- 无标题文档
查看论文信息

论文中文题名:

 基于数字控制的谐振式车载充电机的设计    

姓名:

 董振    

学号:

 20206227082    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085800    

学科名称:

 工学 - 能源动力    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电力电子与电力传动    

研究方向:

 功率变换技术及应用    

第一导师姓名:

 王党树    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-20    

论文答辩日期:

 2023-06-01    

论文外文题名:

 Design of Resonant On-board Charger Based on Digital Control    

论文中文关键词:

 数字控制 ; 车载充电机 ; 功率因数校正 ; 全桥LLC谐振变换器    

论文外文关键词:

 Numerical Control ; On-board Charger ; Power Factor Correction ; Full Bridge LLC Resonant Converter    

论文中文摘要:

近年来,由于环境污染和能源危机问题日益突出,各国开始加大对新能源产业的推广,新能源汽车的产量和销量迎来了巨大飞跃。车载充电机作为电动汽车关键充电设备,关系着电动汽车的动力来源。本文聚焦于高效率车载充电机电路和控制设计,研制了一台数字控制的宽范围、高效率和高功率因数的车载充电机样机。

针对车载充电机宽输出电压范围、高效率和高功率因数等要求,设计了前级Boost-PFC和后级全桥LLC谐振变换器的两级式电路结构作为车载充电机的主功率电路。分析了Boost-PFC变换器和全桥LLC谐振变换器的工作原理和电路特性,针对锂电池负载条件下LLC谐振变换器软开关特性不稳定问题,根据ZVS/ZCS边界推导了软开关约束条件,提出了谐振参数优化设计方法,可使LLC谐振变换器全局软开关。根据技术指标完成主电路参数设计和器件选型,并对电路关键器件进行了详细的损耗计算,做出理论条件下电路损耗分布图,为降低电路损耗提升效率提供参考。

对PFC和LLC变换器控制策略进行分析并设计了其电压电流控制环路。通过对Boost-PFC变换器小信号模型分析完成了电压环和电流环PI补偿器的设计,实现了前级PFC变换器电压电流双闭环控制。根据锂电池充电策略确定了后级LLC谐振变换器电压电流双单环竞争的控制方案,并使用PFM+Burst混合控制方法提高LLC谐振变换器轻载效率。采用等效电路法简化LLC谐振变换器的小信号建模,推导出频率到输出电压传递函数,基于此设计了2p2z型补偿器用于LLC谐振变换器闭环控制。随后设计了车载充电机控制电路和软件程序,并给出了控制电路的硬件原理图和软件流程图。

根据上述设计方案搭建了一台500W的车载充电机试验样机,在实验室条件下对样机进行测试。结果表明:试验样机整机最高效率可达94.36%,且在满载工况下功率因数PF值为0.996,电流THD为3.2%,满足高效率、高功率因数、低谐波等技术指标。并且测试的关键波形和实验数据与理论分析一致,证明了本文设计方案的正确性。

论文外文摘要:

In recent years, due to the increasingly prominent problems of environmental pollution and energy crisis, countries have begun to increase the promotion of new energy industries, and the output and sales of new energy vehicles have ushered in a huge leap. As the key charging equipment of electric vehicles, on-board chargers are related to the power source of electric vehicles. This paper focuses on the circuit and control design of high-efficiency on-board chargers, and develops a digitally controlled on-board charger prototype with wide range, high efficiency and high power factor.

In order to meet the requirements of wide output voltage range, high efficiency and high power factor of the vehicle charger, the two-stage circuit structure of the front-stage Boost-PFC and the post-stage full-bridge LLC resonant converter is designed as the main power circuit of the on-board charger. The working principle and circuit characteristics of Boost-PFC converter and full-bridge LLC resonant converter are analyzed, aiming at the problem of unstable soft switching characteristics of LLC resonant converter under lithium battery load conditions, combined with ZVS/ZCS boundary to derive the soft switching constraints, a set of resonant parameter optimization design methods are proposed to ensure the global soft switching of LLC resonant converter. According to the technical indicators, the main circuit parameter design and device selection are completed, and the loss calculation of the key components of the circuit is carried out in detail, and the circuit loss distribution diagram under theoretical conditions is given, which provides a reference for reducing circuit loss and improving efficiency.

