- 无标题文档
查看论文信息

论文中文题名:

 基于RC模型的载/蓄冷功能性充填体降温特性研究    

姓名:

 尚诗越    

学号:

 21203053016    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0814    

学科名称:

 工学 - 土木工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 土木工程    

研究方向:

 隧道、矿井空调降温技术    

第一导师姓名:

 王美    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-25    

论文答辩日期:

 2024-06-06    

论文外文题名:

 Research on cooling characteristics of cold load/storage functional backfill based on RC model    

论文中文关键词:

 热阻热容网络模型 ; 功能性充填体 ; 相变传热 ; 辐射降温 ; 深井降温    

论文外文关键词:

 thermal resistance and capacity network model ; CLS functional backfill ; phase change heat transfer ; radiation cooling ; deep mine cooling    

论文中文摘要:

深部矿井热害问题受到了广泛关注。针对矿山采空区热害降温问题,提出了采用相变材料胶结膏体充填体对采场区降温的深部矿山降温系统。基于热阻热容(RC)网络模型,对深部矿井冷辐射系统中载/蓄冷(CLS)功能性充填体的降温特性进行了研究。本论文以载/蓄冷功能性充填体区和采场区为研究对象,建立了载/蓄冷功能性充填体的RC模型以及与采场区耦合传热的RC模型,进而探讨了两大问题:基于热阻热容网络模型快速预测载/蓄冷功能性充填体的相变传热释冷特性;基于热阻热容网络模型探究深部矿井辐射降温系统中载/蓄冷功能性充填体的降温特性。

本文提出了一种基于RC模型快速预测载/蓄冷功能性充填体释冷特性的新方法,建立了简化的传热计算模型,并利用MATLAB计算了温度变化趋势。实验结果和数值传热模型CFD模拟结果验证了RC模型和程序的正确性。在经验证的RC模型基础上,分析了初始冰-水比和料浆浓度对充填体相变传热特性的影响规律。随着初始冰-水比的增大和料浆浓度的降低,降温能力增强,释冷过程延长。此外,对含冰粒和石蜡两种相变材料的载/蓄冷功能性充填体进行了对比分析,含冰粒载/蓄冷功能性充填料浆的冷量释放效果优于含石蜡载/蓄冷功能性充填料浆。与数值传热模型CFD模拟方法相比,RC模型能够在满足工程精度的前提下有效提高计算效率。该研究对相变材料胶结膏体充填体的释冷特性在工程设计和实践中及时预测具有重要意义。

基于载/蓄冷功能性充填体相变传热问题的热阻热容网络模型,探究充填体对采场区的降温影响特征,建立了载/蓄冷功能性充填体与采场区耦合传热作用下的RC网络模型,对深部矿井辐射降温系统中载/蓄冷功能性充填体的降温特性进行了分析讨论。将文献的实验结果与四种RC网络模型的计算结果进行了比较;分析了整个系统的传热贡献率,发现冷辐射是载/蓄冷功能性充填体对采场区降温的主要传热机制。通过经验证的RC网络模型,探讨了辐射隔板材料、载/蓄冷功能性充填体的充填厚度和矿井热环境对深部矿井辐射降温系统降温特性的影响。研究结果表明:使用载/蓄冷功能性充填体在含高导热系数尾砂的矿井热环境下,对采场区的降温效果较好;充填区和采场区间的间隔材料对降温特性没有明显差异;考虑到经济因素,建议采用3/4采空区高度的载/蓄冷充填方式。

研究结果可为利用载/蓄冷功能性充填体设计矿山降温系统提供参考,为高效解决深部矿井热害问题奠定了理论基础。

论文外文摘要:

Thermal damage in deep mine has been widely concerned. Aiming at the problem of thermal damage cooling in the gob of mine, a deep mine cooling system using phase change material cemented paste filling body to cool the stope area is proposed. Based on the thermal resistance and thermal capacity (RC) network model, the cooling characteristics of cold load/storage (CLS) functional backfill in deep mine radiation cooling system were studied. In this subject, the RC model of the CLS functional backfill and the RC model of coupled heat transfer with the stope area were established, and two major problems were discussed: rapid prediction of the phase change heat transfer and cooling release characteristics of the CLS functional backfill based on the thermal resistance and thermal capacity network model; based on the thermal resistance and heat capacity network model, the cooling characteristics of the CLS functional backfill in the deep mine radiation cooling system were studied.

