论文中文题名: |
页岩热辅助开发高温物性响应及热损伤机制研究
|
姓名: |
葛振龙
|
学号: |
19109071011
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
0818
|
学科名称: |
工学 - 地质资源与地质工程
|
学生类型: |
博士
|
学位级别: |
工学博士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
地质与环境学院
|
专业: |
地质资源与地质工程
|
研究方向: |
岩土体稳定与地质灾害防治
|
第一导师姓名: |
孙强
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2022-06-20
|
论文答辩日期: |
2022-06-02
|
论文外文题名: |
Research on high temperature physical property response and thermal damage mechanism of shale thermally assisted development
|
论文中文关键词: |
页岩 ; 高温物性响应 ; 热损伤机制 ; 热辅助开发 ; 热声发射
|
论文外文关键词: |
Shale ; High temperature physical property response ; Thermal damage mechanism ; Thermal assisted development ; Thermoacoustic emission
|
论文中文摘要: |
︿
页岩气的高效开采有利于保障我国能源安全,改善能源结构,缓解能源压力。在页岩气开采过程中,热辅助开发是一种加速页岩气解吸的有效方法,可提高页岩气产量,缩短开采周期。在热辅助高温作用下,页岩的热物理性质、渗透率和孔隙结构发生显著变化,从而影响页岩油气的传输性能。因此,研究页岩热辅助开发高温物性响应及热损伤机制,揭示页岩气在高温条件下的赋存状态,对页岩气的开采具有现实意义。
本文以寒武系牛蹄塘组页岩和水沟口组页岩为研究对象,采用热传导加热和热辐射(微波)加热的页岩热辅助开发方式,综合运用室内试验和理论分析的方法研究了高温作用下页岩的热物理性质、孔隙结构特征、渗透率和力学参数的变化,分析了实时高温作用下页岩的热声发射特征,开展了页岩热传导辅助开发物性响应特征研究和微波热辅助开发响应特征研究,结合微-宏观响应特征,揭示了页岩高温损伤机制。研究成果和结论如下:
(1)基于热声发射技术,研究了不同升温速率下牛蹄塘组页岩的热声发射特征及裂纹演化规律,揭示了页岩Kaiser效应的热疲劳敏感性,实现了页岩热损伤阈值温度的识别。在升温过程中,页岩中的拉张裂纹和剪切裂纹共同发育,但以拉张裂纹为主,当温度达到300℃,剪切裂纹所占比例开始增大,升温速率的增加有利于大尺度拉张裂纹的发育;牛蹄塘组页岩热Kaiser效应的阈值温度约为180℃,升温速率对阈值温度的影响不显著;当加热温度低于300℃时,页岩仍保持对阈值温度的记忆性,超过300℃,无机矿物的热膨胀和有机质的热解对热Kaiser效应产生干扰,导致页岩对最高温度记忆性的丧失。
(2)通过热传导加热方式下页岩物理力学试验,分析了牛蹄塘组页岩物理参数、孔隙结构特征以及渗透率随温度变化规律,得到了页岩强度的温度响应特征。结果表明300~450℃是牛蹄塘组页岩物理性质发生突变的阈值温度,在此温度下,波速和电容大幅减小,色度、硬度、光泽度和阻抗随温度的升高均大幅增加;当加热温度低于300℃时,孔隙度和渗透率变化不大,超过300℃时,孔隙度和渗透率显著增加。根据不同温度处理后核磁共振特性,将页岩孔隙类型划分为小孔(r<0.01 μm),中孔(0.01 μm0.1 μm),300℃之后,小孔的均匀程度逐渐增强,同时部分小孔向中孔转化;较低的升温速率有利于有机质的热解,导致页岩抗拉强度的显著降低,随着升温速率的增大,页岩受热不均匀,抗拉强度有所增大。当升温速率继续增大时,页岩内大尺度裂纹的发育又会造成抗拉强度的下降。
(3)基于页岩微波热效应的影响因素,研究了微波照射下页岩的热损伤机制,阐明了水沟口组页岩断裂韧度的微波响应,揭示了不同层理角度页岩的破坏模式。结果表明水分、介电常数和矿物组分是影响页岩微波热效应的主要因素;微波作用下,不同层理角度页岩断裂韧度存在一个温度阈值,对于层理分离(Crack-splitter)型、层理止裂(Crack-arrester)型和层理分割(Crack-divider)型页岩,阈值温度分别为50℃、125℃和200℃;Crack-divider型、Crack-arrester型和Crack-splitter型页岩的断裂韧度依次减小,同时随着微波照射时长的增加,断裂韧度逐渐下降;不同层理角度页岩断裂韧性的差异是由加载过程中裂纹扩展机制引起的。
(4)结合微-宏观响应特征,阐释了高温后页岩的微观结构变化和热解机理,揭示了页岩高温损伤机制。研究表明高温后页岩结构发生热破坏,孔隙数量和尺度增大,微裂纹增多;有机质的热解和无机矿物的热膨胀是造成页岩热损伤的主要原因。高温作用下,页岩表面有机质热解,孔隙和裂隙暴露。在高温和孔隙压力共同作用下,原有孔隙和裂隙逐渐扩展连通并产生新的裂隙,随着内部有机质的继续热解,更多的孔隙和裂隙产生;在较快的升温速率下,页岩内孔隙压力和热应力在短时间内急剧增加,易发生脆性破坏。
﹀
|
论文外文摘要: |
︿
The effective exploitation of shale gas is conducive to ensuring my country's energy security, improving the energy structure and relieving energy pressure. In the process of shale gas exploitation, heat-assisted development is an effective method to accelerate shale gas desorption, which can increase shale gas production and shorten the production cycle. Under the action of heat-assisted high temperature, shale thermophysics, permeability and pore structure change significantly. Through basic research such as shale thermophysical experiments, the variation characteristics and correlations of shale macrophysical parameters can be obtained, so as to realize the rapid identification of shale thermal damage state. The occurrence state and flow characteristics of fluids in shale pores are closely related to their pore structure, which directly affects the transmission performance of shale oil and gas. Therefore, it is of practical significance for the exploitation of shale gas to study the high temperature physical property response and thermal damage mechanism of shale thermally assisted development, and to reveal the occurrence state of shale gas under high temperature conditions.
Taking the Cambrian Niutitang Formation shale and Shuigoukou Formation shale as the research object, based on the shale thermal assisted development mode of heat conduction heating and thermal radiation (microwave) heating, the changes of thermophysical properties, pore structure characteristics, permeability and mechanical parameters of shale under high temperature are studied by comprehensively using the methods of indoor test and theoretical analysis. The thermoacoustic emission characteristics of shale under the action of real-time high temperature were analyzed, and the physical property response characteristics of shale heat conduction-assisted development and the response characteristics of microwave heat-assisted development were studied. Combined with the micro-macro response characteristics, the high temperature thermal damage mechanism of shale was revealed. The research results and conclusions are as follows:
(1) Based on the thermoacoustic emission technology, the thermoacoustic emission characteristics and crack evolution of shale in the Niutitang Formation under different heating rates were studied, the thermal fatigue sensitivity of the Kaiser effect of the shale was revealed, and the thermal damage threshold temperature of shale is identified. The results show that tensile cracks and shear cracks develop together during the heating process of shale, but tensile cracks account for the main body. Near 300℃, the proportion of shear cracks begins to increase, and the increase of heating rate is conducive to the development of large-scale tensile cracks; The threshold temperature of thermal Kaiser effect of Niutitang shale is about 180℃, and the effect of heating rate on the threshold temperature is not significant; When the heating temperature is lower than 300°C, the shale still maintains the memory of the threshold temperature. When the heating temperature exceeds 300°C, the expansion of inorganic minerals and the pyrolysis of organic matter interfere with the thermal Kaiser effect, so that the shale loses the memory of the highest temperature.