The control strategies of PFC and LLC converters were analyzed and their voltage and current control loops were designed. Through the analysis of the small signal model of the Boost-PFC converter, the design of the voltage loop and current loop PI compensator is completed, and the voltage and current double closed-loop control of the PFC converter is realized. According to the lithium battery charging strategy, the control scheme of voltage and current double single-loop competition of post-stage LLC resonant converter was determined, and the PFM+Burst hybrid control method was proposed to improve the light load efficiency of LLC resonant converter. Based on the equivalent circuit method to simplify the small-signal modeling of LLC resonant converter, and derive the frequency-to-output voltage transfer function, a 2p2z compensator is designed for closed-loop control of LLC resonant converter. Subsequently, the control circuit and software program of the vehicle charger were designed, and the hardware schematic diagram and software flow chart of the control circuit were given.

According to the above design scheme, a 500W on-board charger test prototype was built and tested under laboratory conditions. The results show that the maximum efficiency of the test prototype can reach 94.36%, and the power factor PF value is 0.996 and the current THD is 3.2% under full load conditions, which meets the technical indicators of high efficiency, high power factor and low harmonics. Moreover, the key waveforms and experimental data of the test are consistent with the theoretical analysis, which proves the correctness of the design scheme in this paper.

参考文献:

[1]王成岩. 新能源电动汽车节能减排效应与发展路径分析[J]. 时代汽车, 2020(07): 78-79.

[2]吴椿. 新能源电动汽车节能减排促进低碳经济效应及发展机制方向研究[J]. 中国建材科技, 2021, 30(04): 100-101.

[3]朱本飞. 新能源电动汽车节能减排效应及发展路径研究[J]. 产业与科技论坛, 2020, 19(19): 15-16.

[4]赵建国. 中国引领全球电动汽车销量增长[N]. 中国能源报, 2022-10-17(012).

[5]张书桥. 电动汽车发展现状及前景分析[J]. 电气时代, 2019(09): 12-15.

[6]胡堋湫, 谭泽富, 邱刚, 等. 电动汽车发展综述[J]. 电气应用, 2018, 37(20): 79-85.

[7]田峰, 魏帮顶, 苏玉来. 电动汽车技术进展和发展前景[J]. 时代汽车, 2022(12): 118-119.

[8]吴婧, 刘霞. 电动汽车充电技术与换电技术浅析[J]. 汽车实用技术, 2021, 46(12): 8-10.

[9]王继海. 两级式电动汽车车载充电机的研究[D]. 淮南: 安徽理工大学, 2019.

[10]Zhou Kai, Chen Simin, Jin Ningzhi, et al. Research on Single-Phase and Three-Phase Compatible Isolated On-Board Charger and Control Technology[J]. Energies, 2022, 15(17): 1-23.

[11]Xue Fei, Ma Xin, Li Hongqiang, et al. High Efficiency Onboard Charger Based on Two-Stage Circuit[J]. Journal of Electrical Engineering & Technology, 2022, 17(4): 2339-2351.

[12]赵文辉, 沈艳霞. 电动汽车车载充电机拓扑研究综述[J]. 控制工程, 2019, 26(01): 29-36.

[13]范高. 用于车载充电机的高效高功率密度DC/DC研究[D]. 杭州: 浙江大学, 2021.

[14]Kai Zhou, Hanfeng Wang, Dongyang Sun. Research on two-stage isolated on-board charger and control technology[J]. International Journal of Electric and Hybrid Vehicles, 2022, 14(1-2): 65-86.

[15]K. Itoh, M. Ishigaki, N. Kikuchi, et al. A Single-Stage Rectifier with Interleaved Totem-pole PFC and Dual Active Bridge (DAB) Converter for PHEV/BEV On-board Charger[C]. 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, USA, 2020: 1936-1941.

[16]Whitaker, B. Barkley, A. Cole, et al. A High-Density, High-Efficiency, Isolated On-Board Vehicle Battery Charger Utilizing Silicon Carbide Power Devices[J]. IEEE Transactions on Power Electronics, 2014, 29(5): 2606-2617.

[17]Pande K , Dixit A , Gangavarapu S , et al. Two-Stage On-Board Charger Using Bridgeless PFC and Half-Bridge LLC Resonant Converter with Synchronous Rectification for 48V e-Mobility[C]. 2020 IEEE Industry Applications Society Annual Meeting. IEEE, 2020: 1-7.

