- 无标题文档
查看论文信息

论文中文题名:

 钛酸铋钠基多孔陶瓷结构与压电性能研究    

姓名:

 冯丹妮    

学号:

 19211025015    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080502    

学科名称:

 工学 - 材料科学与工程 - 材料学    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料学    

研究方向:

 能量转换材料及应用    

第一导师姓名:

 杜慧玲    

第一导师单位:

  西安科技大学    

论文提交日期:

 2022-06-16    

论文答辩日期:

 2022-06-02    

论文外文题名:

 Study on Structure and Piezoelectric Properties of Bismuth Sodium Titanate Based Porous Ceramics    

论文中文关键词:

 多孔压电陶瓷 ; 钛酸铋钠 ; 介电性能 ; 压电性能 ; 谐响应特性    

论文外文关键词:

 Porous piezoelectric ceramics ; Bismuth sodium titanate ; Dielectric properties ; Piezoelectric properties ; Harmonic response characteristics    

论文中文摘要:

       环境友好型钛酸铋钠Na0.5Bi0.5TiO3(NBT)基无铅压电陶瓷具有优异的介电压电性能以及良好的机电耦合性能。通过调控材料的晶粒尺度和形态结构,提升材料性能并拓展其应用领域,是功能材料研发应用的主要方法。压电陶瓷多孔化有助于降低声阻抗、调制压电谐响应,提升力电耦合转化特性,有望拓展多孔压电陶瓷在水声换能器等力电耦合器件中的应用。本论文优选造孔剂制备0.94Na0.5Bi0.5TiO3-0.06BaTiO3(NBT-BT)多孔陶瓷材料,探索多孔结构对其微结构及介电、压电性能的影响规律。

      首先,本论文优选花粉、糊精为造孔剂分别制备出微纳孔结构特征的NBT-BT多孔陶瓷。以花粉为造孔剂制备了具有长球形孔结构的多孔陶瓷,孔隙率在10.3~43.6%之间。以糊精为造孔剂制备了具有椭球形孔结构的多孔陶瓷,孔隙率在5.4~13.3%之间。相比于椭球形气孔结构,长球形孔结构对NBT-BT多孔压电陶瓷的性能影响更为显著,介电常数和压电系数显著降低,声学性能显著改善,多孔陶瓷的静水压优值更大,声阻抗更小。

       其次,优选稀土元素Sm作为掺杂剂,采用固相反应法制备了多孔[Smx(Bi0.5Na0.5)1-3x/2]0.94Ba0.06TiO3 (BNBT6-xSm)压电陶瓷。研究Sm掺杂对NBT-BT压电陶瓷晶粒尺寸、介电性能、压电性能以及谐响应特性的影响。研究发现适量的Sm掺杂可以降低NBT-BT陶瓷的矫顽场,提高剩余极化强度、场致应变和压电常数,增加铁电弛豫行为的程度。利用多孔BNBT6-xSm压电陶瓷设计优化薄圆片振子几何构型(厚度h=0.6 mm,直径d=13.2~14.1 mm),可激发出垂直于激发电场的长度伸缩振动模态(LE模),可用于复杂振动环境下压电谐振器件主体材料。

       最后,通过海藻酸钠离子凝胶法制备直通孔NBT-BT压电陶瓷,研究直通孔结构对其压电性能及压电谐响应特性的影响。为进一步预测多孔材料及其器件的力电参数,探究在耦合过程中的基本谐振特性,基于有限元法进行压电振子的几何建模与振动模态优化分析。压电参数测量结果与模型预测结果基本一致,可对该体系材料的宏观性能进一步优化、预测与评价,为多孔无铅压电陶瓷在力电耦合器件等领域的应用开发提供指导。

论文外文摘要:

     Environmentl-friendly Na0.5Bi0.5TiO3 (NBT)-based ceramics have excellent dielectric, piezoelectric properties and good electromechanical coupling properties. It is the main method for the development and application of functional materials to improve material properties and expand its application fields by regulating the grain size and morphology of materials. Porous piezoelectric ceramics help to reduce the acoustic impedance, modulate the piezoelectric harmonic response, and improve the electro-mechanical coupling conversion characteristics. It is expected to expand the application of porous piezoelectric ceramics in electro-mechanical coupling devices such as underwater acoustic transducers. In this paper, 0.94Na0.5Bi0.5TiO3-0.06BaTiO3(NBT-BT) porous ceramics were prepared by pore-forming agent, and the effects of porous structure on microstructure, dielectric and piezoelectric properties were investigated.