(2) Through the physical and mechanical tests of shale under heat conduction heating, the physical parameters, pore structure characteristics and permeability variation of Niutitang Formation shale were studied, and the temperature response characteristics of shale strength were analyzed. The results show that 300~450℃ is the threshold temperature for the change of physical properties of Niutitang Formation shale. In this temperature range, in addition to the large decrease in wave speed and capacitance, the chromaticity, hardness, gloss and impedance all increase greatly with the increase of temperature; When the heating temperature is lower than 300°C, the porosity and permeability do not change much, and when the heating temperature exceeds 300°C, the porosity and permeability increase significantly. The pore types of shale samples treated at different temperatures are divided into small holes (r<0.01 μm), middle hole (0.01 μm0.1 μm). After 300℃, the uniformity of pores gradually increases, and some small pores transform to mesopores; Low heating rate is conducive to the pyrolysis of organic matter, resulting in a significant reduction in the tensile strength of shale. As the heating rate increases, the shale is heated unevenly, which leads to the increase of tensile strength. When the heating rate continues to increase, the development of large-scale cracks in shale leads to the decrease of tensile strength again.
(3) Based on the influencing factors of microwave thermal effect of shale, the thermal damage mechanism of shale under microwave was revealed, the microwave response of the fracture toughness of shale in the Shuigoukou Formation was studied, and the failure mode of shale with different bedding angles was clarified. The results show that moisture, dielectric constant and mineral composition are the main factors affecting the microwave thermal effect of shale. Under the action of microwave, there is a temperature threshold for the fracture toughness of shale at different bedding angles. For Crack-splitter type, Crack-arrester type and Crack-divider type shale, the threshold temperature is 50℃, 125℃ and 200℃, respectively; The fracture toughness of Crack-divider type, Crack-arrester type and Crack-splitter type shale decreases in turn, and decreases gradually with the increase of microwave irradiation time, and the difference of fracture toughness of shale with different bedding angles is caused by the crack propagation mechanism during loading.
(4) Combined with the micro-macro response characteristics, the microstructure changes and pyrolysis mechanism of shale after high temperature were analyzed, and the high temperature damage mechanism of the shale was revealed. The results show that after high temperature, the shale structure is thermally damaged, resulting in an increase in the number and size of pores and an increase in microcracks; Pyrolysis of organic matter and decomposition of inorganic minerals are the main causes of thermal damage to shale. Under the action of high temperature, the organic matter on the shale surface is pyrolyzed, and pores and fissures are exposed. Oxygen enters the shale along these pores and fractures. With the continuous pyrolysis of internal organic matter, more pores and cracks are produced; At a faster heating rate, the pore pressure and thermal stress in the shale increase significantly in a short time, and the shale is prone to brittle failure.
﹀
|
参考文献: |
︿
[1] Curtis J B. Fractured shale-gas systems [J]. AAPG bulletin, 2002, 86(11): 1921-1938. [2] Zhang T, Ellis G S, Ruppel S C, et al. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems [J]. Organic geochemistry, 2012, 47: 120-131. [3] Pan L, Xiao X, Tian H, et al. Geological models of gas in place of the Longmaxi shale in Southeast Chongqing, South China [J]. Marine and Petroleum Geology, 2016, 73: 433-444. [4] Schettler P, Parmely C. Contributions to total storage capacity in Devonian shales; proceedings of the SPE Eastern Regional Meeting, F, 1991 [C]. OnePetro. [5] Wu Y, Li J, Ding D, et al. A generalized framework model for the simulation of gas production in unconventional gas reservoirs [J]. Spe Journal, 2014, 19(05): 845-857. [6] Administration U S E I, Kuuskraa V. World shale gas resources: an initial assessment of 14 regions outside the United States [M]. US Department of Energy, 2011. [7] Chen C. Multiscale imaging, modeling, and principal component analysis of gas transport in shale reservoirs [J]. Fuel, 2016, 182: 761-770. [8] Bai J, Kang Y, Chen M, et al. Investigation of multi-gas transport behavior in shales via a pressure pulse method [J]. Chemical Engineering Journal, 2019, 360: 1667-1677. [9] Dong D, Zou C, Dai J, et al. Suggestions on the development strategy of shale gas in China [J]. Journal of Natural Gas Geoscience, 2016, 1(6): 413-423. [10] Boudet H, Clarke C, Bugden D, et al. “Fracking” controversy and communication: using national survey data to understand public perceptions of hydraulic fracturing [J]. Energy Policy, 2014, 65: 57-67. [11] Liu J, Liang X, Xue Y, et al. Numerical evaluation on multiphase flow and heat transfer during thermal stimulation enhanced shale gas recovery [J]. Applied Thermal Engineering, 2020, 178: 115554. [12] 刘德勋, 王红岩, 郑德温, 等. 世界油页岩原位开采技术进展 [J]. 天然气工业, 2009, 29(5): 128-132. [13] 李隽, 汤达祯, 薛华庆, 等. 中国油页岩原位开采可行性初探 [J]. 2014, 36(1): 58-64. [14] 康志勤, 赵阳升, 杨栋. 利用原位电法加热技术开发油页岩的物理原理及数值分析 [J]. 石油学报, 2008, 29(4): 592-595. [15] 王盛鹏, 刘德勋, 王红岩, 等. 原位开采油页岩电加热技术现状及发展方向 [J]. 天然气工业, 2011, 31(02): 114-118. [16] 邢亚繁, 王玉斗, 王殿生. 电加热强化页岩气解吸的数值模拟 [J]. 西安石油大学学报: 自然科学版, 2014, 29(6): 74-78. [17] 康志勤, 王玮, 曹伟, 等. 原位开采背景下油页岩渗透规律的研究 [J]. 太原理工大学学报, 2013, 44(6): 768-770. [18] 王磊, 赵阳升, 杨栋. 注水蒸汽原位热解油页岩细观特征研究 [J]. 岩石力学与工程学报, 2020, 39(8): 1634-1647. [19] Bhattacharya M, Basak T. A theoretical study on the use of microwaves in reducing energy consumption for an endothermic reaction: Role of metal coated bounding surface [J]. Energy, 2013, 55: 278-294. [20] Li H, Lin B, Yang W, et al. A fully coupled electromagnetic-thermal-mechanical model for coalbed methane extraction with microwave heating [J]. Journal of Natural Gas Science and Engineering, 2017, 46: 830-844. [21] Li J, Kaunda R B, Arora S, et al. Fully-coupled simulations of thermally-induced cracking in pegmatite due to microwave irradiation [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(2): 242-250. [22] Hartlieb P, Kuchar F, Moser P, et al. Reaction of different rock types to low-power (3.2 kW) microwave irradiation in a multimode cavity [J]. Minerals Engineering, 2018, 118: 37-51. [23] 赵静. 高温及三维应力下油页岩细观特征及力学特性试验研究 [D]. 