论文中文题名: | 眼底图像中动静脉血管的分割与识别方法研究 |
姓名: | |
学号: | 18207042023 |
保密级别: | 保密(2年后开放) |
论文语种: | chi |
学科代码: | 081002 |
学科名称: | 工学 - 信息与通信工程 - 信号与信息处理 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 图像处理 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2021-06-20 |
论文答辩日期: | 2021-06-05 |
论文外文题名: | Research on Segmentation and Recognition Method of Arterial and Vein Vessels in Fundus image |
论文中文关键词: | |
论文外文关键词: | Fundus image ; Retinal blood vessels ; Blood vessel segmentation ; Multi-scale ; Arterial/veinous recognition |
论文中文摘要: |
视网膜血管病变检测是辅助诊断高血压、糖尿病等诸多疾病的主要手段,定期的视网膜血管检测可以及时发现血管异常,帮助患者提前进行治疗,预防疾病的进一步发展和恶化。眼底视网膜血管结构复杂,轮廓模糊,交织分布,且不同图像之间差异性较大,血管分割和动/静脉识别难度较大。因此,采用图像处理的方法来自动的分析眼底视网膜图像,进行病情分析诊断具有十分重要的意义。 针对眼底视网膜血管细小、结构复杂、轮廓模糊导致血管分割精度低的问题,提出一种多尺度框架下采用小波变换融合血管轮廓特征和细节特征信息的视网膜血管分割方法。通过预处理增强血管与背景的对比度,在多尺度框架下提取血管轮廓特征和细节特征,并分别进行图像后处理,采用小波变换融合两幅特征图像,计算各尺度对应像素的最大值,得到血管检测图像,采用Otsu法将血管二值化,实现视网膜血管的分割。 针对视网膜动静脉小血管区分度较低导致整体动/静脉血管识别精度低的问题,提出一种基于提取血管子树分类的方法实现动/静脉血管的识别。利用视网膜血管的独特结构,在血管分割的基础上,提取血管中心线并检测出血管结构当中的关键点,提出一种投票检测算法分类出分叉和交叉,通过断开所有交叉点簇并采用8-邻域连通分量标记将所有血管划分为包含动脉或者静脉的多个子树,提取一组手工特征,利用K均值聚类方法对每个血管子树进行动/静脉标记,实现整体动/静脉血管的识别。 基于DRIVE(Digital Retinal Images for Vessel Extraction)眼底图像数据库进行测试,血管分割的平均准确率、灵敏度和特异性分别为95.82%、70.86%和98.06%,动静脉识别的平均准确率为89.85%。测试结果表明,本文所提方法在血管分割和动静脉识别方面均取得较好的效果,对于辅助医生进行临床诊断具有一定的理论参考价值。 |
论文外文摘要: |
Detection of retinal vascular disease is the main method to assist in the diagnosis of hypertension, diabetes and many other diseases. Regular retinal vascular detection can detect vascular abnormalities in time, help patients to treat them in advance, and prevent further development and deterioration of the disease. The retinal blood vessel structure of the fundus is complicated, the outline is blurred, and the distribution is intertwined, and the difference between different images is large, and the blood vessel segmentation and the arteriovenous recognition are difficult. Therefore, the use of image processing methods to automatically analyze retinal images for disease analysis and diagnosis is of great significance. Aiming at the problem of low blood vessel segmentation accuracy caused by the small, complex structure and blurred contour of the fundus retinal blood vessels, a retinal blood vessel segmentation method using wavelet transform to fuse the contour feature and detailed feature information of the blood vessel under a multi-scale framework is proposed. The contrast between the blood vessel and the background is enhanced by preprocessing, the contour feature and detail feature of the blood vessel are extracted in a multi-scale framework, and the image post-processing is performed respectively. The wavelet transform is used to fuse the two feature images, and the maximum value of the corresponding pixels of each scale is calculated to obtain the blood vessel. The blood vessel detection image is obtained, and the blood vessel is binarized by the Otsu method to realize the segmentation of the retinal blood vessel. Aiming at the problem that the low discrimination of retinal arterial/veinous small blood vessels leads to the low accuracy of the overall arterial/veinous blood vessel identification, a method based on the extraction of blood vessel subtree classification is proposed to realize the arterial/veinous vessel identification. Using the unique structure of the retinal blood vessels, the key points in the blood vessel structure are detected by extracting the centerline of the blood vessel, and a voting detection algorithm is proposed to classify the bifurcation and intersection clusters. All the blood vessels are marked by disconnecting all the intersection clusters and using 8-neighbor connected components divide into multiple sub-trees containing arteries or veins, extract a set of manual features and use K-means clustering method to label each vessel sub-tree with arterial/vein, so as to realize the recognition of the overall arterial/venous vessels. Based on the public DRIVE (Digital Retinal Images for Vessel Extraction) fundus image database, the research method was tested. The average accuracy, sensitivity and specificity of blood vessel segmentation were 95.82%, 70.86% and 98.06%, respectively. The average accuracy of arterial/veinous recognition is 89.85%. The test results show that the method proposed in this thesis has achieved good results in both blood vessel segmentation and arterial/veinous recognition, and has certain theoretical reference value for assisting doctors in clinical diagnosis. |
参考文献: |
[3]国家卫生和计划生育委员会.“十三五”全国眼健康规划(2016-2020年)[J].中华眼科杂志,2017,53(07):484-486. [4]王宁利,胡爱莲,汤欣,等.糖尿病视网膜病变分级诊疗服务技术方案[J].中华全科医师杂志,2017,16(08):589-593. [22]陈建辉,赵蕾,李德玉,万涛.基于冠脉造影图像血管树分割的血管狭窄自动识别方法[J].中国生物医学工程学报,2019,38(03):266-272. [28]高宏杰, 邱天爽, 丑远婷, 等.基于改进U型网络的眼底图像血管分割[J].中国生物医学工程学报,2019,38(1):1-8. [29]张赛,李艳萍.基于改进HED网络的视网膜血管图像分割[J].光学学报,2020,40(06):76-85. [32]殷宁波,黄冕,刘利军,黄青松.MS-UNet++:基于改进UNet++的视网膜血管分割[J].光电子·激光,2021,32(01):35-41. [40]薛岚燕,曹新容,林嘉雯,等.动静脉血管自动分类方法及其管径测量[J].仪器仪表学报,2017,38(09):2307-2316. [41]黄文博.彩色眼底视网膜图像中相关目标检测方法研究[D].吉林:吉林大学,2018. |
中图分类号: | TP391.41 |
开放日期: | 2023-06-21 |