     Firstly, pollen and dextrin were selected as pore-forming agents to prepare NBT-BT porous ceramics with micro-nano porous structure characteristics in this paper. Porous ceramics with long spherical pore structure were prepared by using pollen as pore-forming agent with porosity of 10.3~43.6%. Porous ceramics with ellipsoidal pore structure were prepared with dextrin as pore-forming agent, and the porosity was 5.4~13.3%. The effect of long spherical pore structure on the properties of NBT-BT porous piezoelectric ceramics is more obvious than that of ellipsoidal pore structure. The dielectric constant and piezoelectric coefficient are significantly reduced, and the acoustic performance is significantly improved. The hydrostatic optimal value of porous ceramics is larger, and the acoustic impedance is smaller.

     Secondly, rare earth Sm was selected as dopant and porous [Smx(Bi0.5Na0.5)1-3x/2]0.94Ba0.06TiO3 (BNBT6-xSm) piezoelectric ceramics were prepared by solid-state reaction method. The effects of Sm doping on the grain size, dielectric and piezoelectric properties and harmonic response characteristics of NBT-BT piezoelectric ceramics were studied. It is found that appropriate Sm3+ doping can reduce the coercive field of NBT-BT ceramics, increase the residual polarization strength, field-induced strain and piezoelectric constant, and increase the degree of ferroelectric relaxation behavior. The geometrical configuration (thickness h=0.6 mm, diameter d=13.2~14.1 mm) of the thin circular resonator is optimized by using porous BNBT6-xSm piezoelectric ceramics, which can excite the length stretching vibration mode (LE mode) perpendicular to the excitation electric field and can be used as the main material of piezoelectric resonant devices in complex vibration environment.

     Finally, the direct-hole NBT-BT piezoelectric ceramics were prepared by sodium alginate ion gel method, and the influence of the direct-hole structure on the piezoelectric properties and piezoelectric harmonic response characteristics was studied. In order to further predict the mechanical and electrical parameters of porous materials and devices and explore the basic resonance characteristics in the coupling process, the geometric modeling and vibration modal optimization analysis of piezoelectric vibrator are carried out based on finite element method. The measurement results of piezoelectric parameters are basically consistent with the prediction results of the model, which can further optimize, predict and evaluate the macroscopic properties of the system materials, and provide guidance for the application and development of porous lead-free piezoelectric ceramics in the fields of electro-mechanical coupling devices.

参考文献:

[1]Maeda K, Fujii I, Nakashima K, et al. Preparation of barium titanate porous ceramics and their sensor properties[J]. Journal of the Ceramic Society of Japan, 2013, 121(1416): 698-701.

[2]Giannakoudakis D A, Barczak M, Pearsall F, et al. Composite porous carbon textile with deposited barium titanate nanospheres as wearable protection medium against toxic vapors[J]. Chemical Engineering Journal, 2020, 384: 123280.

[3]Xu T, Wang C, Guo R. Microstructure and Electrical Properties of Porous PZT Ceramics with Unidirectional Pore Channel Structure Fabricated by Freeze-Casting[J]. Key Engineering Materials, 2012, 512-515: 1347-1350.

[4]Tripathy A, Pramanik S, Manna A, et al. Uniformly porous nanocrystalline CaMgFe1.33Ti3O12 ceramic derived electro-ceramic nanocomposite for impedance type humidity sensor[J]. Sensors, 2016, 16(12): 2029.

[5]Coondoo I, Panwar N, Kholkin A. Lead-free piezoelectrics: Current status and perspectives[J]. Journal of advanced dielectrics, 2013, 3(02): 1330002.

[6]Rödel J, Webber K G, Dittmer R, et al. Transferring lead-free piezoelectric ceramics into application[J]. Journal of the European Ceramic Society, 2015, 35(6): 1659-1681.

[7]Feng D, Du H, Ran H, et al. Antiferroelectric stability and energy storage properties of Co-doped AgNbO3 ceramics[J]. Journal of Solid State Chemistry, 2022, 310: 123081.

[8]刘霄,徐小敏,杜慧玲.A/B位双取代钛酸铋钠基压电陶瓷性能研究[J].无机材料学报,2018,33(06):683-687.

