论文中文题名: | 冻融裂隙岩体动态力学特性及损伤模型 |
姓名: | |
学号: | 19201106035 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0801 |
学科名称: | 工学 - 力学(可授工学、理学学位) |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 岩体力学理论与应用 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2022-06-21 |
论文答辩日期: | 2022-06-07 |
论文外文题名: | Dynamic Mechanical Properties and Damage Model of Freeze-Thaw Fractured Rock Mass |
论文中文关键词: | |
论文外文关键词: | crack rock mass ; freeze thaw cycles ; dynamic mechanical properties ; damage evolution ; constitutive model |
论文中文摘要: |
随着国家基础设施建设的发展及“一带一路”战略的推进,寒区工程建设的数量及规模在不断增加,冻融灾害成为影响寒区工程建设的首要问题。而实际工程中,岩体不仅存在裂隙、节理等诸多天然初始损伤,所承受的荷载也越来越复杂,包括冲击、爆破、地震等动荷载作用。因此,为揭示冻融损伤、裂隙损伤及动荷载损伤对岩体强度、变形和损伤破坏等力学效应的影响,本文开展完整及裂隙红砂岩的冻融循环试验和冲击压缩试验,研究其动态力学行为。基于统计损伤理论和元件模型理论,建立冻融岩石动态损伤演化方程及本构模型;进而考虑裂隙损伤的影响,构建冻融裂隙岩体动态损伤演化方程及本构模型。主要研究内容及结论如下: (1) 对饱水状态下的完整岩样和0°、45°的裂隙岩样分别进行冻融循环试验,当冻融次数达到0次、10次、20次、40次时,再进行4组不同应变率下的SHPB冲击压缩试验,研究裂隙倾角、冻融次数及应变率对岩体动态破坏行为的影响。试验表明:岩石的冻融损伤过程是由表及里进行的,劣化模式可以归纳为:颗粒剥落模式、片状剥落模式及块状剥落模式;冲击荷载作用下,冻融裂隙红砂岩的应力-应变曲线总体趋势基本一致,可划分为三个阶段:弹性变形阶段、塑性变形阶段和损伤破坏阶段,整个变形破坏过程中表现出明显的弹塑性变形特征以及粘性特征。 (2) 根据岩石SHPB冲击压缩变形破坏全过程特征,考虑岩石材料的非均匀性质,基于统计损伤理论和元件模型理论,建立冻融岩石动态损伤本构模型,理论表征冻融损伤与动荷载损伤的耦合效应及其诱发的宏观力学响应,揭示不同冻融循环次数及应变率下岩石的损伤破坏机制。结果表明:冻融因子、动荷载因子共同作用使岩石总损伤加剧,但其耦合作用又使得总损伤有所弱化;损伤模型理论曲线与试验曲线吻合良好,能够准确描述冻融循环作用下岩石的动态变形破坏过程,验证了模型的可靠性。 (3) 考虑裂隙倾角的影响,将动荷载作用下冻融裂隙岩体等效为预制裂隙引起的初始损伤及预制裂隙后冻融-动荷载引起的总损伤,建立以裂隙倾角、冻融循环次数和应变率为控制变量的冻融裂隙岩体动态损伤演化方程和损伤本构模型。研究表明:裂隙初始损伤、冻融损伤和动荷载损伤三者共同作用使岩体总损伤加剧,但任意两种损伤的耦合效应又使总损伤有所弱化,从细观损伤演化角度揭示了三种损伤耦合作用下的非线性响应和宏观变形破坏特征;该模型理论曲线与试验曲线取得了较好的一致性,反映了冻融、裂隙以及动荷载对岩石材料损伤扩展相互耦合、相互影响的非线性特性。 |
论文外文摘要: |
With the development of national infrastructure construction and the promotion of the Belt and Road Initiative, the number and scale of construction projects in cold regions are increasing, and freeze-thaw disasters have become the primary issue affecting the construction of projects in cold regions. In practical engineering, rock mass not only has many natural initial damages such as cracks and joints, but also bears more and more complex loads, including dynamic loads such as impact, blasting and earthquake. Therefore, to reveal the influence of freeze-thaw damage, crack damage and dynamic load damage on the mechanical effects of rock mass strength, deformation and damage, this paper carried out the freeze-thaw cycle test and impact compression test