules, 2024, 264(2): 130653

[58] Colombo P. Swelling-controlled release in hydrogel matrices for oral route[J]. Advanced Drug Delivery Reviews, 1993, 11: 37-57.

[59] Doelker, E. Water-swollen cellulose derivatives in pharmacy[M]. Boca Raton, FL, USA: CRC Press, 1986: 115.

[60] Siepmann J, Peppas N A. Higuchi equation: Derivation, applications, use and misuse[J]. International Journal of Pharmaceutics, 2011, 418(1): 6-12.

[61] Korsmeyer R W, Gurny R, Doelker, E, et al. Mechanisms of solute release from porous hydrophilic polymers[J]. International Journal of Pharmaceutics, 1983, 15(1): 25-35.

[62] Najib N, Suleiman M S. The Kinetics of Drug Release from Ethylcellulose Solid Dispersions[J]. Drug Development and Industrial Pharmacy, 1985, 11(12): 2169-2181.

[63] Meretoud A, Banti C N, Siafarika P, et al. Tetracycline Water Soluble Formulations with Enhanced Antimicrobial Activity[J]. Antibiotics, 2020, 9(12): 845.

[64] Xiang J X, Wang Y J, Yang L P, et al. A novel hydrogel based on Bletilla striata polysaccharide for rapid hemostasis: Synthesis, characterization and evaluation[J]. International Journal of Biological Macromolecules, 2022, 196: 1-12.

[65] Qin M, Yuan W F, Zhang X M, et al. Preparation of PAA/PAM/MXene/TA hydrogel with antioxidant, healable ability as strain sensor[J]. Colloids and Surfaces B: Biointerfaces, 2022, 214: 112482.

[66] Vakili M R, Mohammed-Saeid V, Aljasser A, et al. Development of mucoadhesive hydrogels based on polyacrylic acid grafted cellulose nanocrystal for local cisplatin delivery[J]. Carbohydrate Polymers, 2021, 255: 117332.

[67] Yang Q, Yang W J, Wang Z, et al. Strong and Tough Antifreezing Hydrogel Sensor via the Synergy of Coordination and Hydrogen Bonds[J]. ACS Applied Materials & Interfaces, 2023, 15(44): 51684-51693.

[68] Darvishan S, Pourmadadi M, Abdouss M, et al. Gamma alumina coated-PAA/PVP hydrogel as promising quercetin nanocarrier: Physiochemical characterization and toxicity activity[J]. Journal of Drug Delivery Science and Technology, 2023, 84: 104500.

[69] Zhang K, Chen X M, Xue Y, et al. Tough Hydrogel Bioadhesives for Sutureless Wound Sealing, Hemostasis and Biointerfaces[J]. Advanced Functional Materials, 2021, 32(15): 2111465.

中图分类号:

 TB324    

开放日期:

 2026-06-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式