论文中文题名: | 三相VIENNA整流器调制策略和中点平衡的研究 |
姓名: | |
学号: | 20206227122 |
保密级别: | 保密(1年后开放) |
论文语种: | chi |
学科代码: | 085800 |
学科名称: | 工学 - 能源动力 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 功率变换技术及应用 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-20 |
论文答辩日期: | 2023-06-01 |
论文外文题名: | Three-phase VIENNA Rectifier Modulation Strategy and Midpoint Balance |
论文中文关键词: | |
论文外文关键词: | VIENNA rectifier ; Improve SVPWM ; Hybrid modulation ; Midpoint voltage balance ; common-mode voltage |
论文中文摘要: |
在大功率AC/DC变换装置中,有源功率因数校正是必备环节,其中三相VIENNA整流器因其低电压应力、高可靠性和中点电位可控等优点而被广泛应用。VIENNA整流器普遍采用传统正弦脉宽调制策略(SVPWM),其使用七段式脉冲发波方式以及采用冗余小矢量方法改善电流谐波和抑制中点电位浮动,但因其共模电压较高、矢量合成过程复杂不适合高频大功率场合。断续脉宽调制(Discontinuous Pulse Width Modulation, DPWM)在SVPWM调制策略的基础上采用五段式的脉冲发波方式,在一个周期内将某一相开关管钳位在一种电平状态,使其开关次数减少,降低了开关损耗,并且在矢量合成的过程中减少基本矢量的个数,其共模电压相较于SVPWM降低了许多。但在该策略下的基本矢量较少,不可避免的会造成中点电压不平衡的问题。本文在SVPWM调制策略和DPWM调制策略的基础上做出以下研究: 1.提出了一种改进的SVPWM策略,该策略采用简化三电平SVPWM调制策略划分扇区的原理,按照60度为一个大扇区的方式重新对扇区进行划分;并通过新的60度坐标系和标幺化方法将基本矢量的坐标都变为整数,简化了参考矢量的合成过程。在功率因数为1的情况下,对每个大扇区内中矢量对中点电位的影响进行了整理,并计算了每个小扇区的中点电压平衡因子。因此可以在参考矢量合成过程中结合中点电压平衡因子去合理分配正负小矢量,从而实现中点电压平衡。 2.提出了一种混合调制策略,由于改进SVPWM在本质上还是通过冗余小矢量的方式去调节中点电压平衡,在该策略下的共模电压也和传统SVPWM调制策略相差不大。所以本文在DPWMA调制策略的基础上与改进SVPWM调制策略结合从而得到了混合调制策略。混合调制策略不仅具有DPWMA调制策略抑制共模电压的能力,而且还拥有改进SVPWM调制策略改善中点电位波动的能力。 根据以上研究内容,本文搭建了仿真模型,对比分析了DPWMA调制策略,改进SVPWM调制策略和混合调制策略在抑制共模电压和调节中点电位方面的差异,结果表明所提出的混合调制策略与改进SVPWM相比,共模电压明显降低;与DPWMA相比中点电位的波动范围限制在了±5V左右。制作了VIENNA整流器试验样机,对所提出的混合调制进行验证,结果表明:混合调制策略通过设置滞环参数可以同时具有调节中点电压平衡和抑制共模电压的能力,证明了混合调制策略的正确性和有效性。 |
论文外文摘要: |
In high power AC/DC converter, active power factor correction is necessary and has many topologies. The three.phase Vienna rectifier is widely used for its advantages of low voltage stress, high reliability and controllable mid.point potential. Vienna rectifier generally uses the traditional sinusoidal pulse.width modulation strategy(SVPWM), because it uses the seven.stage pulse wave mode and the redundant small vector method to improve the current harmonics and suppress the midpoint potential float, but because of its high common-mode voltage and complex vector synthesis process, it is not suitable for high frequency and high power situations. Discontinuous Pulse Width Modulation(DPWM) based on the SVPWM modulation strategy adopts five.stage pulse wave mode to clamp a phase switch pipe in a level state within one cycle, reducing the switching times and reducing the switching loss. And because the number of basic vectors is reduced in the process of vector synthesis, the common-mode voltage is much lower than that of SVPWM. However, there are fewer basic vectors under this strategy, which inevitably leads to the problem of unbalance voltage at the midpoint. Therefore, this paper makes the following research on the basis of SVPWM modulation strategy and DPWM modulation strategy: 1. An improved SVPWM strategy is proposed, which adopts the principle of sector division based on simplified three.level SVPWM modulation strategy, and redivides sectors according to the way that 60° is a large sector; The new 60° coordinate system and the normalization method change the coordinates of the basic vector into integers, so the synthesis process of the reference vector is simplified. In addition, when the power factor is 1, the influence of the medium vector in each large sector on the midpoint potential is sorted out, and the midpoint voltage balance factor of each small sector is calculated. Therefore, in the process of reference vector synthesis, the midpoint voltage balance factor can be combined to reasonably allocate positive and negative small vectors, so as to achieve midpoint voltage balance. 