of intact and crack red sandstone to study its dynamic mechanical behavior. Based on statistical damage theory and component model theory, the dynamic damage evolution equation and constitutive model of freeze-thaw rock are established. Then considering the influence of fracture damage, the dynamic damage evolution equation and constitutive model of freeze-thaw fractured rock mass are constructed.The main research contents and conclusions are as follows : (1) Complete rock samples under saturated condition and 0°, 45° crack rock samples were subjected to freeze-thaw cycles. When the number of freeze-thaw cycles reached 0, 10, 20 and 40 times, four groups of SHPB impact compression tests under different strain rates were carried out to study the effects of fracture inclination, freeze-thaw cycles and strain rate on the dynamic failure behavior of rock mass. The test shows that the freeze-thaw damage process of rock is carried out from the surface to the inside, and the degradation modes can be summarized as particle spalling mode, flake spalling mode and block spalling mode. Under impact load, the overall trend of stress-strain curve of freeze-thaw fractured red sandstone is basically the same, which can be divided into three stages: elastic deformation stage, plastic deformation stage and damage and failure stage. The whole deformation and failure process shows obvious elastic-plastic deformation characteristics and viscous characteristics. (2) According to the whole process characteristics of rock SHPB impact compression deformation and failure, considering the non-uniformity of rock materials, based on statistical damage theory and component model theory, the dynamic damage constitutive model of freeze-thaw rock is established. The coupling effect of freeze-thaw damage and dynamic load damage and the macroscopic mechanical response induced by freeze-thaw damage are theoretically characterized, and the damage and failure mechanism of rock under different freeze-thaw cycles and strain rates are revealed. The results show that the combined action of freeze-thaw factor and dynamic load factor aggravates the total damage of rock, but its coupling effect weakens the total damage. The theoretical curve of damage model is in good agreement with the experimental curve, which can accurately describe the dynamic