In this paper, a new method based on RC model was proposed to quickly predict the cooling characteristics of CLS functional backfill, a simplified heat transfer calculation model was established, and the temperature trend was calculated by MATLAB. Experimental results and CFD simulation results of numerical heat transfer model verified the correctness of RC model and program. Based on the verified RC model, the effects of the initial ice-water ratio (IWR) and slurry concentration on the heat transfer characteristics of the backfill were analyzed. With the increase of initial IWR and the decrease of slurry concentration, the cooling ability was enhanced and the cold release process was prolonged. In addition, the CLS storage functional fillers containing ice particles and paraffin wax were compared and analyzed, and the cold discharge effect of CLS functional backfill with ice particles was better than that of paraffin. Compared with the CFD simulation method of numerical heat transfer model, RC model can effectively improve the calculation efficiency under the premise of satisfying the engineering accuracy. This study is of great significance for predicting the cooling properties of PCM cemented paste backfill in engineering design and practice.

Based on the RC network model of the phase change heat transfer problem of the CLS functional backfill, the influence characteristics of the backfill on the cooling of the stope area were further explored, and the RC network model under the coupling heat transfer between the CLS functional backfill and the stope area was established. The cooling characteristics of the load/storage functional backfill in the radiation cooling system of deep mine were analyzed and discussed. The experimental results were compared with those of four RC network models. Model IV met the engineering accuracy. The contribution rate of heat transfer in the whole system was analyzed, and it was found that heat radiation was the main heat transfer mechanism of the CLS functional backfill to cool the stope area. Based on the verified RC network model, the effects of radiating diaphragm material, the backfill thickness of the CLS functional backfill and the mine thermal environment on the cooling characteristics of the deep mine radiating cooling system were discussed. The results showed that the use of CLS storage functional backfill has a better cooling effect on stope area in the mine thermal environment with high thermal conductivity tailings. There was no difference in the cooling characteristics of aluminum and concrete as radiant partitions. Considering the economic factors, it was recommended to use 3/4 goaf as the thickness of the CLS functional backfill.

Based on the RC network model of the phase change heat transfer problem of the load/storage functional backfill, the influence characteristics of the backfill on the cooling of the stope area were further explored, and the RC network model under the coupling heat transfer between the CLS functional backfill and the stope area was established. The cooling characteristics of the CLS functional backfill in the radiation cooling system of deep mine were analyzed and discussed. The experimental results were compared with those of four RC network models. The contribution rate of heat transfer in the whole system was analyzed, and it was found that the cold radiation was the main heat transfer mechanism of the CLS functional backfill to cool the stope area. Based on the verified RC network model, the effects of radiating diaphragm material, the thickness of the CLS functional backfill and the mine thermal environment on the cooling characteristics of the deep mine radiating cooling system were discussed. The results showed that the use of CLS functional backfill in the mine thermal environment with high thermal conductivity tailings, the cooling effect of stope area was better; There was no significant difference between the spacing materials of backfill area and stope section on the cooling characteristics. Considering the economic factors, it was suggested to use the CLS filling method of 3/4 goaf height.

The research results can provide a reference for the design of mine cooling system by CLS functional backfill, and lay a theoretical foundation for the efficient solution of deep mine thermal damage.

参考文献:

[1] 王长彬.我国矿井降温技术研究现状及发展趋势[C/OL].中国煤炭工业协会、中国煤炭科工集团有限公司、中国煤炭学会,2018:119-123.