[9]Dittmer R, Jo W, Rödel J, et al. Nanoscale insight into lead-free BNT-BT-xKNN[J]. Advanced Functional Materials, 2012, 22(20): 4208-4215.

[10]Zhang S T, Kounga A B, Aulbach E, et al. Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system[J]. Applied Physics Letters, 2007, 91(11): 112906.

[11]李环亭,孙晓红,陈志伟.压电陶瓷材料的研究进展与发展趋势[J].现代技术陶瓷,2009,30(2):28-32.

[12]Yan M, Xiao Z, Ye J, et al. Porous ferroelectric materials for energy technologies: current status and future perspectives[J]. Energy & Environmental Science, 2021.

[13]Sun H, Cantalini C, Pelino M. Porosification Effect on Electroceramic Properties[J]. Key Engineering Materials. Trans Tech Publications Ltd, 1996, 115: 167-180.

[14]Yap E, Glaum J, Oddershede J, et al. Effect of porosity on the ferroelectric and piezoelectric properties of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 piezoelectric ceramics[J]. Scripta Materialia, 2018, 145: 122-125.

[15]Martinez T, Pillonnet G, Loyau V, et al. A transverse traveling wave piezoelectric transformer[J]. Smart Materials and Structures, 2019, 28(7): 075012.

[16]干勇,新材料技术是一个底盘技术,中国纪检监察报,2020.81.7.

[17]Zhou Q, Lam K H, Zheng H, et al. Piezoelectric single crystal ultrasonic transducers for biomedical applications[J]. Progress in materials science, 2014, 66: 87-111.

[18]Park K, Kim Y S, Jo S, et al. Polarization-interference-based fiber vibration sensor incorporating polarization-diversity loop structure[J]. IEEE Sensors Journal, 2015, 16(7): 1949-1955.

[19]郝星辰.钛酸铋钠系陶瓷的共掺杂与固溶改性研究[D].西安:西安科技大学,2017.

[20]Takenaka T, Sakata K. Dielectric, piezoelectric and pyroelectric properties of (BiNa)1/2TiO3-based ceramics[J]. Ferroelectrics, 1989, 95(1): 153-156.

[21]Zhou X, Xue G, Luo H, et al. Phase structure and properties of sodium bismuth titanate lead-free piezoelectric ceramics[J]. Progress in Materials Science, 2021, 122: 100836.

[22]Glaum J, Zakhozheva M, Acosta M, et al. Influence of B-site disorder on the properties of unpoled Bi1/2Na1/2TiO3-0.06Ba(ZrxTi1-x)O3 Piezoceramics[J]. Journal of the American Ceramic Society, 2016, 99(8): 2801-2808.

[23]Gobeljic D, Dittmer R, Rödel J, et al. Macroscopic and Nanoscopic Polarization Relaxation Kinetics in Lead-Free Relaxors Bi1/2Na1/2TiO3-Bi1/2K1/2TiO3-BiZn1/2Ti1/2O3[J]. Journal of the American Ceramic Society, 2014, 97(12): 3904-3912.

[24]Singh A, Chatterjee R. Structural, electrical, and strain properties of stoichiometric 1-x-y(Bi0.5Na0.5)TiO3-x(Bi0.5K0.5TiO3)-y(Na0.5K0.5)NbO3 solid solutions[J]. Journal of Applied Physics, 2011, 109(2): 024105.

[25]Xu C, Lin D, Kwok K W. Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3-BaTiO3 lead-free piezoelectric ceramics[J]. Solid state sciences, 2008, 10(7): 934-940.

[26]赵年顺,周云艳,孙太明.钛酸铋钠-钛酸钡陶瓷的铁电压电性能研究[J].黄山学院学报,2020.

[27]Zhang S, Kounga A B, Aulbach E, et al. Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system[J]. Applied Physics Letters, 2007, 91(11): 112906.

[28]He Z, Shi S, Pan Z, et al. Low electric field induced high energy storage capability of the free-lead relaxor ferroelectric 0.94Bi0.5Na0.5TiO3-0.06BaTiO3-based ceramics[J]. Ceramics International, 2021, 47(8): 11611-11617.

[29]Liu X, Rao R, Shi J, et al. Effect of oxygen vacancy and A-site-deficiency on the dielectric performance of BNT-BT-BST relaxors[J]. Journal of Alloys and Compounds, 2021, 875: 159999.

[30]Ran H, Du H, Ma C, et al. Effects of A/B-site Co-doping on microstructure and dielectric thermal stability of AgNbO3 ceramics[J]. Science of Advanced Materials, 2021, 13(5): 741-747.