deformation and failure process of rock under the action of freeze-thaw cycle, and verify the reliability of the model. (3) Considering the influence of crack inclination angle, the freeze-thaw fractured rock mass under dynamic load is equivalent to the initial damage caused by prefabricated cracks and the total damage caused by freeze-thaw-dynamic load after prefabricated cracks. The dynamic damage evolution equation and damage constitutive model of freeze-thaw crack rock mass are established with crack inclination angle, freeze-thaw cycles and strain rate as control variables. The results show that the initial crack damage, freeze-thaw damage and dynamic load damage aggravates the total damage of rock mass, but the coupling effect of any two kinds of damage weakens the total damage. The nonlinear response and macroscopic deformation failure characteristics under the coupling effect of three kinds of damage are revealed from the perspective of microscopic damage evolution. The theoretical curve of the model is in good agreement with the experimental curve, reflecting the nonlinear characteristics of the coupling and mutual influence of freeze-thaw, cracks and dynamic load on the damage expansion of rock materials. |
参考文献: |
[1] 候超,靳晓光,何杰,等.基于最大拉应变准则的冻融岩石损伤模型研究 [J/OL].西 南交通大学学报,2022,1-11. [2] 吴洋.冻融循环下类岩石材料强度、损伤及蠕变特性研究 [D].青岛:青岛科技大学,2018. [3] 蔡美峰,何满潮,刘东燕.岩石力学与工程 [M].北京:科学出版社,2013. [4] 刘红岩,张利民,苏天明,等.节理岩体损伤本构模型及工程应用 [M].北京:冶金工业出版社,2016. [11] 裴向军,蒙明辉,袁进科,等.干燥及饱水状态下裂隙岩石冻融特征研究 [J].岩土力学,2017,38(07):1999-2006. [12] 路亚妮,李新平,吴兴宏.单轴压缩条件下裂隙岩样冻融损伤破坏模式分析 [J].冰川冻土,2017,39(02):351-357. [13] 申艳军,杨更社,王铭,等.冻融–周期荷载下单裂隙类砂岩损伤及断裂演化试验分析 [J].岩石力学与工程学报,2018,37(03):709-717. [14] 赵建军,解明礼,余建乐,等.冻融作用下含裂隙岩石力学特性及损伤演化规律试验研究 [J].工程地质学报,2019,27(06):1199-1207. [15] 刘艳章,郭赟林,黄诗冰,等.冻融作用下裂隙类砂岩断裂特征与强度损失研究 [J].岩土力学,2018,39(S2):62-71. [16] 李平,唐旭海,刘泉声,等.双裂隙类砂岩冻胀断裂特征与强度损失研究 [J].岩石力学与工程学报,2020,39(01):115-125. [17] 乔趁,王宇,宋正阳,等.饱水裂隙花岗岩周期冻胀力演化特性试验研究 [J] .岩土力学,2021,42(08):2141-2150. [20] 阎锡东,刘红岩,邢闯锋,等.基于微裂隙变形与扩展的岩石冻融损伤本构模型研究 [J].岩土力学,2015,36(12):3489-3499. [21] 陈松,乔春生,叶青,等.冻融荷载下节理岩体的复合损伤模型 [J].哈尔滨工业大学学报,2019,51(02):100-108. [22] 袁小清,刘红岩,刘京平.冻融荷载耦合作用下节理岩体损伤本构模型 [J].岩石力学与工程学报,2015,34(08):1602-1611. [23] 李新平,路亚妮,王仰君.冻融荷载耦合作用下单裂隙岩体损伤模型研究 [J].岩石力学与工程学报,2013,32(11):2307-2315. [24] 徐拴海,李宁,王晓东,等.露天煤矿冻岩边坡饱和砂岩冻融损伤试验与劣化模型研究 [J].岩石力学与工程学报,2016,35(12):2561-2571. [32] 张雨霏,李建春,闫亚涛,等.