[2] 蔡美峰,薛鼎龙,任奋华.金属矿深部开采现状与发展战略[J].工程科学学报,2019,41(4):417-426.

[3] 柳静献,李国栋,常德强,等.矿井降温技术研究进展与展望[J].金属矿山,2021:1-15.

[4] 董华. 矿井热害产生原因及防治措施[J]. 陕西煤炭, 2020, 39(3): 95-97+118.

[5] 聂兴信,王廷宇,孙锋刚,等.高温矿井热湿环境对人体机能的影响[J/OL].金属矿山,2020(4):186-193.

[6] 王廷宇.高温矿井热湿环境对劳动效率的影响研究[D/OL].西安建筑科技大学,2020.

[7] 王诗祺,王美.我国煤矿深井热害成因及治理方法研究进展[J].现代矿业,2018,34(5):18-23.

[8] 杨德源,杨天鸿.矿井热环境及其控制[M].北京:冶金工业出版社,2009.

[9] 严荣林,侯贤文.矿井空调技术[M].北京:煤炭工业出版社,1994.

[10] 胡春胜.孙村煤矿深部制冷降温技术的研究与应用[J].矿业安全与环保,2005,32(5):45-47+53.

[11] 陈平.采用压气供冷的新型矿井集中空调系统[J].矿业安全与环保,2004(3):1-3+1.

[12] 张琳邡,纪河.矿井移动式冰蓄冷空调的应用研究[J].科技创新与应用,2016(8):29-30.

[13] 张亚平,王美,郝改红.矿井降温除湿系统的热力学分析[J/OL].煤炭技术,2016,35(10):146-148.

[14] 王玉杰,陈孜虎.基于PED的地面集中矿井降温系统应用研究[J/OL].矿山机械,2016,44(11):70-73.

[15] Guo P, He M, Zheng L, et al. A geothermal recycling system for cooling and heating in deep mines[J/OL]. Applied Thermal Engineering, 2017, 116: 833-839.

[16] 陈柳,刘浪,张波,等.基于蓄热充填体深井吸附降温机理[J/OL].煤炭学报,2018,43(2):483-489.

[17] 张钦礼,王新民.金属矿床地下开采技术[M].长沙:中南大 学出版社,2016.

[18] Wang M, Liu L, Chen L, et al. Cold load and storage (CLS) functional backfill for cooling deep mine[J]. Advances in Civil Engineering, 2018.

[19] 王美,刘浪,张波,等.矿山载/蓄冷功能性充填基础理论[J/OL].煤炭学报,2020,45(4):1336-1347.

[20] Li S F, Liu Z H, Wang X J. A comprehensive review on positive cold energy storage technologies and applications in air conditioning with phase change materials[J/OL]. Applied Energy, 2019, 255: 113667.

[21] Sepehri A, Nelson B. Energy and emissions analysis of ice thermal energy storage in the western US[J/OL]. Energy and Buildings, 2019, 202: 109393.

[22] Du Pessisl G E, LIEBENBERG L, MATHEWS E H. Case study: The effects of a variable flow energy saving strategy on a deep-mine cooling system[J/OL]. Applied Energy, 2013, 102: 700-709.

[23] Tao L N. The Stefan Problem With an Imperfect Thermal Contact at the Interface[J/OL]. Journal of Applied Mechanics, 1982, 49(4): 715-720.

[24] Nandi S, Sanyasiraju Y V S S. A second order accurate fixed-grid method for multi-dimensional Stefan problem with moving phase change materials[J/OL]. Applied Mathematics and Computation, 2022, 416: 126719.

[25] Goto T, Suzuki M. Analysis of transient heat conduction with phase changes by a boundary integral equation method[J/OL]. Nuclear Engineering and Design, 1996, 162(2-3): 317-324.

[26] Ahmad M, Bontemps A, Sallee H, et al. Experimental investigation and computer simulation of thermal behaviour of wallboards containing a phase change material[J]. Energy and Buildings, 2006: 10.