[31]Fan P, Liu K, Ma W, et al. Progress and perspective of high strain NBT-based lead-free piezoceramics and multilayer actuators[J]. Journal of Materiomics, 2021, 7(3): 508-544.

[32]Liu X, Guo H, Tan X. Evolution of structure and electrical properties with lanthanum content in [(Bi1/2Na1/2)0.95Ba0.05]1-xLaxTiO3 ceramics[J]. Journal of the European Ceramic Society, 2014, 34(12): 2997-3006.

[33]Hao J, Xu Z, Chu R, et al. Large electrostrictive effect and strong photoluminescence in rare-earth modified lead-free (Bi0.5Na0.5)TiO3-based piezoelectric ceramics[J]. Scripta Materialia, 2016, 122: 10-13.

[34]Tran V D N, Ullah A, Dinh T H, et al. Large field-induced strain properties of Sr(K0.25Nb0.75)O3-modified Bi1/2(Na0.82K0.18)1/2TiO3 lead-free piezoelectric ceramics[J]. Journal of Electronic Materials, 2016, 45(5): 2627-2631.

[35]van Quyet N, Bac L H, Odkhuu D, et al. Effect of Li2CO3 addition on the structural, optical, ferroelectric, and electric-field-induced strain of lead-free BNKT-based ceramics[J]. Journal of Physics and Chemistry of Solids, 2015, 85: 148-154.

[36]Li F, Cabral M J, Xu B, et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals[J]. Science, 2019, 364(6437): 264-268.

[37]Liu W, Cao Y, Wang J, et al. Piezoelectric properties of 3-1 type porous PMN-PZT ceramics doped with strodium[J]. Materials Science and Engineering: B, 2021, 263: 114847.

[38]Xu T, Wang C A. Control of pore size and wall thickness of 3-1 type porous PZT ceramics during freeze-casting process[J]. Materials & Design, 2016, 91: 242-247.

[39]Shin D, Lim D, Koo B, et al. Porous sandwich structures based on BaZrTiO3–BaCaTiO3 ceramics for piezoelectric energy harvesting[J]. Journal of Alloys and Compounds, 2020, 831: 154792.

[40]Fuchigami T, Sumiya Y, Kakimoto K. Ferroelectric domain formation and photocatalytic activity on porous alkali niobate piezoelectric ceramics[J]. Journal of the Ceramic Society of Japan, 2021, 129(7): 425-431.

[41] Roscow J I, Topolov V Y, Bowen C R, et al. Understanding the peculiarities of the piezoelectric effect in macro-porous BaTiO3[J]. Science and Technology of Advanced Materials, 2016, 17(1): 769-776.

[42]Curecheriu L, Lukacs V A, Padurariu L, et al. Effect of porosity on functional properties of lead-free piezoelectric BaZr0.15Ti0.85O3 porous ceramics[J]. Materials, 2020, 13(15): 3324.

[43]Mercadelli E, Galassi C. How to make porous piezoelectrics? Review on processing strategies[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 68(2): 217-228.

[44]Du L, Du X, Zhang L, et al. Effect of closed pores on dielectric properties of 0.8Na0.5Bi0.5TiO3-0.2K0.5Bi0.5TiO3 porous ceramics[J]. Journal of the European Ceramic Society, 2018, 38(7): 2767-2773.

[45]Polley C, Distler T, Detsch R, et al. 3D printing of piezoelectric barium titanate-hydroxyapatite scaffolds with interconnected porosity for bone tissue engineering[J]. Materials, 2020, 13(7): 1773.

[46]Liu G, Button T W, Zhang D. Lamellar BaTiO3 and its composites fabricated by the freeze casting technique[J]. Journal of the European Ceramic Society, 2014, 34(15): 4083-4088.

[47]Mehr M, Pineiro J, Santos B D, et al. Suppressed grain growth in highly porous barium titanate foams by two-step sintering[J]. Journal of the American Ceramic Society, 2017, 100(2): 539-545.

[48]Zhang Y, Chen L, Zeng J, et al. Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering[J]. Materials Science and Engineering: C, 2014, 39: 143-149.

[49]Lukacs V A, Stanculescu R, Curecheriu L, et al. Structural and functional properties of BaTiO3 porous ceramics produced by using pollen as sacrificial template[J]. Ceramics International, 2020, 46(1): 523-530.