基于SHPB试验的粗糙节理面动态损伤特征研究 [J].岩土力学,2021,42(02):491-500. [33] 王卫华,李坤,王小金,等.SHPB加载下含不同倾角裂隙的类岩石试样力学特性[J].科技导报,2016,34(18):246-250. [34] 李地元,韩震宇,孙小磊,等.含预制裂隙大理岩SHPB动态力学破坏特性试验研究 [J].岩石力学与工程学报,2017,36(12):2872-2883. [35] 潘博,汪旭光,徐振洋,等.节理角度对岩石材料的动态响应影响研究 [J].岩石力学与工程学报,2021,40(03):566-575. [36] 马芹永,苏晴晴,马冬冬,等.含不同节理倾角深部巷道砂岩SHPB动态力学破坏特性试验研究 [J].岩石力学与工程学报,2020,39(06):1104-1116. [37] 李淼,乔兰,李庆文.高应变率下预制单节理岩石SHPB劈裂试验能量耗散分析 [J].岩土工程学报,2017,39(07):1336-1343. [38] 李淼.节理岩体的动态力学特性及应力波传播特征的试验研究 [D].北京:北京科技大学,2018. [39] 吴浩,赵国彦,梁伟章,等.预制表面裂隙砂岩的动态力学特性及破坏模式 [J].中南大学学报(自然科学版),2019,50(02):350-359. [40] 王建国,郭延辉,张小华,等.冲击荷载下节理数对类岩石动力学特性的影响 [J].地下空间与工程学报,2017,13(S2):559-564. [41] 杨阳,杨仁树,王建国.节理厚度对岩石动力特性影响的模拟试验 [J].中国矿业大学学报,2016,45(02):211-309. [42] 李圳鹏,何文,吴贤振,等.节理厚度对应力波传播和动力特性影响的SHPB试验 [J].江西理工大学学报,2021,42(01):64-73. [43] 闫亚涛,李建春.节理粗糙度及吻合状态对岩体动态压缩特性影响的试验研究 [J].岩石力学与工程学报,2021,40(06):1132-1144. [44] 李淼,乔兰,周明,等.节理粗糙度对应力波传播的影响研究 [J].岩石力学与工程学报,2019,38(S1):2840-2847. [45] 杨建明,乔兰,李庆文,等.节理形态及吻合度对应力波传播影响试验 [J].哈尔滨工业大学学报,2019,51(11):194-200. [49] 刘红岩,杨艳,李俊峰,等.基于TCK模型的非贯通节理岩体动态损伤本构模型 [J].爆炸与冲击,2016,36(03):319-325. [50] 刘红岩,吕淑然,张力民.基于组合模型法的贯通节理岩体动态损伤本构模型 [J].岩土工程学报,2014,36(10):1814-1821. [51] 裴小龙.综合考虑宏、细观缺陷耦合的节理岩体动态损伤本构模型研究 [D].中国地质大学(北京),2015. [52] 杨艳,赵莹,刘红岩.单轴压缩下岩石动态细观损伤本构模型 [J].矿业研究与开发,2017,37(04):72-79. [53] 刘红岩,王新生,张力民,等.非贯通节理岩体单轴压缩动态损伤本构模型 [J].岩土工程学报,2016,38(03):426-436. [54] 刘红岩,李俊峰,裴小龙.单轴压缩下断续节理岩体动态损伤本构模型 [J].爆炸与冲击,2018,38(02):316-323. [55] 欧雪峰,张学民,张聪,等.冲击加载下板岩压缩破坏层理效应及损伤本构模型研究 [J].岩石力学与工程学报,2019,38(S2):3503-3511. [56] 孙清佩,张志镇,李培超,等.黑色页岩动载破坏的层理效应及损伤本构模型研究 [J].岩石力学与工程学报,2019,38(07):1319-1331. [57] 张力民.基于宏-细观缺陷耦合的裂隙岩体动态损伤本构模型研究 [D].北京科技大学,2016. [58] 邓正定,向帅,周尖荣,等.非贯通裂隙岩体损伤演化率相关性及变形特征 [J].爆炸与冲击,2019,39(08):118-129. [62] 陈世官.梯度冲击作用下冻结红砂岩的动力响应及损伤效应研究 [D].西安科技大学,2020. [63] 刘新宇,张先伟,岳好真,等.花岗岩残积土动态冲击性能的SHPB试验研究 [J] .岩土力学,2020,41(06):2001-2020. [64] 申艳军,杨更社,荣腾龙,等.岩石冻融循环试验建议性方案探讨 [J].岩土工程学报,2016,38(10):1775-1782. [65] 宋力,胡时胜.SHPB数据处理中的二波法与三波法 [J].爆炸与冲击,2005(04): 368-373. [66] 苏宏明,王磊,陈世官,等.中低应变率加载下弱胶结软岩动力学特性 [J].工程爆破,2020,26(05):21-29. [67] 闻磊,李夕兵,吴秋红,等.冻融循环作用下花岗斑岩动载强度研究 [J].岩石力学与工程学报,2015,34(07):1297-1306. [68] 秦越,王磊,苏宏明,等.白垩系冻结砂岩动态统计损伤本构关系研究 [J].工程爆破,2021,27(03):42-50. [69] 张慧梅,杨更社.冻融与荷载耦合作用下岩石损伤模型的研究 [J].岩石力学与工程学报,2010,29(03):471-476. [70] 张全胜,杨更社,任建喜.岩石损伤变量及本构方程的新探讨 [J].岩石力学与工程学报,2003(1):30-34. |
中图分类号: | TU452 |
开放日期: | 2022-06-24 |