[27] Trp A. An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit[J/OL]. Solar Energy, 2005, 79(6): 648-660.

[28] Lamberg P, Lehtiniemi R, Henell A M. Numerical and experimental investigation of melting and freezing processes in phase change material storage[J/OL]. International Journal of Thermal Sciences, 2004, 43(3): 277-287.

[29] Liu Q, Wang X, Feng X B, et al. An enthalpy-based cascaded lattice Boltzmann method for solid-liquid phase-change heat transfer[J/OL]. Applied Thermal Engineering, 2022, 209: 118283.

[30] Bonacina C, Comini G, Fasano A. Numerical solution of phase-change problems[J]. International Journal of Heat & Mass Transfer, 1973, 16(10): 1825-1832.

[31] Dietrich Schmidt. Methodology for the Modelling of Thermally Activated Building Components in Low Exergy Design[D]. Stockholm: Division of Building Technology,KTH, 2004.

[32] Cao Y, Faghri A. Numerical analysis of phase-change problems including natural convection[J]. Journal of Heat Transfer, 1990, 3(3): 812-816.

[33] 陈友明,王盛卫.建筑围护结构非稳定传热分析新方法[M].科学出版社.北京,2004.

[34] Barbour J P, Hittle D C. Modeling Phase Change Materials with Conduction Transfer Functions for Passive Solar Applications[J]. 2006, 128(1): 81-92.

[35] Mirzaei P A, Haghighat P. Modeling of phase change materials for applications inwhole building simulation[J]. Renewable & Sustainable Energy Reviews, 2012, 16(16): 5355-5362.

[36] 严天,徐新华,高佳佳.相变平板简化热容热阻动态模型[J].重庆大学学报,2018,41(07):30-36.

[37] 张诚.混凝土辐射供冷非稳态传热简化模型构建及相关研究[D].天津大学,2010.

[38] James B. Energy Consumption Characteristics of Commercial BuildingHVAC Systems Volume lII: Energy Savings Potential[R]. DOE, 2002.

[39] Mumma. Dedicated Outdoor Air in Parallel with Chilled Ceiling System[J]. Engineered Systems, 2001, 42(3): 56-66.

[40] Gwerder M, Lehmann B, Todtli J. Control of thermally-activated building systems[J]. Applied Energy, 2008, 85(7): 565-581.

[41] 张川燕,王子介.辐射供冷地面对围护结构内表面温度及室内热舒适的影响[J].建筑科学,2008,24(10).

[42] Zhang L, Liu X H, Jiang Y. Simplified calculation for cooling/heating capacity, surface temperature distribution of radiant floor[J/OL]. Energy and Buildings, 2012, 55: 397-404.

[43] Rijksen D O, Wisse C J, Van Schijndel A W M. Reducing peak requirements for cooling by using thermally activated building systems[J]. Energy and Buildings, 2012, 55: 397-404.

[44] Zhao K, Liu X, Jiang Y. Application of radiant floor cooling in a large open space building with high-intensity solar radiation[J]. Energy and Buildings, 2013, 66.

[45] 黎艳.地板辐射供冷系统特性研究[D/OL].太原理工大学,2011.

[46] Chuangchid P, Krarti M. Foundation heat loss from heated concrete slab-on-gradefloors[J]. Building and Environment, 2001, 36: 637-655.

[47] Song D, Kim T, SONG S, et al. Performance evaluation of a radiant floor cooling system integrated with dehumidified ventilation[J/OL]. Applied Thermal Engineering, 2008, 28(11-12): 1299-1311.

[48] 古家安,吴会军.不同相变材料夹层的辐射供冷板传热性能模拟研究[J/OL].低温与超导,2022,50(10):40-50+57.

[49] 陈伟,涂敏,谭跃龙,等.冷辐射板优化措施分析[J/OL].上海节能,2023(2):155-162.

[50] 孙希奎,李学华,程为民.矿井冰水冷辐射降温技术研究[J].采矿与安全工程学报,2009,26(1):105-109.

