- 无标题文档
查看论文信息

论文中文题名:

 高瓦斯低透煤层水力割缝增流抽采技术及工程实践    

姓名:

 卫昱    

学号:

 19220214056    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 矿井瓦斯灾害防治    

第一导师姓名:

 林海飞    

第一导师单位:

 西安科技大学    

第二导师姓名:

 丁洋    

论文提交日期:

 2022-06-17    

论文答辩日期:

 2022-06-01    

论文外文题名:

 Technology and engineering practice of high gas and low permeability coal seam drainage with hydraulic slit    

论文中文关键词:

 水力割缝 ; 穿层钻孔 ; 低透煤层 ; 高瓦斯煤层 ; 卸压增透    

论文外文关键词:

 Hydraulic slotting ; Crossing hole ; low permeability coal seam ; high gassy coal seam ; Pressure relief antireflective    

论文中文摘要:

我国煤炭开发已逐渐进入深部阶段,“三高一低”特点越来越突出,尤其低渗透性,采用常规瓦斯抽采手段效率较低,需要进行增透煤层瓦斯抽采。水力割缝技术作为一种高效增透技术被广泛采用。然而,在水力割缝中不同煤质、不同层高煤层如何设置合理的割缝参数、布置方式尤为重要。为解决这一问题,论文通过数值模拟分析了不同水射流参数破煤深度,研究了不同割缝参数卸压增透效果,开展了水力割缝工程实践,研究了适合于目标煤层的合理割缝工艺参数及工艺流程。

针对不同割缝参数水射流破煤深度问题,提出不同驱动水压、喷嘴直径水射流破煤深度预测模型。通过Fluent数值模拟软件,建立气—液两相流模型,模拟了不同驱动水压、喷嘴直径水射流速度场,通过准静态破岩模型得到不同参数水射流破煤深度,进一步确定出水力割缝使用的驱动水压、喷嘴直径。

通过FLAC3D数值模拟,利用单一控制变量法及响应面试验方法,研究不同缝槽直径、钻孔倾角对煤体卸压影响规律,分析缝槽对煤体卸压的力学机制。分析缝槽直径、宽度及钻孔倾角对于煤体卸压范围的交互影响,确定最佳缝槽参数及钻孔间距。

确定了水力割缝增透煤层现场试验方案和设备选型,试验过程中收集时段出煤量数据,研究不同喷嘴直径、水压、割缝时间对割缝出煤量的影响,确定了不同割缝水压、喷嘴直径条件下的破煤深度,分析了水力割缝抽采瓦斯效果及防突效果。试验结果表明,使用设置的割缝参数进行水力割缝后,水力割缝钻孔瓦斯抽采纯量提高了3.5~9.5倍,掘进工作面瓦斯浓度最大值下降40%以上。瓦斯抽采效率明显提升,现场消突效果良好,缩短了煤层瓦斯预抽时间,为工作面瓦斯防治提供了一定理论依据及工程实践参考。

论文外文摘要:

China's coal development has gradually entered the deep stage, the characteristics of "three high and one low" are more and more prominent, especially the low permeability, the efficiency of conventional gas extraction means is low, it is necessary to carry out anti-reflection coal seam gas extraction. Hydraulic slotting technology is widely used as an efficient anti-reflection technology. However, how to set reasonable seam parameters and arrangement mode is particularly important for different coal quality and different layer coal seams in hydraulic seam cutting. In order to solve this problem, the paper analyzed the coal breaking depth with different water jet parameters through numerical simulation, studied the effect of pressure relief and reflection improvement with different slit parameters, carried out hydraulic slit engineering practice, and studied the reasonable slit parameters and process flow suitable for the target coal seam.

Aiming at the coal breaking depth of water jet with different slit parameters, a prediction model for coal breaking depth of water jet with different driving pressure and nozzle diameter was proposed. The gas-liquid two-phase flow model was established by Fluent numerical simulation software, and the velocity field of water jet with different driving water pressure and nozzle diameter was simulated. The coal breaking depth of water jet with different parameters was obtained by quasi-static rock breaking model, and the driving water pressure and nozzle diameter used for hydraulic cutting were further determined.