太原: 太原理工大学, 2014. [24] 熊健, 黄林林, 刘向君, 等. 高温影响下页岩岩石的声学特性实验研究 [J]. 2019, 41(6): 35-43. [25] 毕井龙. 热—力耦合作用下油页岩断裂特性实验研究 [D]. 太原: 太原理工大学, 2016. [26] 王国营. 高温作用下油页岩热物理, 渗流, 力学特征各向异性演化规律及其应用 [D]. 太原: 太原理工大学, 2019. [27] Closmann P, Bradley W. The effect of temperature on tensile and compressive strengths and Young's modulus of oil shale [J]. Society of Petroleum Engineers Journal, 1979, 19(05): 301-312. [28] Masri M, Sibai M, Shao J-F, et al. Experimental investigation of the effect of temperature on the mechanical behavior of Tournemire shale [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70: 185-191. [29] Mohamadi M, Wan R G. Strength and post-peak response of Colorado shale at high pressure and temperature [J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 84: 34-46. [30] Guo Y, Huang L, Li X, et al. Experimental investigation on the effects of thermal treatment on the physical and mechanical properties of shale [J]. Journal of Natural Gas Science and Engineering, 2020, 82: 103496. [31] Yang S, Yang D, Kang Z. Experimental investigation of the anisotropic evolution of tensile strength of oil shale under real-time high-temperature conditions [J]. Natural Resources Research, 2021, 30(3): 2513-2528. [32] 杨栋, 薛晋霞, 康志勤, 等. 抚顺油页岩干馏渗透实验研究 [J]. 西安石油大学学报: 自然科学版, 2007, 22(2): 23-25. [33] 康志勤, 吕兆兴, 杨栋, 等. 油页岩原位注蒸汽开发的固-流-热-化学耦合数学模型研究 [J]. 西安石油大学学报(自然科学版), 2008, 23(4): 30-34. [34] 赵林. 过热蒸汽对流加热油页岩原位开采基础实验研究 [D]. 太原: 太原理工大学, 2015. [35] Yanik J, Yüksel M, Saǧlam M, et al. Characterization of the oil fractions of shale oil obtained by pyrolysis and supercritical water extraction [J]. Fuel, 1995, 74(1): 46-50. [36] Mokhlisse A, Chanâa M B. Effect of water vapor on the pyrolysis of the Moroccan (Tarfaya) oil shale [J]. Journal of Analytical and Applied Pyrolysis, 1999, 48(2): 65-76. [37] Nazzal J M, Williams P T. Influence of temperature and steam on the products from the flash pyrolysis of Jordan oil shale [J]. International journal of energy research, 2002, 26(14): 1207-1219. [38] 折建梅, 宋永辉, 兰新哲, 等. 微波功率对油页岩热解的影响 [J]. 洁净煤技术, 2011, 17(5): 66-69. [39] 罗万江, 兰新哲, 宋永辉. 油页岩微波热解气态产物析出特性 [J]. 化工进展, 2015, 34(3): 689-694. [40] 孙超. 微波辐射强化页岩气解吸与改善页岩渗透性的机理研究 [D]. 徐州: 中国矿业大学, 2020. [41] Chanaa M B, Lallemant M, Mokhlisse A. Pyrolysis of Timahdit, Morocco, oil shales under microwave field [J]. Fuel, 1994, 73(10): 1643-1649. [42] He L, Ma Y, Yue C, et al. The heating performance and kinetic behaviour of oil shale during microwave pyrolysis [J]. Energy, 2021: 123021. [43] 孙可明, 赵阳升, 杨栋. 非均质热弹塑性损伤模型及其在油页岩地下开发热破裂分析中的应用 [J]. 岩石力学与工程学报, 2008, 27(1): 42-52. [44] 于永军. 热力耦合作用下油页岩损伤与断裂力学行为研究 [D]. 太原: 太原理工大学, 2015. [45] 赵贵杰. 油页岩热损伤演化特性及损伤模型研究 [D]. 长春: 吉林大学, 2015. [46] Zhao G, Chen C, Yan H. A thermal damage constitutive model for oil shale based on Weibull statistical theory [J]. Mathematical Problems in Engineering, 2019, 2019: 1-11. [47] Srinivasan V, Tripathy A, Gupta T, et al. An investigation on the influence of thermal damage on the physical, mechanical and acoustic behavior of Indian Gondwana shale [J]. Rock Mechanics and Rock Engineering, 2020, 53(6): 2865-2885. [48] Passeri D, Sassi U, Bettucci A, et al. Thermoacoustic emission from carbon nanotubes imaged by atomic force microscopy [J]. Advanced Functional Materials, 2012, 22(14): 2956-2963. [49] Zhang Y, Zhao G-F, Li Q. Acoustic emission uncovers thermal damage evolution of rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 132: 104388. [50] Kaznacheev P, Maybuk Z, Ponomarev A. Equipment and methods for studying thermoacoustic emission memory effects in rocks [J]. Seismic Instruments, 2019, 55(5): 524-534. [51] Daoud A, Browning J, Meredith P G, et al. Microstructural controls on thermal crack damage and the presence of a temperature‐memory effect during cyclic thermal stressing of rocks [J]. Geophysical Research Letters, 2020, 47(19): e2020GL088693. [52] 陈颙, 吴晓东, 张福勤. 岩石热开裂的实验研究 [J]. 科学通报, 1999, 44(8): 880-883. [53] Yong C, Wang C. Thermally induced acoustic emission in Westerly granite [J]. Geophysical research letters, 1980, 7(12): 1089-1092. [54] Shkuratnik V, Novikov E. Influence of the mechanical loading of rock salt on the parameters of thermoacoustic emission [J]. Journal of Applied Mechanics and Technical Physics, 2015, 56(3): 486-493. [55] Kaznacheev P A, Maibuk Z, Ponomarev A V. Estimation procedure for influence of heating rate on acoustic emission activity in the analysis of thermally stimulated failure of rocks [J]. 2018, (5): 5-25. [56] 席道瑛, 程经毅, 黄建华. 声发射在研究岩石古温度中的应用 [J]. 中国科学技术大学学报, 1996, 26(1): 97-101. [57] 李佳蔚, 邱楠生, 梅庆华, 等. 利用热声发射技术测量岩石最高古温度的探索 [J]. 地球物理学报, 2011, 54(11): 2898-2905. [58] 席道瑛, 陈普刚. 应力或热疲劳对花岗岩凯塞效应的影响 [J]. 地震地质, 1995, 17(2): 162-166. [59] 张建坤, 何生, 易积正, 等. 岩石热声发射和盆模技术研究中扬子区西部下古生界海相页岩最高古地温和热成熟史 [J]. 石油学报, 2014, 35(1): 58-67. [60] Zuberek W, Zogała B, Dubiel R, et al. Maximum temperature memory in sandstone and mudstone observed with acoustic emission and ultrasonic measurements [J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 4(35): 416-417. [61] Choi N-S, Kim T-W, Rhee K Y. Kaiser effects in acoustic emission from composites during thermal cyclic-loading [J]. Ndt & E International, 2005, 38(4): 268-274. [62] Heap M, Lavallée Y, Laumann A, et al. The influence of thermal-stressing (up to 1000 C) on the physical, mechanical, and chemical properties of siliceous-aggregate, high-strength concrete [J]. Construction and Building Materials, 2013, 42: 248-265. [63] 李少华, 柏静儒, 孙佰仲, 等. 升温速率对油页岩热解特性的影响 [J]. 化学工程, 2007, 35(1): 64-67. [64] 于海龙, 姜秀民. 桦甸油页岩热解特性的研究 [J]. 燃料化学学报, 2001, 29(5): 450-453. [65] 陆浩, 潘颢丹, 郭闯, 等. 抚顺油页岩热解动力学模型的对比研究 [J]. 辽宁石油化工大学学报, 2020, 40(1): 20-25. [66] Williams P T, Ahmad N. Investigation of oil-shale pyrolysis processing conditions using thermogravimetric analysis [J]. Applied Energy, 2000, 66(2): 113-133. [67] Zhang J, Ding Y, Du W, et al. Study on pyrolysis kinetics and reaction mechanism of Beizao oil shale [J]. Fuel, 2021, 296: 120696. [68] 杨金朝. 不同成熟度页岩孔隙结构变化的热模拟研究 [D]. 北京: 中国科学院大学, 2016. [69] 高涛, 赵静. 不同温度作用下油页岩内部孔隙结构精细表征 [J]. 中国矿业, 2018, 27(12): 153-156. [70] 张烨毓, 曹茜, 黄毅, 等. 应用高温甲烷吸附实验研究川东北地区五峰组页岩甲烷吸附能力 [J]. 岩矿测试, 2020, 39(2): 188-198. [71] 关东帅. 温度作用下泥页岩力学性能及微观孔隙结构的演化规律 [D]. 北京: 中国地质大学 (北京), 2020. [72] Yang L, Yang D, Zhao J, et al. Changes of oil shale pore structure and permeability at different temperatures [J]. Oil Shale, 2016, 33(2): 101-110. [73] Chandra D, Bakshi T, Vishal V. Thermal effect on pore characteristics of shale under inert and oxic environments: Insights on pore evolution [J]. Microporous and Mesoporous Materials, 2021, 316: 110969. [74] Jiang C, Yang W, Duan M, et al. Pore structure alteration and permeability enhancement of shale under cyclic thermal impacts [J]. Powder Technology, 2022, 396: 385-393. [75] 朱杰琦. 