[51] 张会听,袁东升,江凌枝.关于梁北煤矿冰冷低温辐射降温系统的设计[J/OL].科技资讯,2011(1):32-34.

[52] Wang M, Liu P, Shang S Y, et al. Numerical and experimental studies on the cooling performance of backfill containing phase change materials[J/OL]. Building and Environment, 2022, 218: 109155.

[53] 丁业凤,冯劲梅,蔡加熙.基于CFD的通风辐射供暖系统特性研究[J/OL].区域供热,2021(6):26-36.

[54] 杨博文.对流—辐射热交换下封闭空间环境热场变化研究[D/OL].哈尔滨工程大学,2019.

[55] Miriel J, Serres L, Trombe A. Radiant ceiling panel heating–cooling systems: experimental and simulated study of the performances, thermal comfort and energy consumptions[J/OL]. Applied Thermal Engineering, 2002, 22(16): 1861-1873.

[56] Fort K. Floor heating and hypocaust[D]. Stuttgart many: Transsolar Energietechnik GmbH, 1999.

[57] Barton P, Beggs C B, SLEIGH P A. A theoretical study of the thermal performance of the Term Deck hollow core slab system[J/OL]. Applied Thermal Engineering, 2002, 22(13): 1485-1499.

[58] Babiak J, Minarova M, Olesen B. What is the effective thickness of a thermally activated concrete slab[R]. Proceedings of Clima 2007 Wellbeing Indoors, 2007.

[59] Ren M J, Wright J A. A ventilated slab thermal storage system model[J/OL]. Building and Environment, 1998, 33(1): 43-52.

[60] Schmidt, Johannesson. Approach for Modelling of Hybrid Heating and Cooling Components with Optimised RC Networks[J]. Nordic Journal of BuildingPhysics, 2002, 3(2): 13-47.

[61] 张家熔.地板辐射供冷空间传热过程RC网络模型构建及实验验证[D].辽宁工程技术大学,2019.

[62] Paschkis V, Baker H D. A method for determining unsteady state heat transfer by means of an electrical analogy[J]. Transactions of the American Society of Mechanical Engineers, 1942, 4(64): 105-112.

[63] Akander J. The ORC Method-Effective Modelling of thermal Performance of multilayer Building Components[D]. Stockholm: KTH-Division of Building Technology, 2000.

[64] Weber T, JÓHANNESSON G. An optimized RC-network for thermally activated building components[J/OL]. Building and Environment, 2005, 40(1): 1-14.

[65] Liu K, Tian Z, Zhang C, et al. Establishment and validation of modified star-type RC-network model for concrete core cooling slab[J/OL]. Energy and Buildings, 2011, 43(9): 2378-2384.

[66] 李安邦,徐新华.内嵌管式辐射地板的RC简化传热模型研究[J/OL].华中科技大学学报(自然科学版),2014,42(12):16-20.

[67] 袁玉洁.内嵌管式围护结构间歇供冷房间热过程RC网络模型构建及热响应研究[D/OL].长安大学, 2016.

[68] 李念平,潘楚阳,黄小君,等.基于RC简化传热模型的混凝土辐射顶板传热及供冷能力研究[J/OL].湖南大学学报(自然科学版), 2017, 44(03):145-150.

[69] Wang Z, Chen Y, Li Y. Development of RC model for thermal dynamic analysis of buildings through model structure simplification[J/OL]. Energy and Buildings, 2019, 195: 51-67.

[70] 杨清晨,于靖华,王彪彪,等.相变通风屋面简化动态热网模型研究[J].建筑热能通风空调,2020,39(07):12-15+11.

[71] Neumann H, Gamisch S, Gschwander S. Comparison of RC-model and FEM-model for a PCM-plate storage including free convection[J/OL]. Applied Thermal Engineering, 2021, 196: 117232.

[72] Minaei A, Talee Z, Safikhani H, et al. Thermal resistance capacity model for transient simulation of Earth-Air Heat Exchangers[J/OL]. Renewable Energy, 2021, 167: 558-567.