Through FLAC3D numerical simulation, single control variable method and response surface test method, the influence law of different slot diameters and drilling inclination Angle on coal pressure relief was studied, and the mechanical mechanism of slot pressure relief was analyzed. The interaction effects of slot diameter, width and drilling Angle on coal pressure relief range are analyzed, and the optimum slot parameters and drilling spacing are determined.

Determine the hydraulic slotted anti-reflection coal field testing scheme and equipment type selection, test process in the coal quantity data collection period, different nozzle diameter, water pressure, slotted time slot on the influence of coal, identified the different slot depth of water pressure, nozzle diameter under the condition of the coal, analyses the hydraulic cutting seam extraction gas effect and the outburst prevention effect. The test results show that the pure gas extraction amount of hydraulic slit drilling increases by 3.5~9.5 times, and the maximum gas concentration of driving face decreases by more than 40% after hydraulic slit is used. The gas extraction efficiency is obviously improved, the effect of on-site outburst elimination is good, and the pre-extraction time of coal seam gas is shortened, which provides a certain theoretical basis and engineering practice reference for gas prevention and control in working face.

参考文献:

[1] 谢和平, 任世华, 谢亚辰, 等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报, 2021, 46(07): 2197-2211.

[2] 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报, 2016, 41(1): 1-6.

[3] 尹忠昌, 宋俊生, 胡少银, 等. 坚硬顶板切缝药包深孔预裂松动爆破技术研究[J]. 矿业科学学报, 2021, 6(06): 696-702.

[4] 韦善阳, 孙威, 苗青, 等. 液态CO_2相变致裂技术在金佳煤矿的应用[J]. 煤炭科学技术, 2019, 47(02): 94-100.

[5] 曾义金, 周俊, 王海涛, 等. 深层页岩真三轴变排量水力压裂物理模拟研究[J]. 岩石力学与工程学报, 2019, 38(09): 1758-1766.

[6] 曹佐勇, 王恩元, 何学秋, 等. 近距离突出煤层群水力冲孔卸压瓦斯抽采及效果评价研究[J]. 采矿与安全工程学报, 2021, 38(03): 634-642.

[7] 张永将, 黄振飞, 季飞. 基于水力割缝卸压的煤岩与瓦斯动力灾害防控技术[J]. 煤炭科学技术, 2021, 49(04): 133-141.

[8] 姜文忠. 低渗透煤层高压旋转水射流割缝增透技术及应用研究[D]. 中国矿业大学, 2009.

[9] 廖华林, 李根生, 易灿. 水射流作用下岩石破碎理论研究进展[J]. 金属矿山, 2005(07): 1-5+66.

[10] 司鹄, 王丹丹, 李晓红. 高压水射流破岩应力波效应的数值模拟[J]. 重庆大学学报, 2008, 31(08): 942-945+950.

[11] XIAO S, REN Q, GUAN R, et al. Theoretical and experimental investigation on fracture response of coal impacted by high-velocity water jet[J]. Energy Reports, 2021, 07: 3210-3224.

[12] 廖华林, 李根生, 牛继磊. 淹没条件下超高压水射流破岩影响因素与机制分析[J]. 岩石力学与工程学报, 2008, 27(06): 1243-1250.

[13] 穆朝民, 王海露. 煤体在高压水射流作用下的损伤机制[J]. 岩土力学, 2013, 34(05): 1515-1520.

[14] 穆朝民, 吴阳阳. 高压水射流冲击下煤体破碎强度的确定[J]. 应用力学学报, 2013, 30(03): 451-456+481-482.

[15] 李根生, 廖华林, 黄中伟, 等. 超高压水射流作用下岩石损伤破碎机理[J]. 机械工程学报, 2009, 45(10): 284-293.

[16] 常宗旭, 郤保平, 赵阳升, 等. 煤岩体水射流破碎机理[J]. 煤炭学报, 2008, 33(09): 983-987.

[17] 张建国. 高压水射流割缝揭穿煤层关键参数研究[J]. 重庆大学学报, 2011, 34(11): 117-121.