微波辐射下页岩微结构的损伤特性与致裂效应 [D]. 徐州: 中国矿业大学, 2020. [76] 李泓钊, 陈彦奇, 何乐平, 等. 微波热效应对页岩结构热损伤的影响规律 [J]. 科技和产业, 2021, 21(1): 258-263. [77] Chen T, Zheng X, Qiu X, et al. Experimental study on the feasibility of microwave heating fracturing for enhanced shale gas recovery [J]. Journal of Natural Gas Science and Engineering, 2021, 94: 104073. [78] Fu X, Zhao C, Lun Z, et al. Influences of controlled microwave field radiation on pore structure, surface chemistry and adsorption capability of gas-bearing shales [J]. Marine and Petroleum Geology, 2021, 130: 105134. [79] 李赛赛. 陕西省商南县—山阳县下寒武统黑色岩系中钒矿田地质构造特征及成因探讨 [D]. 西安: 长安大学, 2012. [80] Li D, Li R, Tan C, et al. Origin of silica, paleoenvironment, and organic matter enrichment in the Lower Paleozoic Niutitang and Longmaxi formations of the northwestern Upper Yangtze Plate: Significance for hydrocarbon exploration [J]. Marine and Petroleum Geology, 2019, 103: 404-421. [81] 王松涛, 宋海林, 张进平, 等. 陕西商南县楼房沟钒矿床地质特征, 成因分析及找矿标志 [J]. 矿产与地质, 2012, 26(6): 451-458. [82] Shkuratnik V, Novikov E, Voznesenskii A, et al. Termostimulirovannaya akusticheskaya emissiya v geomaterialakh [J]. M: Izdatelstvo―Gornaya kniga, 2015. [83] Винников В А, Шкуратник В Л. О теоретической модели термоэмиссионного эффекта памяти в горных породах [J]. Прикладная механика и техническая физика, 2008, 49(2): 301-305. [84] 周逸飞, 朱星, 刘文德. 基于声发射和高斯混合模型的灰岩破裂特征识别研究 [J]. 水利水电技术, 2019, 50(11): 131-140. [85] Farhidzadeh A, Dehghan-Niri E, Salamone S, et al. Monitoring crack propagation in reinforced concrete shear walls by acoustic emission [J]. Journal of Structural Engineering, 2013, 139(12): 04013010. [86] 邓琼伟, 杨录胜, 刘正和, 等. 水平应力差对砂岩起裂破坏规律的声发射试验研究 [J]. 矿业研究与开发, 2018, 38(12): 72-76. [87] 李芷, 贾长贵, 杨春和, 等. 页岩水力压裂水力裂缝与层理面扩展规律研究 [J]. 岩石力学与工程学报, 2015, 34(1): 12-20. [88] Ge Z, Sun Q. Acoustic emission (AE) characteristics of granite after heating and cooling cycles [J]. Engineering Fracture Mechanics, 2018, 200: 418-429. [89] Ge Z, Sun Q. Acoustic emission characteristics of gabbro after microwave heating [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 104616. [90] 何满潮, 赵菲, 杜帅, 等. 不同卸载速率下岩爆破坏特征试验分析 [J]. 岩土力学, 2014, 35(10): 2737-2747. [91] 甘一雄, 吴顺川, 任义, 等. 基于声发射上升时间/振幅与平均频率值的花岗岩劈裂破坏评价指标研究 [J]. 岩土力学, 41(7): 2324-2332. [92] He M, Miao J, Feng J. Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(2): 286-298. [93] Ishida T, Labuz J F, Manthei G, et al. ISRM suggested method for laboratory acoustic emission monitoring [J]. Rock Mechanics and Rock Engineering, 2017, 50(3): 665-674. [94] Colombo I S, Main I, Forde M. Assessing damage of reinforced concrete beam using “b-value” analysis of acoustic emission signals [J]. Journal of materials in civil engineering, 2003, 15(3): 280-286. [95] Aggelis D G. Classification of cracking mode in concrete by acoustic emission parameters [J]. Mechanics Research Communications, 2011, 38(3): 153-157. [96] Aggelis D, Soulioti D, Sapouridis N, et al. Acoustic emission characterization of the fracture process in fibre reinforced concrete [J]. Construction and Building Materials, 2011, 25(11): 4126-4131. [97] Aggelis D, Mpalaskas A, Matikas T. Acoustic signature of different fracture modes in marble and cementitious materials under flexural load [J]. Mechanics Research Communications, 2013, 47: 39-43. [98] Miao S, Pan P-Z, Zhao X, et al. Experimental study on damage and fracture characteristics of Beishan granite subjected to high-temperature treatment with DIC and AE techniques [J]. Rock Mechanics and Rock Engineering, 2021, 54(2): 721-743. [99] Tiikma L, Zaidentsal A, Tensorer M. Formation of thermobitumen from oil shale by low-temperature pyrolysis in an autoclave [J]. Oil Shale, 2007, 24(4): 535-546. [100] Torrente M, Galan M. Kinetics of the thermal decomposition of oil shale from Puertollano (Spain) [J]. Fuel, 2001, 80(3): 327-334. [101] Tiwari P, Deo M. Compositional and kinetic analysis of oil shale pyrolysis using TGA–MS [J]. Fuel, 2012, 94: 333-341. [102] Trabucho‐Alexandre J. Organic Matter‐Rich Shale Depositional Environments [J]. Fundamentals of Gas Shale Reservoirs, 2015: 21-45. [103] Yang T, Sun Q, Li D, et al. Study on the change of physical properties of Organic-rich shale after heat treatment [J]. Journal of Thermal Analysis and Calorimetry, 2021: 1-11. [104] Sun Q, Zhang W, Xue L, et al. Thermal damage pattern and thresholds of granite [J]. Environmental Earth Sciences, 2015, 74(3): 2341-2349. [105] Sadhukhan A K, Gupta P, Goyal T, et al. Modelling of pyrolysis of coal–biomass blends using thermogravimetric analysis [J]. Bioresource technology, 2008, 99(17): 8022-8026. [106] Lopatin V, Martemyanov S. Investigation of the dielectric properties of oil shale [J]. Russian Physics Journal, 2012, 55(5): 511-516. [107] Meredith P G, Knight K S, Boon S A, et al. The microscopic origin of thermal cracking in rocks: An investigation by simultaneous time‐of‐flight neutron diffraction and acoustic emission monitoring [J]. Geophysical research letters, 2001, 28(10): 2105-2108. [108] Iwasaki H, Torikai D. Thermal shock of quartz lascas [J]. Journal of materials science, 1993, 28(19): 5223-5228. [109] Ohno I. Temperature variation of elastic properties of α-quartz up to the α-β transition [J]. Journal of Physics of the Earth, 1995, 43(2): 157-169. [110] Ge Z, Sun Q, Xue L, et al. The influence of microwave treatment on the mode I fracture toughness of granite [J]. Engineering Fracture Mechanics, 2021, 249: 107768. [111] Stewart D, Von Limbach D. Thermal expansion of low and high albite [J]. American Mineralogist: Journal of Earth and Planetary Materials, 1967, 52(3-4): 389-413. [112] Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale [J]. Journal of sedimentary research, 2009, 79(12): 848-861. [113] Liang C, Jiang Z, Cao Y, et al. Deep-water depositional mechanisms and significance for unconventional hydrocarbon exploration: A case study from the lower Silurian Longmaxi shale in the southeastern Sichuan Basin [J]. Aapg Bulletin, 2016, 100(5): 773-794. [114] 蔡潇, 靳雅夕, 叶建国, 等. 一种页岩有机孔与无机孔定量表征的方法 [J]. 油气藏评价与开发, 2020, 10(1): 30-36. [115] 杨平, 印峰, 余谦, 等. 四川盆地东南缘有机质演化异常与古地温场特征 [J]. 天然气地球科学, 2015, 26(7): 1299-1309. [116] 王玮, 周祖翼, 于鹏. 镜质体反射率与最高温度及其附近温度变化率的关系 [J]. 地球物理学报, 2005, 48(6): 1375-1383. [117] Burnham A K, Sweeney J J. A chemical kinetic model of vitrinite maturation and reflectance [J]. Geochimica et Cosmochimica Acta, 1989, 53(10): 2649-2657. [118] Sweeney J J, Burnham A K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics [J]. AAPG bulletin, 1990, 74(10): 1559-1570. [119] 梁狄刚, 郭彤楼, 陈建平, 等. 中国南方海相生烃成藏研究的若干新进展 (二): 南方四套区域性海相烃源岩的地球化学特征 [J]. 