[50]Jing Q, Li X. Preparation of porous barium titanate ceramics and enhancement of piezoelectric sensitivity[J]. Acta Physica Sinica, 2019, 68(5).

[51]Zhu S, Cao L, Xiong Z, et al. Enhanced piezoelectric properties of 3-1 type porous 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ferroelectric ceramics[J]. Journal of the European Ceramic Society, 2018, 38(4): 2251-2255.

[52]高慧楠,陈树江,李国华,等.发泡法制备孔结构可控的镁质轻质料[J].耐火材料,2019,53(2):121.

[53]何秀兰,杨亦天,杨悦,等.有机泡沫浸渍法制备Al2O3多孔陶瓷及其性能研究[J] .中国陶瓷,2014(7):4.

[54]Xu H, Du H, Kang L, et al. Constructing straight pores and improving mechanical properties of gangue-based porous ceramics[J]. Journal of Renewable Materials, 2021, 9(12): 2129.

[55]Yoldas B E. Alumina gels that form porous transparent Al2O3[J]. Journal of Materials Science, 1975, 10(11): 1856-1860.

[56]郝边磊,陈仕乐,张健,等.以PMMA为造孔剂的凝胶注模工艺制备多孔Al2O3陶瓷[J].硅酸盐学报,2019,47(9):1242-1246.

[57]Lee S H, Jun S H, Kim H E, et al. Piezoelectric properties of PZT-based ceramic with highly aligned pores[J]. Journal of the American Ceramic Society, 2008, 91(6): 1912-1915.

[58]孙杨,薛伟江,孙加林,等.海藻酸钠离子凝胶法制备直通孔氧化铝多孔陶瓷[J].无机材料学报,2015,30(8):877-881.

[59]金燕,万永平.多孔压电驻极体材料的孔洞微结构优化研究[J].力学季刊,2016,37(1):96-103.

[60]李星,王丽坤,仲超,等.陶瓷体积分数对压电换能器性能影响[J].压电与声光,2019,41(3):400-404.

[61]Kumar A, Sharma A, Kumar R, et al. Finite Element Study on Acoustic Energy Harvesting Using Lead-Free Piezoelectric Ceramics[J]. Journal of Electronic Materials, 2018, 47(2): 1447-1458.

[62]Okazaki K. Recent developments in piezoelectric ceramics in Japan[J]. Ferroelectrics, 1981, 35(1): 173-178.

[63]Bruggeman DAG. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizittskonstanten und Leitfhigkeiten der Mischkrper aus isotropen Substanzen[J]. Annalen der Physik, 1935, 416(7): 636-664.

[64]Banno H. Effects of Shape and Volume Fraction of Closed Pores on Dielectric, Elastic, and Electrome-chanical Properties of Dielectric and Piezoelectric Ceramics-A Theoretical Approach[J]. Ceram. Bull., 1987, 66(9): 1332-1337.

[65]Zhang H, Li J, Zhang B. Microstructure and electrical properties of porous PZT ceramics derived from different pore-forming agents[J]. Acta Materialia, 2007, 55(1): 171-181.

[66]曾涛,董显林,毛朝梁,等.孔隙率及晶粒尺寸对多孔PZT陶瓷介电和压电性能的影响及机理研究[J].物理学报,2006,5(6):3073-3078.

[67]郭瑞,汪长安,杨安坤.3-3型与1-3型多孔锆钛酸铅陶瓷的结构和性能[J].硅酸盐学报,2011,39(11):1780-1786.

[68]Zhang Q, Cao W, Wang H, et al. Characterization of the performance of 1-3 type piezocomposites for low-frequency applications[J]. Journal of applied physics, 1993, 73(3): 1403-1410.

[69]Hladky-Hennion A C, Decarpigny J N. Finite element modeling of active periodic structures: Application to 1-3 piezocompositesa[J]. The Journal of the Acoustical Society of America, 1993, 94(2): 621-635.

[70]李晓娟,景奇,惠增哲,等.多孔钛酸钡压电陶瓷及其制备方法[P].中国专利:CN 108911738 A,2018-11-30.

[71]Wang J, Cao N, Du H, et al. Facile Synthesis of Polypyrrole Nanofibers/Co-MOF Composite and Its Lithium Storage Properties[J]. Science of Advanced Materials, 2020, 12(4): 486-491.