[18] 黄飞, 卢义玉, 刘小川, 等. 高压水射流冲击作用下横观各向同性岩石破碎机制[J]. 岩石力学与工程学报, 2014, 33(07): 1329-1335.

[19] 蒋一峰, 杜锋, 刘昂, 等. 高压水射流破碎煤体过程及应力变化规律的数值分析[J]. 矿业安全与环保, 2018, 45(04): 1-5+11.

[20] 沈春明, 汪东, 张浪, 等. 水射流切槽诱导高瓦斯煤体失稳喷出机制与应用[J]. 煤炭学报, 2015, 40(09): 2097-2104.

[21] ZHAO J, GUO D. Cracking mechanism of coal under high-pressure water jet and its applications for enhanced coalbed methane drainage[J]. Arabian Journal of Geosciences, 2018, 11(15): 427.

[22] WANG W, LU S, LI M, et al. Coal breakage impact by high-pressure water jet and induced pressure relief and permeability enhancement by hydraulic flushing cavity: mechanism and application[J]. Arabian Journal of Geosciences, 2021, 14(22): 2399.

[23] 周东平, 卢义玉, 康勇, 等. 磨料射流割缝技术防突机理及应用[J]. 重庆大学学报, 2010, 33(07): 86-90.

[24] XIAO S, REN Q, CHENG Y, et al. Damage and fracture characteristics of rocks with different structures under high-velocity water jet impact[J]. Engineering Fracture Mechanics, 2021, 256: 107961.

[25] GE Z, CAO S, LU Y, et al. Fracture mechanism and damage characteristics of coal subjected to a water jet under different triaxial stress conditions[J]. Journal of Petroleum Science and Engineering, 2022, 208: 1-15.

[26] 穆朝民, 韩靖. 高压水射流冲击煤体的力学特征[J]. 爆炸与冲击, 2015, 35(03): 442-448.

[27] 张永将, 黄振飞, 季飞. 基于水力割缝卸压的煤岩与瓦斯动力灾害防控技术[J]. 煤炭科学技术, 2021, 49(04): 133-141.

[28] 沈春明, 林柏泉, 王维华, 等. 水力切槽高瓦斯煤体失稳发生机制与试验分析[J]. 岩石力学与工程学报, 2019, 38(10): 1979-1988.

[29] 林柏泉, 孟凡伟, 张海宾. 基于区域瓦斯治理的钻割抽一体化技术及应用[J]. 煤炭学报, 2011, 36(01): 75-79.

[30] 张占国, 张锋. 超高压水力割缝技术在低渗透特厚煤层中的应用[J]. 能源与环保, 2018, 40(11): 90-93.

[31] 宋维源, 王忠峰, 唐巨鹏. 水力割缝增透抽采煤层瓦斯原理及应用[J]. 中国安全科学学报, 2011, 21(04): 78-82.

[32] ZHANG H, CHENG Y, LIU Q, et al. A novel in-seam borehole hydraulic flushing gas extraction technology in the heading face: Enhanced permeability mechanism, gas flow characteristics, and application[J]. Journal of Natural Gas Science and Engineering, 2017, 46: 498-514.

[33] GAO Y, LIN B, YANG W, et al. Drilling large diameter cross-measure boreholes to improve gas drainage in highly gassy soft coal seams[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 193-204.

[34] SHEN C, LIN B, SUN C, et al. Analysis of the stress–permeability coupling property in water jet slotting coal and its impact on methane drainage[J]. Journal of Petroleum Science and Engineering, 2015, 126: 231-241.

[35] 葛兆龙, 周哲, 卢义玉, 等. 影响自激振荡脉冲射流性能的喷嘴结构参数研究[J]. 四川大学学报(工程科学版), 2013, 5(05): 160-165.

[36] 沈春明, 林柏泉, 吴海进. 高压水射流割缝及其对煤体透气性的影响[J]. 煤炭学报, 2011, 36(12): 2058-2063.