海相油气地质, 2009, 14(1): 1-15. [120] 肖贤明, 刘德汉, 傅家谟. 沥青反射率作为烃源岩成熟度指标的意义 [J]. 沉积学报, 1991, 9(S1): 138-146. [121] Jacob H. Classification, structure, genesis and practical importance of natural solid oil bitumen (“migrabitumen”) [J]. International Journal of coal geology, 1989, 11(1): 65-79. [122] Petersen H I, Schovsbo N H, Nielsen A T. Reflectance measurements of zooclasts and solid bitumen in Lower Paleozoic shales, southern Scandinavia: Correlation to vitrinite reflectance [J]. International Journal of Coal Geology, 2013, 114: 1-18. [123] 李享德, 焦其伟, 刘培德, 等. 岩石光泽度的实质及其计算公式 [J]. 大连理工大学学报, 1990, (4): 435-442. [124] 张樵英. 花岗石的节理及其对抛光光泽度的影响 [J]. 石材, 1996, (2): 20-22. [125] 孙保帅, 闫国进, 荆运洁. 影响石材表面光泽度的矿物学因素 [J]. 郑州工业高等专科学校学报, 2004, 20(2): 19-20. [126] 乔爽. 云南省碳酸盐类大理石的工艺指标研究 [D]. 昆明: 昆明理工大学, 2015. [127] Ouyang Z, Liu D, Cai Y, et al. Investigating the fractal characteristics of pore-fractures in bituminous coals and anthracites through fluid flow behavior [J]. Energy & Fuels, 2016, 30(12): 10348-10357. [128] Jaber J, Probert S. Pyrolysis and gasification kinetics of Jordanian oil-shales [J]. Applied Energy, 1999, 63(4): 269-286. [129] Zhang J, Wei C, Ju W, et al. Stress sensitivity characterization and heterogeneous variation of the pore-fracture system in middle-high rank coals reservoir based on NMR experiments [J]. Fuel, 2019, 238: 331-344. [130] Kleinberg R, Kenyon W, Mitra P. Mechanism of NMR relaxation of fluids in rock [J]. Journal of magnetic resonance, Series A, 1994, 108(2): 206-214. [131] Ausbrooks R, Hurley N F, May A, et al. Pore-size distributions in vuggy carbonates from core images, NMR, and capillary pressure; proceedings of the SPE annual technical conference and exhibition, F, 1999 [C]. OnePetro. [132] 贺承祖, 华明琪. 储层孔隙结构的分形几何描述 [J]. 石油与天然气地质, 1998, (1): 17-25. [133] 金强, 曾怡. 储集性砂岩粒度组成的分形结构 [J]. 石油大学学报: 自然科学版, 1995, 19(3): 12-16. [134] 马新仿, 张士诚, 郎兆新. 储层岩石孔隙结构的分形研究 [J]. 中国矿业, 2003, 12(9): 46-48. [135] 马新仿, 张士诚, 郎兆新. 用分段回归方法计算孔隙结构的分形维数 [J]. 石油大学学报: 自然科学版, 2004, 28(6): 54-56. [136] Zhou L, Kang Z. Fractal characterization of pores in shales using NMR: A case study from the Lower Cambrian Niutitang Formation in the Middle Yangtze Platform, Southwest China [J]. Journal of Natural Gas Science and Engineering, 2016, 35: 860-872. [137] 余旭东, 康志宏, 周磊, 等. 核磁共振技术在页岩孔隙表征中的应用 [J]. 煤炭技术, 2018, 37(5): 129-131. [138] 李志清, 王伟, 王晓明, 等. 页岩微纳米孔隙结构分形特征研究 [J]. 工程地质学报, 2018, 26(2): 494-503. [139] 薛小杰. 基于核磁共振技术的岩土体孔隙分形特征 [D]. 桂林: 桂林理工大学, 2020. [140] Katz A, Thompson A. Quantitative prediction of permeability in porous rock [J]. Physical review B, 1986, 34(11): 8179-8181. [141] Katz A, Thompson A. Prediction of rock electrical conductivity from mercury injection measurements [J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B1): 599-607. [142] Gao Z, Hu Q. Estimating permeability using median pore-throat radius obtained from mercury intrusion porosimetry [J]. Journal of Geophysics and Engineering, 2013, 10(2): 025014. [143] Webb P A. An introduction to the physical characterization of materials by mercury intrusion porosimetry with emphasis on reduction and presentation of experimental data [J]. Micromeritics Instrument Corp, Norcross, Georgia, 2001. [144] 杨锐. 鄂西渝东地区五峰组—龙马溪组页岩孔隙结构与连通孔隙流体示踪 [D]. 武汉: 中国地质大学, 2018. [145] 靳佩桦, 胡耀青, 邵继喜, 等. 高温花岗岩遇水冷却后孔隙结构及渗透性研究 [J]. 太原理工大学学报, 2019, 50(4): 478-484. [146] Lyu C, Hao S, Sun Q, et al. Permeability evolution of two sedimentary rocks at different temperatures based on the Katz-Thompson theory [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 144: 104819. [147] 宋杨, 李金远, 李俊锋, 等. 硬化水泥浆体气体渗透特征研究 [J]. 硅酸盐通报, 2020, 39(12): 3799-3805. [148] Nishiyama N, Yokoyama T. Estimation of permeability of sedimentary rocks by applying water-expulsion porosimetry to Katz and Thompson model [J]. Engineering geology, 2014, 177: 75-82. [149] 赵天逸, 宁正福, 陈刚, 等. 致密砂岩储集层渗透率预测修正方法 [J]. 新疆石油地质, 2020, 41(3): 337. [150] 陈飞. 盐岩细观孔隙结构特征研究 [D]. 武汉: 中国地质大学 (武汉), 2013. [151] 徐鹏, 邱淑霞, 姜舟婷, 等. 各向同性多孔介质中 Kozeny-Carman 常数的分形分析 [J]. 重庆大学学报: 自然科学版, 2011, 34(4): 78-82. [152] 郑斌, 李菊花. 基于 Kozeny—Carman 方程的渗透率分形模型 [J]. 天然气地球科学, 2015, 26(1): 193-198. [153] Purcell W. Capillary pressures-their measurement using mercury and the calculation of permeability therefrom [J]. Journal of Petroleum Technology, 1949, 1(02): 39-48. [154] Kolodzie S. Analysis of pore throat size and use of the Waxman-Smits equation to determine OOIP in Spindle Field, Colorado; proceedings of the SPE annual technical conference and exhibition, F, 1980 [C]. OnePetro. [155] Swanson B. A simple correlation between permeabilities and mercury capillary pressures [J]. Journal of Petroleum Technology, 1981, 33(12): 2498-2504. [156] Thomeer J. Air permeability as a function of three pore-network parameters [J]. Journal of Petroleum Technology, 1983, 35(04): 809-814. [157] Wells J, Amaefule J. Capillary pressure and permeability relationships in tight gas sands; proceedings of the SPE/DOE Low Permeability Gas Reservoirs Symposium, F, 1985 [C]. OnePetro. [158] Bryant S L, Mellor D W, Cade C A. Physically representative network models of transport in porous media [J]. AIChE Journal, 1993, 39(3): 387-396. [159] Bryant S, Cade C, Mellor D. Permeability prediction from geologic models [J]. AAPG bulletin, 1993, 77(8): 1338-1350. [160] Kenyon W, Day P, Straley C, et al. A three-part study of NMR longitudinal relaxation properties of water-saturated sandstones [J]. SPE formation evaluation, 1988, 3(03): 622-636. [161] Coates G R, Galford J, Mardon D, et al. A new characterization of bulk-volume irreducible using magnetic resonance [J]. The log analyst, 1998, 39(1): 51-63. [162] Arnold J, Clauser C, Pechnig R, et al. Porosity and permeability from mobile NMR core-scanning [J]. Petrophysics-The SPWLA Journal of Formation Evaluation and Reservoir Description, 2006, 47(4): 306-314. [163] Li A, Ding W, Wang R, et al. Petrophysical characterization of shale reservoir based on nuclear magnetic resonance (NMR) experiment: A case study of Lower Cambrian Qiongzhusi Formation in eastern Yunnan Province, South China [J]. Journal of Natural Gas Science and Engineering, 2017, 37: 29-38. [164] Kenyon W, Day P, Straley C, et al. Compact and consistent representation of rock NMR data for permeability estimation, F, 1986 [C]. [165] 周尚文, 薛华庆, 郭伟, 等. 川南龙马溪组页岩核磁渗透率新模型研究 [J]. 中国石油大学学报: 自然科学版, 2016, (1): 56-61. [166] Yao Y, Liu D, Liu J, et al. Assessing the water migration and permeability of large intact bituminous and anthracite coals using NMR relaxation spectrometry [J]. Transport in Porous Media, 2015, 107(2): 527-542. [167] 杨伟斌, 朱庆勇, 余怀忠. 基于 SEM 图像纹理增强的岩石多孔介质渗透率计算 [J]. 