[18]Li Bin, Li Qiang, Lee Fred C., et al. A High-Efficiency High-Density Wide-Bandgap Device-Based Bidirectional On-Board Charger[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6(3): 1627-1636.

[19]Rahul Pandey, Bhim Singh. PFC-SEPIC converter-fed half-bridge LLC resonant converter for e-bike charging applications[J]. IET Electrical Systems in Transportation, 2020, 10(3): 225-233.

[20]Zinchenko D, Blinov A , Chub A , et al. High-Efficiency Single-Stage On-Board Charger for Electrical Vehicles[J]. IEEE Transactions on Vehicular Technology, 2021(70-12): 12581-12592.

[21]赵文辉. 电动汽车车载充电机的研究与实现[D]. 无锡: 江南大学, 2018.

[22]王颖. 3kW电动汽车车载充电机的设计与实现[D]. 武汉: 武汉理工大学, 2019.

[23]田风华. 基于交错并联PFC及LLC谐振变换器车载充电机的设计[D]. 杭州: 浙江工业大学, 2016.

[24]毛晨旭. 数字化控制的谐振式车载充电机研制[D]. 济南: 山东大学, 2021.

[25]杨威. 单相功率因数校正控制技术的研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.

[26]王博. 可自充电的UPS功率因数校正电路研究[J]. 中国电机工程学报, 2020, 40(10): 3310-3319.

[27]周玉婷, 吴羽, 任小永, 等. 基于改进恒导通时间控制的临界连续导通模式Boost功率因数校正变换器[J]. 电工技术学报, 2021, 36(20): 4329-4338.

[28]杨飞, 阮新波, 季清, 等. 采用耦合电感的交错并联电流临界连续Boost PFC变换器输入差模EMI分析[J]. 电工技术学报, 2013, 28(03): 202-214.

[29]黎晓, 马红波, 庞亮. 基于SiC MOSFET的无桥Boost PFC变换器研究与设计[J]. 电工电能新技术, 2018, 37(10): 65-70.

[30]章治国, 李世锋, 李鑫, 等. 一种可工作于CCM模态的高效图腾柱无桥PFC变换器[J]. 中国电机工程学报, 2022, 42(05): 1957-1968.

[31]林维明, 肖健, 张亮亮. 升压型Boost-PFC电路的频率反走临界电流控制[J]. 电机与控制学报, 2022, 26(04): 66-76.

[32]李文渝, 邓焰, 陈桂鹏, 等. 基于耦合电感的软开关PFC电路[J]. 电力电子技术, 2017, 51(09): 71-74+78.

[33]陈毅光, 何卫彬, 徐凯. 基于IR1153S的单周期PFC电路的研究[J]. 电源技术, 2012, 36(11): 1725-1727.

[34]陈文明, 黄如海, 谢少军. 交错并联Boost PFC变换器设计[J]. 电源学报, 2011(04): 63-67.

[35]罗艺文, 陈强, 马红波, 等. 四通道交错并联DCM Boost PFC变换器研究[J]. 电力电子技术, 2019, 53(09): 36-39.

[36]李文渝. Boost型功率因数校正电路的设计与研究[D]. 杭州: 浙江大学, 2017.

[37]Siu Ken King Man, He Yuanbin, Ho Carl Ngai Man, et al. Advanced Digital Controller for Improving Input Current Quality of Integrated Active Virtual Ground-Bridgeless PFC[J]. IEEE Transactions on Power Electronics, 2019, 34(4): 3921-3936.

[38]Chen Zhengge, Davari Pooya, Wang Huai. Single-phase Bridgeless PFC Topology Derivation and Performance Benchmarking[J]. IEEE Transactions on Power Electronics, 2020, 35(9): 9238-9250.

[39]易俊宏, 马红波, 孟庆伟. 高效率、高功率密度无桥PFC设计[J]. 电力电子技术, 2017, 51(12): 112-116.

[40]徐鑫雨, 吴红飞, 贾益行, 等. 基于三端口无桥PFC的两级式隔离型双输出AC-DC变换器[J]. 中国电机工程学报, 2020, 40(22): 7431-7440.

[41]Fu Han, Duan Shanxu, Li Yong, et al. Improved Control Strategy for Zero-Crossing Distortion Elimination in Totem-Pole PFC Converter with Coupled Inductor[J]. Energies, 2022, 15(15): 1-15.