[72]Jo W, Schaab S, Sapper E, et al. On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol% BaTiO3[J]. Journal of Applied Physics, 2011, 110(7): 074106.

[73]Arshad M, Du H, Javed M S, et al. Fabrication, structure, and frequency-dependent electrical and dielectric properties of Sr-doped BaTiO3 ceramics[J]. Ceramics International, 2020, 46(2): 2238-2246.

[74]Ma N, Zhang B, Yang W, et al. Phase structure and nano-domain in high performance of BaTiO3 piezoelectric ceramics[J]. Journal of the European Ceramic Society, 2012, 32 (5):1059-1066.

[75]马晓,薛丽红,严有为.Na0.5Bi0.5TiO3纳米纤维的制备及形成机理研究[J].无机材料学报,2011,26(12):1251-1255.

[76]刘福田,王守德,黄世峰,等.制备工艺对PZTBCW压电陶瓷性能的影响[J].现代技术陶瓷,2004,25(1):3-5.

[77]陈长进.电子碰撞电离的理论研究[D].合肥:中国科学技术大学,1997.

[78]毛剑波,易茂祥.PZT压电陶瓷极化工艺研究[J].压电与声光,2006,28(6):736-737.

[79]Fu P, Xu Z, Chu R, et al. Piezoelectric, ferroelectric and dielectric properties of Sm2O3-doped (Bi0.5Na0.5) 0.94 Ba0.06TiO3 lead-free ceramics[J]. Materials Chemistry and Physics, 2010, 124(2-3): 1065-1070.

[80]Pires A M, Davolos M R. Luminescence of europium (III) and manganese (II) in barium and zinc orthosilicate[J]. Chemistry of materials, 2000, 13(1): 21-27.

[81]Yang Z, Liu B, Wei L, et al. Structure and electrical properties of (1-x)Bi0.5Na0.5TiO3-xBi0.5K0.5TiO3 ceramics near morphotropic phase boundary[J]. Materials Research Bulletin, 2008, 43(1): 81-89.

[82]Li H, Yao W. Some effects of different additives on dielectric and piezoelectric properties of (Bi1/2Na1/2)TiO3-BaTiO3 morphotropic-phase-boundary composition[J]. Materials Letters, 2004, 58(7-8): 1194-1198.

[83]Yao Z, Liu H, Liu Y, et al. Structure and dielectric behavior of Nd-doped BaTiO3 perovskites[J]. Materials Chemistry and Physics, 2008, 109(2-3): 475-481.

[84]Yuan Q, Li G, Yao F Z, et al. Simultaneously achieved temperature-insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics[J]. Nano Energy, 2018, 52: 203-210.

[85]Zhu S, Cao L, Xiong Z, et al. Enhanced piezoelectric properties of 3-1 type porous 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ferroelectric ceramics[J]. Journal of the European Ceramic Society, 2018, 38(4): 2251-2255.

[86]李金田,文玉梅.压电式振动能量采集装置研究进展[J].现代电子技术,2011,34(18):184-189.

[87]胡晓冰,李龙土,任飞,等.双迭片弯曲压电陶瓷换能器及振动模态分析测量[J].功能材料,2002,33:661-663.

[88]刘振华,刘华巍,曾祥,等.压电复合元件耦合振动模态分析[J].压电与声光,2010,32(4):588-590.

[89]Kanuru S, Baskar K, Dhanasekaren R, et al. Growth of NBT-BT single crystalsby flux method and their structural, morphological and electrical characterizations[J]. Journal of Crystal Growth, 2016, 441(1): 64-70.

[90]孙杨,薛伟江,孙加林,等.海藻酸钠离子凝胶法制备直通孔氧化铝多孔陶瓷[J].无机材料学报,2015,30(8):877-881.

[91]Woo J, Hong S, Min D K, et al. Effect of domain structure on thermal stability of nanoscale ferroelectric domains[J]. Applied physics letters, 2002, 80(21): 4000-4002.

[92]Liu W, Liu W, Wang Y, et al. Piezoelectric and mechanical properties of CaO reinforced porous PZT ceramics with one-dimensional pore channels[J], Ceramics International, 2017, 43(2): 2063-2068.

[93]Shen Z, Li J. Enhancement of piezoelectric constant d33 in BaTiO3 ceramics due to nano-domain structure[J]. Journal of the Ceramic Society of Japan, 2010, 118(1382): 940-943.

中图分类号:

 TQ174.1     

开放日期:

 2022-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式