中国力学大会-2017 暨庆祝中国力学学会成立 60 周年大会论文集 (B), 2017. [168] Yu B, Cheng P. A fractal permeability model for bi-dispersed porous media [J]. International journal of heat and mass transfer, 2002, 45(14): 2983-2993. [169] 张思勤. 页岩孔隙结构的分形表征及渗透率预测 [J]. 测井技术, 2016, 40(6): 726-730. [170] 杨坤, 王付勇, 曾繁超, 等. 基于数字岩心分形特征的渗透率预测方法 [J]. 吉林大学学报(地球科学版), 2020, 50(4): 1003-1011. [171] Jia H, Ding S, Zi F, et al. Evolution in sandstone pore structures with freeze-thaw cycling and interpretation of damage mechanisms in saturated porous rocks [J]. Catena, 2020, 195: 104915. [172] Rezaee R, Saeedi A, Clennell B. Tight gas sands permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance data [J]. Journal of Petroleum Science and Engineering, 2012, 88: 92-99. [173] 刘志军. 温度作用下油页岩孔隙结构及渗透特征演化规律研究 [D]. 太原: 太原理工大学, 2018. [174] 游利军, 康毅力. 热处理对致密岩石物理性质的影响 [J]. 地球物理学进展, 2009, 24(5): 1850-1854. [175] 熊健, 林海宇, 刘向君, 等. 高温对富有机质页岩岩石物理特性的影响 [J]. 石油实验地质, 2019, 41(6): 910-915. [176] Kang Y, Yang D, You L, et al. Experimental evaluation method for permeability changes of organic-rich shales by high-temperature thermal stimulation [J]. Journal of Natural Gas Geoscience, 2021, 6(3): 145-155. [177] Wang L, Yang D, Kang Z. Evolution of permeability and mesostructure of oil shale exposed to high-temperature water vapor [J]. Fuel, 2021, 290: 119786. [178] 陈明君, 康毅力, 游利军. 利用高温热处理提高致密储层渗透性 [J]. 天然气地球科学, 2013, 24(6): 1226-1231. [179] Sun C, Hu G, Song C. Experimental study on microwave irradiation enhancing gas desorption in shale [J]. Journal of Natural Gas Science and Engineering, 2021, 95: 104163. [180] 柏静儒, 李晓航, 贾春霞, 等. 柳树河油页岩微波干燥特性及干燥模型 [J]. 化工学报, 2014, 65(2): 474-479. [181] Chen T, Zheng X, Qiu X, et al. Experimental study on the feasibility of microwave heating fracturing for enhanced shale gas recovery [J]. Journal of Natural Gas Science and Engineering, 2021: 104073. [182] Sun C, Liu W, Ma T. The temperature and mechanical damage investigation of shale with various dielectric properties under microwave irradiation [J]. Journal of Natural Gas Science and Engineering, 2021, 90: 103919. [183] Cui G, Chen T, Feng X, et al. Coupled multiscale-modeling of microwave-heating-induced fracturing in shales [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 136: 104520. [184] Ali A, Bradshaw S. Quantifying damage around grain boundaries in microwave treated ores [J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(11-12): 1566-1573. [185] Jia H, Wang T, Chen W, et al. Microscopic mechanisms of microwave irradiation thawing frozen soil and potential application in excavation of frozen ground [J]. Cold Regions Science and Technology, 2021, 184: 103248. [186] Kang Y, Chen M, You L, et al. Laboratory measurement and interpretation of the changes of physical properties after heat treatment in tight porous media [J]. Journal of Chemistry, 2015, 2015: 1-10. [187] Meng Y, Tang L, Yan Y, et al. Effects of microwave-enhanced pretreatment on oil shale milling performance [J]. Energy Procedia, 2019, 158: 1712-1717. [188] Bjorndalen N, Islam M. The effect of microwave and ultrasonic irradiation on crude oil during production with a horizontal well [J]. Journal of petroleum Science and Engineering, 2004, 43(3-4): 139-150. [189] Bera A, Babadagli T. Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: A review [J]. Applied energy, 2015, 151: 206-226. [190] Xu G, Huang J, Hu G, et al. Experimental study on effective microwave heating/fracturing of coal with various dielectric property and water saturation [J]. Fuel Processing Technology, 2020, 202: 106378. [191] Li H, Shi S, Lin B, et al. A fully coupled electromagnetic, heat transfer and multiphase porous media model for microwave heating of coal [J]. Fuel Processing Technology, 2019, 189: 49-61. [192] Parkhomenko E I, Keller G V. Electrical Properties of Rocks [M]. US: Springer, 1967. [193] Angenheister G, Beblo M. 5.2 The dielectric constant of minerals and rocks [M]. Landolt-Börnstein - Group V Geophysics, 1982. [194] Lu G, Zhou J, Li Y, et al. The influence of minerals on the mechanism of microwave-induced fracturing of rocks [J]. Journal of Applied Geophysics, 2020, 180: 104123. [195] Walkiewicz J, Kazonich G, Mcgill S. Microwave heating characteristics of selected minerals and compounds [J]. Minerals & metallurgical processing, 1988, 5(1): 39-42. [196] Lu G-m, Li Y-h, Hassani F, et al. The influence of microwave irradiation on thermal properties of main rock-forming minerals [J]. Applied Thermal Engineering, 2017, 112: 1523-1532. [197] 田军, 卢高明, 冯夏庭, 等. 主要造岩矿物微波敏感性试验研究 [J]. 岩土力学, 2019, (6): 2066-2074. [198] Huang J, Xu G, Liang Y, et al. Improving coal permeability using microwave heating technology—A review [J]. Fuel, 2020, 266: 117022. [199] Lovás M, Kováčová M, Dimitrakis G, et al. Modeling of microwave heating of andesite and minerals [J]. International Journal of Heat and Mass Transfer, 2010, 53(17-18): 3387-3393. [200] Peinsitt T, Kuchar F, Hartlieb P, et al. Microwave heating of dry and water saturated basalt, granite and sandstone [J]. International Journal of Mining and Mineral Engineering, 2010, 2(1): 18-29. [201] Hartlieb P, Toifl M, Kuchar F, et al. Thermo-physical properties of selected hard rocks and their relation to microwave-assisted comminution [J]. Minerals Engineering, 2016, 91: 34-41. [202] 唐世斌, 唐春安, 朱万成, 等. 热应力作用下的岩石破裂过程分析 [J]. 岩石力学与工程学报, 2006, 25(10): 2071-2078. [203] Charikinya E, Bradshaw S, Becker M. Characterising and quantifying microwave induced damage in coarse sphalerite ore particles [J]. Minerals Engineering, 2015, 82: 14-24. [204] Nicco M, Holley E A, Hartlieb P, et al. Methods for characterizing cracks induced in rock [J]. Rock Mechanics and Rock Engineering, 2018, 51(7): 2075-2093. [205] Kang Y, Chen M, Chen Z, et al. Investigation of formation heat treatment to enhance the multiscale gas transport ability of shale [J]. Journal of Natural Gas Science and Engineering, 2016, 35: 265-275. [206] Mclimans R K. The application of fluid inclusions to migration of oil and diagenesis in petroleum reservoirs [J]. Applied Geochemistry, 1987, 2(5-6): 585-603. [207] Jayanthi J, Nandakumar V. Fluid inclusion studies to determine the paleotemperature and hydrocarbon quality in petroliferous basins [J]. Journal of Petroleum Science and Engineering, 2021, 197: 108082. [208] 林为人, 高桥学. 稻田花岗岩中的流体包裹体及由其导致高温条件下微小裂纹的形成 [J]. 