[42]Mallik Ayan, Lu Jiangheng, Khaligh Alireza. Sliding Mode Control of Single-Phase Interleaved Totem-Pole PFC for Electric Vehicle Onboard Chargers[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8100-8109.

[43]经雯荔, 管乐诗, 王懿杰, 等. 高频AC/DC变换器优化控制策略研究[J]. 电源学报, 2020, 18(05): 60-71.

[44]何大印, 许建平, 吕润泽, 等. 电流源电荷泵串联谐振PFC变换器分析与设计[J]. 中国电机工程学报, 2020, 40(09): 2996-3008.

[45]张志, 孟利伟, 唐校, 等. 有源钳位单级隔离型AC-DC功率因数变换器[J]. 电工技术学报, 2021, 36(12): 2616-2626.

[46]Tiwari Subhadra, Basu Supratim, Undeland Tore M., et al. Efficiency and Conducted EMI Evaluation of a Single-Phase Power Factor Correction Boost Converter Using State-of-the-Art SiC Mosfet and SiC Diode[J]. IEEE Transactions on Industry Applications, 2019, 55(6): 7745-7756.

[47]Yue Zhang, Chengcheng Yao, Xuan Zhang, et al. Power Loss Model for GaN-Based MHz Critical Conduction Mode Power Factor Correction Circuits[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 141-151.

[48]Liu Xinjun, Zhang Donglai, Wang Wanyang, et al. Adaptive Charge-Compensation-Based Variable On-Time Control to Improve Input Current Distortion for CRM Boost PFC Converter[J]. Energies, 2022, 15(11): 1-18.

[49]史方圆, 李睿, 蔡旭. 35kV全SiC光伏发电单元中高频隔离变换器的寄生参数影响及抑制方法[J]. 中国电机工程学报, 2020, 40(06): 1787-1801.

[50]邹林峰, 姜磊, 周建秋. 辅助变流器高频DC/DC隔离变换器研究[J]. 电力电子技术, 2015, 49(02): 16-18.

[51]Lim Cheon Yong, Jeong Yeonho, Lee Min Su, et al. Half-Bridge Integrated Phase-Shifted Full-Bridge Converter With High Efficiency Using Center-Tapped Clamp Circuit for Battery Charging Systems in Electric Vehicles[J]. IEEE Transactions on Power Electronics, 2020, 35(5): 4934-4945.

[52]Minghao Tong, Ming Cheng, Sasa Wang, et al. An On-board Two-Stage Integrated Fast Battery Charger for EVs based on a Five-Phase Hybrid-Excitation Flux-Switching Machine[J]. IEEE Transactions on Industrial Electronics, 2020, 68(2): 1780-1790.

[53]李红梅, 张恒果, 崔超. 车载充电PWM软开关DC-DC变换器研究综述[J]. 电工技术学报, 2017, 32(24): 59-70.

[54]许章茁, 潘健. 移相全桥ZVS直流变换器研究综述[J]. 电源学报, 2022, 20(04): 11-27.

[55]尹强, 熊泽成, 朱子庚, 等. 移相全桥ZVS PWM变换器的研究[J]. 电力电子技术, 2018, 52(01): 11-12+32.

[56]张强, 林维明, 徐玉珍. 一种用耦合电感实现零电压零电流开关的移相全桥变换器[J]. 电工技术学报, 2016, 31(21): 142-149.

[57]王林艳, 岳秀梅, 许浒. 电容滤波型移相全桥变换器拓扑优化与设计[J]. 电力电子技术, 2022, 56(04): 125-129.

[58]金宁治, 俄立明, 马腾, 等. 电动汽车车载移相全桥变换器改进研究[J]. 电机与控制学报, 2021, 25(09): 70-77.

[59]郭兵, 张一鸣, 张加林, 等. 基于直接移相角控制的移相全桥LLC变换器混合控制策略[J]. 电工技术学报, 2018, 33(19): 4583-4593.

[60]Teng Jen Hao, Liu Bin Han. Three-stage Dead-time Adjustment Scheme for Conversion Efficiency Enhancement of Phase-Shift Full-Bridge Converters at Light Loads[J]. IEEE Transactions on Industrial Electronics, 2020, 68(2): 1210-1219.

[61]Muhammad Abu Bakar, Kent Bertilsson. A Modified Higher Operational Duty Phase Shifted Full Bridge Converter for Reduced Circulation Current[J]. IEEE Open Journal of the Industrial Electronics Society, 2020, 1: 82-96.