[73] 徐侃,徐新华,严天.内嵌管式相变顶板简化传热模型研究[J/OL].西安建筑科技大学学报(自然科学版),2021,53(06):897-903.

[74] Zhu N, Wang S, Xu X, et al. A simplified dynamic model of building structures integrated with shaped-stabilized phase change materials[J/OL]. International Journal of Thermal Sciences, 2010, 49(9): 1722-1731.

[75] Morris G D. Building Heat Transfer[M]. Liverpool, UK: John Wiley &Sons Ltd, 2004.

[76] Lu H, Qi C, Chen Q, et al. A new procedure for recycling waste tailings as cemented paste backfill to underground stopes and open pits[J/OL]. Journal of Cleaner Production, 2018, 188: 601-612.

[77] Qi C, Chen Q, Fourie A, et al. Constitutive modelling of cemented paste backfill: A data-mining approach[J/OL]. Construction and Building Materials, 2019, 197: 262-270.

[78] Teruel F E, Díaz L. Calculation of the interfacial heat transfer coefficient in porous media employing numerical simulations[J/OL]. International Journal of Heat and Mass Transfer, 2013, 60: 406-412.

[79] 刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用[M].北京:科学出版社,2006.

[80] 郭宽良,孔祥谦,陈善年.计算传热学[M].合肥:中国科技大学出版社,1988.

[81] 李显宏.MATLAB 7.x 界面设计与编程技巧[M].电子工业出版社.北京,2006.

[82] Vaz J, Sattler M A, Dos Santos E D, et al. Experimental and numerical analysis of an earth–air heat exchanger[J/OL]. Energy and Buildings, 2011, 43(9): 2476-2482.

[83] 李娜,于恩强.石蜡相变材料在建筑领域的研究与应用进展[J/OL].山东化工,2021,50(9):57-58.

[84] 李佳玉,王信刚,雷宇轩,等.Nano-Al2O3改性石蜡相变微胶囊的热性能及作用机理[J].南昌大学学报(理科版),2023,47(2):141-147.

[85] Wang M, Liu P, Jia Y, et al. Orthogonal Experimental Study on Heat Transfer Optimization of Backfill Slurry with Ice Particles[J/OL]. Advances in Civil Engineering, 2021, 2021: 1-14.

[86] Akander J. The ORC Method – Effective Modelling of Thermal Performance of Multilayer Building Components[D]. Stockholm: KTH-Division of Building Technology, 2000.

[87] Olesen B W, Michel E. Heat exchange coefficient between floor surface and space by floor cooling—theory or a question of definition[J]. ASHRAE Transactions, 2000, 106: 684-694.

[88] Jeong J W, Mumma S A. Ceiling radiant cooling panel capacity enhanced by mixed convection in mechanically ventilated spaces[J/OL]. Applied Thermal Engineering, 2003, 23(18): 2293-2306.

[89] 王培.埋构式地板辐射供冷系统传热特性研究[D/OL].青岛理工大学,2022.

[90] 陶文铨.传热学[M].5 版.北京:高等教育出版社,2019.

[91] Wang M, Liu P, Liu L, et al. The impact of the backfill direction on the backfill cooling performance using phase change materials in mine cooling[J/OL]. Renewable Energy, 2022, 201: 1026-1037.

[92] Cengel Y A, Ghajar A J. Heat and mass transfer[M]. 4th ed. New York: McGraw-Hill, 2011.

[93] Min H B, Schutrum L F, PARMELEE G V, et al. Natural convection and radiation in a panel-heated room[J]. ASHRAE Transactions, 1956, 62(1): 337-358.

[94] Zhang L, Liu X H, Jiang Y. Simplified calculation for cooling/heating capacity, surface temperature distribution of radiant floor[J/OL]. Energy and Buildings, 2012, 55: 397-404.

中图分类号:

 TD853.34    

开放日期:

 2024-06-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式