岩石力学与工程学报, 2003, 22(6): 899-904. [209] Lin W. Permanent strain of thermal expansion and thermally induced microcracking in Inada granite [J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B10): ECV 3-1-ECV 3-16. [210] Wen S, Liu J, Deng J. Internal composition of mineral fluid inclusions [J]. Fluid Inclusion Effect in Flotation of Sulfide Minerals, 2021: 69-96. [211] Hascakir B, Akin S. Recovery of Turkish oil shales by electromagnetic heating and determination of the dielectric properties of oil shales by an analytical method [J]. Energy & Fuels, 2010, 24(1): 503-509. [212] Wang X, Morrison W, Du Z, et al. Biomass temperature profile development and its implications under the microwave-assisted pyrolysis condition [J]. Applied energy, 2012, 99: 386-392. [213] Mokhlisse A, Chanâa M B, Outzourhit A. Pyrolysis of the Moroccan (Tarfaya) oil shales under microwave irradiation [J]. Fuel, 2000, 79(7): 733-742. [214] Feng G, Kang Y, Meng T, et al. The influence of temperature on mode I fracture toughness and fracture characteristics of sandstone [J]. Rock Mechanics and Rock Engineering, 2017, 50(8): 2007-2019. [215] Atkinson C, Smelser R, Sanchez J. Combined mode fracture via the cracked Brazilian disk test [J]. International Journal of Fracture, 1982, 18(4): 279-291. [216] Li X, Zhang Z, Chen W, et al. Mode I and Mode II granite fractures after distinct thermal shock treatments [J]. Journal of Materials in Civil Engineering, 2019, 31(4): 06019001. [217] Dong S, Wang Y, Xia Y. Stress intensity factors for central cracked circular disk subjected to compression [J]. Engineering Fracture Mechanics, 2004, 71(7-8): 1135-1148. [218] Li H, Xiao X. An approach on the Mode-I fracture toughness anisotropy for materials with layered microstructures [J]. Engineering fracture mechanics, 1995, 52(4): 671-683. [219] 沈其韩. 推荐一个系统的矿物缩写表 [J]. 岩石矿物学杂志, 2009, 28(5): 495-500. [220] 衡帅, 杨春和, 郭印同, 等. 层理对页岩水力裂缝扩展的影响研究 [J]. 岩石力学与工程学报, 2015, (2): 228-237. [221] Wang H, Zhao F, Huang Z, et al. Experimental study of mode-I fracture toughness for layered shale based on two ISRM-suggested methods [J]. Rock Mechanics and Rock Engineering, 2017, 50(7): 1933-1939. [222] Suo Y, Chen Z, Rahman S. Experimental and Numerical investigation of Fracture Toughness of Anisotropic Shale Rocks; proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference, F, 2018 [C]. OnePetro. [223] 赵子江, 刘大安, 崔振东, et al. 半圆盘三点弯曲法测定页岩断裂韧度 (KIC) 的实验研究 [J]. Rock and Soil Mechanics, 2018, (s1): 258-266. [224] Dou F, Wang J, Zhang X, et al. Effect of joint parameters on fracturing behavior of shale in notched three-point-bending test based on discrete element model [J]. Engineering Fracture Mechanics, 2019, 205: 40-56. [225] 张向向. 层理页岩水/气压裂破裂机理与损伤演化规律研究 [D]. 徐州: 中国矿业大学, 2019. [226] Shi X, Yao W, Xia K, et al. Experimental study of the dynamic fracture toughness of anisotropic black shale using notched semi-circular bend specimens [J]. Engineering Fracture Mechanics, 2019, 205: 136-151. [227] Heng S, Li X, Liu X, et al. Experimental study on the mechanical properties of bedding planes in shale [J]. Journal of Natural Gas Science and Engineering, 2020, 76: 103161. [228] Zuo J, Lu J, Ghandriz R, et al. Mesoscale fracture behavior of Longmaxi outcrop shale with different bedding angles: Experimental and numerical investigations [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(2): 297-309. [229] Jia Y, Tang J, Lu Y, et al. Laboratory geomechanical and petrophysical characterization of Longmaxi shale properties in Lower Silurian Formation, China [J]. Marine and Petroleum Geology, 2021, 124: 104800. [230] Ren L, Xie H, Sun X, et al. Characterization of anisotropic fracture properties of Silurian Longmaxi shale [J]. Rock Mechanics and Rock Engineering, 2021, 54(2): 665-678. [231] Chandler M R, Meredith P G, Brantut N, et al. Fracture toughness anisotropy in shale [J]. Journal of Geophysical Research: Solid Earth, 2016, 121(3): 1706-1729. [232] Chandler M R, Fauchille A L, Kim H K, et al. Correlative optical and X‐ray imaging of strain evolution during double‐torsion fracture toughness measurements in shale [J]. Journal of Geophysical Research: Solid Earth, 2018, 123(12): 10517-10533. [233] Forbes Inskip N D, Meredith P G, Chandler M R, et al. Fracture properties of Nash Point shale as a function of orientation to bedding [J]. Journal of Geophysical Research: Solid Earth, 2018, 123(10): 8428-8444. [234] Jin Z, Li W, Jin C, et al. Anisotropic elastic, strength, and fracture properties of Marcellus shale [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 109: 124-137. [235] Schmidt R. Fracture mechanics of oil shale-unconfined fracture toughness, stress corrosion cracking, and tension test results; proceedings of the The 18th US Symposium on Rock Mechanics (USRMS), F, 1977 [C]. OnePetro. [236] 吕有厂. 层理性页岩断裂韧性的加载速率效应试验研究 [J]. 岩石力学与工程学报, 2018, 37(6): 1359-1370. [237] 范二平, 唐书恒, 张成龙, 等. 湘西北下古生界黑色页岩扫描电镜孔隙特征 [J]. 古地理学报, 2014, 16(1): 133-142. [238] Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores [J]. AAPG bulletin, 2012, 96(6): 1071-1098. [239] 张湘辉, 汪灵, 邓苗, 等. 升温速率对粘土矿物热效应特征的影响——以四川三台钙基膨润土为例 [J]. 矿物岩石, 2010, (2): 1-6. [240] 刘志国, 孙体昌, 高恩霞, 等. 蛇纹石矿物的高温相变对红土镍矿直接还原的影响 [J]. 中国有色金属学报, 2015, 25(5): 1332-1338. [241] 陆浩. 抚顺油页岩热解及催化热解研究 [D]. 抚顺: 辽宁石油化工大学, 2019. [242] Araújo J H d, Silva N F d, Acchar W, et al. Thermal decomposition of illite [J]. Materials Research, 2004, 7(2): 359-361. [243] 丁福臣, 王剑秋, 阮竹, 等. 油页岩压力热解的研究 [J]. 石油学报 (石油加工), 1991, 7(3): 75-81. [244] 王擎, 高瑞萌, 贾春霞, 等. 低温干馏过程中油砂沥青化学结构变化的研究 [J]. 东北电力大学学报, 2018, 38(1): 57-65. [245] 唐志礼, 王有强. 南海北部海域粘土矿物分布特征 [J]. 海洋学报, 1992, 14(1): 64-71. [246] 张淑德. 粘土矿物的差热分析 [J]. 河北陶瓷, 1981: 50-55. [247] 吴继光, 周汉文. 高岭土高温物相转变的微区动态实验研究 [J]. 非金属矿, 2008, 31(6): 10-12. [248] 宋功保, 张建洪. 海泡石的红外光谱研究 [J]. 矿物学报, 1998, 18(4): 525-532. [249] 魏存弟, 杨殿范, 李益, 等. 煅烧温度对高岭石相转变过程及 Si, Al 活性的影响 [J]. 矿物学报, 2005, 25(3): 197-202. [250] 何东升, 冯其明, 张国范, 等. 焙烧对伊利石在酸中溶解行为的影响 [J]. 中南大学学报(自然科学版), 2011, 42(6): 41-45. [251] 蔡序珩, 秦景燕, 郭献军, 等. 霞石与碱性长石在石英熔解过程中的比较 [J]. 玻璃与搪瓷, 1999, 27(5): 52-57. [252] 张遵忠, 顾连兴, 吴昌志, 等. 中天山东段尾亚印支早-中期石英闪长岩-陆内俯冲与原生下陆壳部分熔融 [J]. 地质学报, 2011, 85(9): 1420-1434. [253] Friedman H L. Pyrolysis of plastics in a high vacuum arc image furnace. II [J]. Journal of Applied Polymer Science, 1965, 9(3): 1005-1018. [254] Coats A W, Redfern J. Kinetic parameters from thermogravimetric data [J]. Nature, 1964, 201(4914): 68-69. [255] Burnham A K, Braun R L. Global kinetic analysis of complex materials [J]. Energy & Fuels, 1999, 13(1): 1-22. [256] Kissinger H E. Variation of peak temperature with heating rate in differential thermal analysis [J]. J Res Natl Bur Stand, 1956, 57(4): 217-221. [257] Kissinger H E. Reaction kinetics in differential thermal analysis [J]. Analytical chemistry, 1957, 29(11): 1702-1706. [258] Flynn J H, Wall L A. General treatment of the thermogravimetry of polymers [J]. Journal of research of the National Bureau of Standards Section A, Physics and chemistry, 1966, 70A(6): 487-523. [259] Ozawa T. Kinetic analysis of derivative curves in thermal analysis [J]. Journal of thermal analysis, 1970, 2(3): 301-324. [260] Vyazovkin S, Burnham A K, Favergeon L, et al. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics [J]. Thermochimica Acta, 2020, 689: 178597. [261] Wang Q, Sun B, Hu A, et al. Pyrolysis Characteristics of Huadian Oil Shales [J]. Oil Shale, 2007, 24(2): 147-157. [262] Li S, Qian J. Study of the pyrolysis of Maoming oil shale lumps [J]. Fuel, 1991, 70(12): 1371-1375. [263] Tiwari P, Deo M. Detailed kinetic analysis of oil shale pyrolysis TGA data [J]. AIChE Journal, 2012, 58(2): 505-515. [264] Al-Harahsheh M, Al-Ayed O, Robinson J, et al. Effect of demineralization and heating rate on the pyrolysis kinetics of Jordanian oil shales [J]. Fuel Processing Technology, 2011, 92(9): 1805-1811. [265] Sonibare O O, Ehinola O, Egashira R. Thermal and geochemical characterization of Lokpanta oil shales, Nigeria [J]. Energy conversion and management, 2005, 46(15-16): 2335-2344. [266] Ma Y, Zhou S, Li J, et al. Pyrolysis characteristics analysis of Chang-7 oil shale using thermal analysis and pyrolysis-gas chromatograph-mass spectrometry [J]. Energy Exploration & Exploitation, 2018, 36(5): 1006-1021. [267] 薛向欣, 李勇, 冯宗玉. 抚顺油页岩及其残渣的热解性能 [J]. 东北大学学报(自然科学版), 2008, 29(10): 1447-1449,1454. [268] Kök M, Pamir M. Non-isothermal pyrolysis and kinetics of oil shales [J]. Journal of thermal analysis and calorimetry, 1999, 56(2): 953-958. [269] Ballice L, Yüksel M, Saglam M, et al. Application of infrared spectroscopy to the classification of kerogen types and the thermogravimetrically derived pyrolysis kinetics of oil shales [J]. Fuel, 1995, 74(11): 1618-1623. [270] Sütcü H, Pışkın S. Pyrolysis kinetics of oil shale from Ulukisla, Turkey [J]. Oil Shale, 2009, 26(4): 491-499. [271] 郝亚茹. 生物质残渣热解动力学研究 [D]. 南京: 南京理工大学, 2013. [272] 董志浩. 煤炭地下气化覆岩高温损伤与评估研究 [D]. 徐州: 中国矿业大学, 2020. [273] Zhang J, Sun L, Zhang J, et al. Kinetic parameters estimation and reaction model modification for thermal degradation of Beizao oil shale based on thermogravimetric analysis coupled with deconvolution procedure [J]. Energy, 2021, 229: 120791. [274] Campbell J H, Gallegos G, Gregg M. Gas evolution during oil shale pyrolysis. 2. Kinetic and stoichiometric analysis [J]. Fuel, 1980, 59(10): 727-732. [275] Kök M V, Pamir M R. Comparative pyrolysis and combustion kinetics of oil shales [J]. Journal of Analytical and Applied Pyrolysis, 2000, 55(2): 185-194. [276] Mahanta B, Ranjith P, Vishal V, et al. Temperature-induced deformational responses and microstructural alteration of sandstone [J]. Journal of Petroleum Science and Engineering, 2020, 192: 107239. [277] Földvári M. Handbook of thermogravimetric system of minerals and its use in geological practice [M]. Hungary: Geological Institute of Hungary Budapest, 2011. [278] Siegesmund S, Snethlage R. Stone in architecture: properties, durability [M]. Germany: Springer, 2011. [279] You L, Kang Y, Chen Q, et al. Prospect of shale gas recovery enhancement by oxidation-induced rock burst [J]. Natural Gas Industry B, 2017, 4(6): 449-456. [280] Gai R, Jin L, Zhang J, et al. Effect of inherent and additional pyrite on the pyrolysis behavior of oil shale [J]. Journal of analytical and applied pyrolysis, 2014, 105: 342-347. [281] Cheng H, Liu Q, Huang M, et al. Application of TG-FTIR to study SO2 evolved during the thermal decomposition of coal-derived pyrite [J]. Thermochimica acta, 2013, 555: 1-6. [282] Warne S S J, Dubrawski J. Applications of thermal analysis methods to iron minerals in coal—a synthesis [J]. Thermochimica acta, 1990, 166: 337-341. [283] Labus M. Pyrite thermal decomposition in source rocks [J]. Fuel, 2021, 287: 119529. [284] Hu G, Dam-Johansen K, Wedel S, et al. Decomposition and oxidation of pyrite [J]. Progress in energy and combustion science, 2006, 32(3): 295-314. [285] Lambert J, Simkovich G, Walker P. The kinetics and mechanism of the pyrite-to-pyrrhotite transformation [J]. Metallurgical and materials transactions B, 1998, 29(2): 385-396. [286] Dunn J, Gong W, Shi D. A Fourier transform infrared study of the oxidation of pyrite [J]. Thermochimica acta, 1992, 208: 293-303. [287] Dunn J, Gong W, Shi D. A Fourier transform infrared study of the oxidation of pyrite: the influences of experimental variables [J]. Thermochimica acta, 1993, 215: 247-254. [288] De Las Heras C, De Vidales J M, Ferrer I, et al. Structural and microstructural features of pyrite FeS2− x thin films obtained by thermal sulfuration of iron [J]. Journal of materials research, 1996, 11(1): 211-220. [289] Meng L, Liu M. Thin pyrite (FeS2) films prepared by thermal-sulfurating iron films at various temperatures [J]. Materials Science and Engineering: B, 1999, 60(3): 168-172. [290] Meng L, Liu Y, Huang W. Synthesis of pyrite thin films obtained by thermal-sulfurating iron films at different sulfur atmosphere pressure [J]. Materials Science and Engineering: B, 2002, 90(1-2): 84-89. [291] Meng L, Liu Y, Tian L. Evolutions of structure, composition and optical absorption behavior of pyrite films formed by sulfurating iron [J]. Materials research bulletin, 2003, 38(6): 941-948. [292] Aylmore M G, Lincoln F J. Mechanochemical milling-induced reactions between gases and sulfide minerals: I. Reactions of SO2 with arsenopyrite, pyrrhotite and pyrite [J]. Journal of alloys and compounds, 2000, 309(1-2): 61-74. [293] Aylmore M G, Lincoln F J. Mechanochemical milling-induced reactions between gases and sulfide minerals: II. Reactions of CO2 with arsenopyrite, pyrrhotite and pyrite [J]. Journal of Alloys and Compounds, 2001, 314(1-2): 103-113. [294] Lv W, Yu D, Wu J, et al. The chemical role of CO2 in pyrite thermal decomposition [J]. Proceedings of the Combustion Institute, 2015, 35(3): 3637-3644. [295] Ferrer I, Sanchez C. Characterization of FeS2 thin films prepared by thermal sulfidation of flash evaporated iron [J]. Journal of applied physics, 1991, 70(5): 2641-2647. [296] Jorgensen F, Moyle F. Phases formed during the thermal analysis of pyrite in air [J]. Journal of Thermal Analysis and Calorimetry, 1982, 25(2): 473-485. [297] Zhao S, Lü X, Sun Y, et al. Thermodynamic mechanism evaluate the feasibility of oil shale pyrolysis by topochemical heat [J]. Scientific Reports, 2021, 11(1): 1-15. [298] Yan J, Jiang X, Han X, et al. A TG–FTIR investigation to the catalytic effect of mineral matrix in oil shale on the pyrolysis and combustion of kerogen [J]. Fuel, 2013, 104: 307-317. [299] Chen W, Zhou Y, Yang L, et al. Experimental study of low-temperature combustion characteristics of shale rocks [J]. Combustion and Flame, 2018, 194: 285-295.
﹀
|
中图分类号: |
TD745
|
开放日期: |
2022-06-22
|