[37] ZOU Q, LIN B, LIANG J, et al. Variation in the Pore Structure of Coal after Hydraulic Slotting and Gas Drainage[J]. Adsorption Science & Technology, 2014, 32(08): 647-666.

[38] 林柏泉, 张其智, 沈春明, 等. 钻孔割缝网络化增透机制及其在底板穿层钻孔瓦斯抽采中的应用[J]. 煤炭学报, 2012, 37(09): 1425-1430.

[39] 卢义玉, 贾亚杰, 葛兆龙, 等. 割缝后煤层瓦斯的流-固耦合模型及应用[J]. 中国矿业大学学报, 2014, 43(01): 23-29.

[40] 赵东, 冯增朝, 赵阳升. 高压注水对煤体瓦斯解吸特性影响的试验研究[J]. 岩石力学与工程学报, 2011, 30(03): 547-555.

[41] ZOU Q le, LIN B quan, LIU T, et al. Variation of methane adsorption property of coal after the treatment of hydraulic slotting and methane pre-drainage: A case study[J]. Journal of Natural Gas Science and Engineering, 2014, 20: 396-406.

[42] WIERZBICKI M, SKOCZYLAS N. The Outburst Risk as a Function of the Methane Capacity and Firmness of a Coal Seam[J]. Archives of Mining Sciences, 2014, 59(4): 1023-1031.

[43] 袁波, 康勇, 李晓红, 等. 煤层水力割缝系统性能瞬变特性研究[J]. 煤炭学报, 2013, 38(12): 2153-2157.

[44] 卢义玉, 张磊, 葛兆龙, 等. 煤层割缝器用双梯度喷嘴结构设计与优化[J]. 重庆大学学报, 2014, 37(01): 84-90.

[45] 蔡毅, 苏国兵. 高压水射流流线型喷嘴正交试验与仿真研究[J]. 煤炭技术, 2017, 36(12): 299-302.

[46] 谢成雨, 蔡毅, 云丹丹, 等. 高压水射流喷嘴设计仿真研究[J]. 煤矿机械, 2016, 37(08): 6-9.

[47] 韩启龙, 马洋. 喷嘴结构对高压水射流影响及结构参数优化设计[J]. 国防科技大学学报, 2016, 38(03): 68-74.

[48] 姜文忠, 李保东, 王耀锋, 等. 非淹没高压旋转水射流喷嘴割缝参数试验研究[J]. 煤矿安全, 2009, 40(10): 1-3.

[49] 徐幼平, 林柏泉, 朱传杰, 等. 钻割一体化水力割煤磨料动态特征及参数优化[J]. 采矿与安全工程学报, 2011, 28(04): 623-627.

[50] 林柏泉, 孟凡伟, 张海宾. 基于区域瓦斯治理的钻割抽一体化技术及应用[J]. 煤炭学报, 2011, 36(01): 75-79.

[51] 张永将, 孟贤正, 季飞. 顺层长钻孔超高压水力割缝增透技术研究与应用[J]. 矿业安全与环保, 2018, 45(05): 1-5+11.

[52] 张永将, 陆占金. 超高压水力割缝煤层增透成套装置研制及应用[J]. 煤炭科学技术, 2020, 48(10): 97-104.

[53] 刘生龙, 周玉竹, 邱居德, 等. 超高压水力割缝在坚硬突出煤层石门揭煤预抽瓦斯防突措施中的应用[J]. 矿业安全与环保, 2017, 44(05): 64-67.

[54] 邹全乐, 林柏泉, 郑春山, 等. 基于响应面法的钻割一体化喷嘴稳健性优化[J]. 中国矿业大学学报, 2013, 42(06): 905-910.

[55] 黄春明, 代志旭, 郭明功. 高压水射流割缝增强瓦斯抽采及防喷孔技术研究[J]. 煤炭科学技术, 2015, 43(04): 63-66+109.

[56] 郑春山. 穿层钻孔煤或瓦斯喷出机理及防治关键技术研究[D]. 中国矿业大学, 2014.

[57] 郑春山, 林柏泉, 杨威, 等. 水力割缝钻孔喷孔机制及割缝方式的影响[J]. 煤矿安全, 2014, 45(01): 5-8+12.