[62]Shih Li Chung, Liu Yi Hua, Chiu Huang Jen. A Novel Hybrid Mode Control for a Phase-Shift Full-Bridge Converter Featuring High Efficiency Over a Full-Load Range[J]. IEEE Transactions on Power Electronics, 2019, 34(3): 2794-2804.

[63]赵清林, 吴娜, 王德玉, 等. PWM控制的双向LLC谐振变换器[J]. 电网技术, 2022, 46(05): 1990-1999.

[64]曹靖, 许建平, 陈一鸣, 等. PWM-PFM混合控制LCC谐振变换器研究[J]. 中国电机工程学报, 2018, 38(12): 3629-3637+23.

[65]郭稳涛, 何怡刚. 一种改进的谐振型通信电源设计方法——基于时域限制条件的LLC谐振变换器设计[J]. 电源技术, 2012, 36(12): 1925-1927+1937.

[66]刘林, 熊兰, 高迎飞. 应用于储能变流器的LLC/CLLC谐振变换器综述[J]. 电源学报, 2021, 19(06): 50-63.

[67]Xiao Ziheng, He Zhixing, Ning Yong, et al. Optimization of LLC Resonant Converter With Two Degrees of Freedom Based on Operation Stage Trajectory Analysis[J]. IEEE ACCESS, 2021, 9: 79629-79642

[68]Junhao Luo, Junhua Wang, Zhijian Fang, et al. Optimal Design of a High Efficiency LLC Resonant Converter with a Narrow Frequency Range for Voltage Regulation[J]. Energies, 2018, 11(5): 1-17.

[69]李乔, 李明轩, 杨斌, 等. 基于副边可变电容的IPT恒流恒压充电系统研究[J]. 中国电机工程学报, 2019, 39(19): 5741-5749+5902.

[70]何秋生, 徐磊, 吴雪雪. 锂电池充电技术综述[J]. 电源技术, 2013, 37(08): 1464-1466.

[71]周国华, 许建平. 开关变换器调制与控制技术综述[J]. 中国电机工程学报, 2014, 34(06): 815-831.

[72]毛鸿, 吴兆麟. 有源功率因数校正器的控制策略综述[J]. 电力电子技术, 2000(01): 58-61.

[73]杨潮晖. Boost-PFC电路拓扑和数字控制的研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.

[74]Park HwaPyeong, Kim Mina, Jung JeeHoon. A Comprehensive Overview in Control Algorithms for High Switching-Frequency LLC Resonant Converter[J]. Energies, 2020, 13(17): 1-17.

[75]赵烈, 裴云庆, 刘鑫浩, 等. 基于基波分析法的车载充电机CLLC谐振变换器参数设计方法[J]. 中国电机工程学报, 2020, 40(15): 4965-4977.

[76]赵子先, 康龙云, 于玮, 等. 基于简化时域模型的CLLC直流变换器参数设计[J]. 电工技术学报, 2022, 37(05): 1262-1274.

[77]毛鹏军, 丁月华, 张松泓, 等. 动力驱动系统锂电池单体充电特性的实验分析[J]. 电源技术, 2016, 40(10): 1926-1928.

[78]Lazar J F , Martinelli R . Steady-state analysis of the LLC series resonant converter[C]. IEEE Applied Power Electronics Conference & Exposition.Anaheim, USA, 2001: 728-735.

[79]徐巧玲. 开关电源之高频变压器设计[J]. 科学技术创新, 2018(32): 162-163.

[80]鲁静, 同向前, 尹军, 等. L-LLC谐振型双向DC-DC变换器轻载优化控制策略研究[J]. 电工技术学报, 2022, 37(17): 4458-4465.

[81]朱永亮, 华明. 一种降低高频LLC变换器轻载损耗的方法[J]. 电力电子技术, 2020, 54(03): 97-99+103.

[82]俞珊, 董纪清, 陈海堤. LLC谐振变换器轻载下电压增益失真的研究[J]. 电源学报, 2014(03): 75-79.

[83]马建光. LLC半桥谐振变换器及其应用研究[D]. 北京: 北京交通大学, 2019.

[84]战丽娜. 基于扩展描述函数法的LLC谐振变换器建模[D]. 青岛: 青岛大学, 2014.

中图分类号:

 TM46    

开放日期:

 2024-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式