论文中文题名: | 基于机器学习与辐射传输模型的植被生化组分高光谱反演 |
姓名: | |
学号: | 19210061026 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0816 |
学科名称: | 工学 - 测绘科学与技术 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 农业定量遥感 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-23 |
论文答辩日期: | 2022-06-08 |
论文外文题名: | Hyperspectral inversion of vegetation biochemical components based on machine learning and radiative transfer model |
论文中文关键词: | |
论文外文关键词: | Biochemical components ; Radiative transfer ; Machine learning ; Chlorophyll ; optimization algorithm |
论文中文摘要: |
~植物叶片是植物体的重要组成部分,其中含有如叶绿素、类胡萝卜素、水分、木质素及纤维素等诸多的生化组分,蕴含了多种信息。对植被生化参数含量的合理估计,不管是对于农村的发展,还是对于当地生态系统的平衡,当地生态安全等方面均有着极其重要的意义。此外,机器学习算法可以很好的解释植物生物化学参数与光谱反射率之间隐含的、潜在的非线性函数关系,这使得机器学习算法更适用于与辐射传输模型相结合反演植被的叶片和冠层生化组分含量。 |
论文外文摘要: |
Plant leaves are an important part of the plant body, which contains many biochemical components such as chlorophyll, carotenoids, water, lignin and cellulose, which contain a variety of information. Reasonable estimation of the content of vegetation biochemical parameters is of great significance to the development of rural areas, to the balance of local ecosystems, and to local ecological security. In addition, machine learning algorithms can well explain the implicit and potentially nonlinear functional relationship between plant biochemical parameters and spectral reflectance, which makes machine learning algorithms more suitable for inversion of vegetation leaves in combination with radiative transfer models. and canopy biochemical components. |
中图分类号: | p237 |
开放日期: | 2022-06-23 |