[58] 陆占金, 乔伟. 超高压水力割缝精准控制技术应用及效果分析[J]. 矿业安全与环保, 2020, 47(03): 87-91.

[59] 吕贵春. 水力割缝在石门揭煤预抽煤层瓦斯区域防突措施中的应用[J]. 矿业安全与环保, 2013, 40(04): 79-82.

[60] 李晓红, 杨林, 王建生, 等. 自激振荡脉冲射流装置的固有频率特性[J]. 煤炭学报, 2000, 25(06): 641-644.

[61] 李晓红, 卢义玉, 赵瑜, 等. 高压脉冲水射流提高松软煤层透气性的研究[J]. 煤炭学报, 2008, 33(12): 1386-1390.

[62] 倪红坚, 王瑞和, 韩来聚, 等. 高压水射流破岩比能演化机理研究[J]. 石油钻探技术, 2004(01): 14-16.

[63] 卢义玉, 葛兆龙, 李晓红, 等. 脉冲射流割缝技术在石门揭煤中的应用研究[J]. 中国矿业大学学报, 2010, 39(01): 55-58+69.

[64] LIN B, SHEN C. Coal permeability-improving mechanism of multilevel slotting by water jet and application in coal mine gas extraction[J]. Environmental Earth Sciences, 2015, 73(10): 5975-5986.

[65] 林柏泉, 吕有厂, 李宝玉, 等. 高压磨料射流割缝技术及其在防突工程中的应用[J]. 煤炭学报, 2007, 32(09): 959-963.

[66] ZHANG X, WIŚNIEWSKI P, DYKAS S, et al. Permeability Enhancement Properties of High-Pressure Abrasive Water Jet Flushing and Its Application in a Soft Coal Seam[J]. Frontiers in Energy Research, 2021, 9: 679623.

[67] SELVAN M C P. Effects of Process Parameters on Depth of Cut in Abrasive Waterjet Cutting of Cast Iron[J]. 2011, 2(09): 5.

[68] PATEL D, TANDON P. Experimental investigations of gelatin-enabled abrasive water slurry jet machining[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(1-4): 1193-1208.

[69] YUVARAJ N, PRADEEP KUMAR M. Study and evaluation of abrasive water jet cutting performance on AA5083-H32 aluminum alloy by varying the jet impingement angles with different abrasive mesh sizes[J]. Machining Science and Technology, 2017, 21(03): 385-415.

[70] 卢义玉, 冯欣艳, 李晓红, 等. 高压空化水射流破碎岩石的试验分析[J]. 重庆大学学报(自然科学版), 2006, 29(05): 88-91+103.

[71] 葛兆龙, 卢义玉, 周东平, 等. 空化水射流声震效应促进瓦斯解吸实验的规律及机理研究[J]. 煤炭学报, 2011, 36(07): 1150-1155.

[72] 曹建军. 超高压水力割缝卸压抽采区域防突技术应用研究[J]. 煤炭科学技术, 2020, 48(06): 88-94.

[73] 陈树亮, 黄炳香, 李丁, 等. 煤岩体高压磨料水力割缝基本规律的试验研究[J]. 采矿与岩层控制工程学报, 2020, 2(04): 90-96.

[74] FOWLER G, SHIPWAY P H, PASHBY I R. A technical note on grit embedment following abrasive water-jet milling of a titanium alloy[J]. Journal of Materials Processing Technology, 2005, 159(03): 356-368.

[75] 李生舟, 乔伟, 王建. 深部突出煤层超高压水射流割缝工艺参数研究与应用[J]. 矿业安全与环保, 2020, 47(04): 57-61.

[76] 杨腾龙, 王兆丰, 陈金生, 等. 淹没条件对连续射流破碎含瓦斯煤效率影响研究[J]. 中国安全生产科学技术, 2019, 15(01): 100-106.

[77] 王正帅. 碎软煤层顺层钻孔水力割缝增透技术研究[J]. 煤炭科学技术, 2019, 47(08): 147-151.

[78] 吴海进, 林柏泉, 杨威, 等. 初始应力对缝槽卸压效果影响的数值分析[J]. 采矿与安全工程学报, 2009, 26(02): 194-197.

[79] 杜春志, 刘卫群. 煤层钻孔卸压效果影响因素分析[J]. 河北理工大学学报(自然科学版), 2009, 31(04): 6-10.

[80] KONG X, WANG E, LIU X, et al. Coupled analysis about multi-factors to the effective influence radius of hydraulic flushing: Application of response surface methodology[J]. Journal of Natural Gas Science and Engineering, 2016, 32: 538-548.

[81] GAO F, XUE Y, GAO Y, et al. Fully coupled thermo-hydro-mechanical model for extraction of coal seam gas with slotted boreholes[J]. Journal of Natural Gas Science and Engineering, 2016, 31: 226-235.

[82] LU T kan, ZHOU T yang, YU H. Gas drainage efficiency improvement by increasing coalbed permeability using waterjet cutting system[J]. Journal of Coal Science and Engineering (China), 2010, 16(02): 150-156.

[83] 林柏泉, 刘厅, 邹全乐, 等. 割缝扰动区裂纹扩展模式及能量演化规律[J]. 煤炭学报, 2015, 40(04): 719-727.

[84] 刘生龙, 朱传杰, 林柏泉, 等. 水力割缝空间分布模式对煤层卸压增透的作用规律[J]. 采矿与安全工程学报, 2020, 37(05): 983-990.

[85] 沈春明, 林柏泉, 刘厅, 等. 切槽煤岩试样裂纹扩展颗粒流分析[J]. 煤炭科学技术, 2018, 46(07): 87-92.

[86] BAI-QUAN L, TING L, QUAN-LE Z, et al. Crack propagation patterns and energy evolution rules of coal within slotting disturbed zone under various lateral pressure coefficients[J]. Arabian Journal of Geosciences, 2015, 8(09): 6643-6654.

[87] LIU T, LIN B, ZOU Q, et al. Investigation on mechanical properties and damage evolution of coal after hydraulic slotting[J]. Journal of Natural Gas Science and Engineering, 2015, 24: 489-499.

[88] 林柏泉, 杨威, 吴海进, 等. 影响割缝钻孔卸压效果因素的数值分析[J]. 中国矿业大学学报, 2010, 39(02): 153-157.

[89] 张帅, 刘志伟, 韩承强, 等. 高突低渗透煤层超高压水力割缝卸压增透研究[J]. 煤炭科学技术, 2019, 47(04): 147-151.

[90] 唐巨鹏, 杨森林, 李利萍. 多重水力割缝下煤层气储层卸压数值模拟[J]. 水资源与水工程学报, 2012, 23(02): 33-36.

[91] 孙振敏. 穿层割缝钻孔对煤体卸压增透效应的研究与应用[J]. 矿业安全与环保, 2019, 46(05): 75-79+84.

[92] DONG J, CHENG Y, JIN K, et al. Effects of diffusion and suction negative pressure on coalbed methane extraction and a new measure to increase the methane utilization rate[J]. Fuel, 2017, 197: 70-81.

[93] 刘斌. Fluent 19.0流体仿真从入门到精通[M]. 北京: 清华大学出版社, 2019.

[94] 孙振敏. 穿层割缝钻孔对煤体卸压增透效应的研究与应用[J]. 矿业安全与环保, 2019, 46(05): 75-79+84.

[95] 郭君. 低透气性松软煤层高压水力割缝增透机理研究及应用[D]. 北京科技大学, 2019.

[96] 闫波. 高瓦斯低透气性煤层超高压水力割缝强化增透技术研究[D]. 中国矿业大学, 2019.

[97] 张帅, 刘志伟, 韩承强, 等. 高突低渗透煤层超高压水力割缝卸压增透研究[J]. 煤炭科学技术, 2019, 47(04): 147-151.

[98] 顾北方. 高压水射流割缝煤体损伤演化规律研究与应用[D]. 中国矿业大学(北京), 2016.

中图分类号:

 TD712    

开放日期:

 2022-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式