2. A hybrid modulation strategy is proposed. Because the improved SVPWM is in essence to adjust the midpoint voltage balance by means of redundant small vectors, the common-mode voltage under this strategy is not much different from the traditional SVPWM modulation strategy. Therefore, this paper combines the DPWMA modulation strategy with the improved SVPWM modulation strategy to obtain a hybrid modulation strategy. The hybrid modulation strategy not only has the ability of DPWMA modulation strategy to suppress common-mode voltage, but also has the ability of improving SVPWM modulation strategy to improve midpoint potential fluctuation. Based on the above research content, the simulink simulation model is designed in this paper, and the performance of DPWMA modulation strategy, improved SVPWM modulation strategy and hybrid modulation strategy in suppressing common-mode voltage and regulating midpoint potential is analyzed. The results show that compared with the improved SVPWM modulation strategy, The common-mode voltage was significantly reduced. Compared with DPWMA, the fluctuation range of midpoint potential was limited to ±5V. The VIENNA rectifier test prototype is made and the proposed hybrid modulation is verified. The results show that the hybrid modulation strategy can adjust the midpoint voltage balance and suppress the common-mode voltage by setting hysteresis parameters, which proves the correctness and effectiveness of the hybrid modulation strategy. |
参考文献: |
[1] 杨成顺,王鹏,许德智,戴宇辰,黄宵宁.基于灵活虚拟惯性控制的直流充电桩协同控制[J/OL].电力自动化设备:1-12[2023-05-24]. [2] 张阳. 基于电力线载波的充电桩群功率调控系统研究[D].北京:北京交通大学,2022. [3] 雷守中. 基于VIENNA整流器的电动汽车直流充电桩系统的研究[D].芜湖:安徽工程大学,2022. [4] 朱婧. 直流充电桩温度预测与控制系统开发[D].石家庄:石家庄铁道大学,2022. [5] 王郑凯. 直流充电桩整流器控制系统的研究与开发[D].西安:西安建筑科技大学,2022. [6] 吴春阳,黎灿兵,杜力,曹一家.电动汽车充电设施规划方法[J].电力系统自动化,2010,34(24):36-39+45. [7] 曾雅文,李娟,周捷,杨少林.电动汽车充电基础设施规划[J].电工技术,2020(09):30-33. [8] 王震坡.双碳目标下电动汽车有序充电与车网互动技术研究[J].电力工程技术,2021,40(05):1. [9] 付有良.直流充电系统三电平PWM整流器有限时间控制研究[D].济南:山东大学,2021. [10] 党超亮. 三相VIENNA整流器的控制策略研究与稳定性分析[D].西安:西安理工大学,2020. [11] 朱文杰. 三相三电平VIENNA整流器的控制策略研究[D].武汉:华中科技大学,2019. [12] 汪洋,吴越,杨青松,石健将.一种消除VIENNA整流器输入电流过零畸变的SVPWM调制方法[J].电源学报,2020,18(05):101-109. [13] 袁义生,张执钦,刘文钦.一种单相Vienna整流器及其控制方法[J/OL].电源学报:2023,21(2):9. [14] 李寅飞,张军,郑常宝.基于空间矢量调制的Vienna电路控制研究[J].电力电子技术,2013,47(12):87-89. [16] 许冠军,王聪.基于单周期控制的三相VIENNA整流器中点电压平衡控制策略[J].电源学报,2018,16(05):9-15. [17] 张杰楠,谢运祥,施泽宇.VIENNA整流器PI控制器参数设计方法[J].电气传动,2018,48(03):55-61. [18] 李胜. 直流充电桩的高功率因数VIENNA整流器的研究与设计[D].武汉:华中科技大学,2017. [19] 李胜,程浩.高功率因数VIENNA整流器的研究与设计[J].电力电子技术,2018,52(10):84-89. [20] 李新,曾庆辉,王俊波.三相Vienna整流器直接功率控制策略研究[J].电力电子技术,2015,49(11):90-92. [24] 侯丽楠,王聪,张衡,张潇.三相线电压级联VIENNA变换器原理及仿真分析[J].电源学报,2018,16(06):99-108. [25] 牛利勇,高瑞雪,王晓强.VIENNA整流器的指令电压辅助区间判断SVPWM控制[J].电机与控制学报,2016,20(05):45-52. [26] 严刚,杭丽君,姚文熙,吕征宇.三相四线VIENNA整流器及其数字控制策略研究[J].电力电子技术,2011,45(10):10-11+23. [27] 郑车晓,李林德,燕沙,刘嘉键.VIENNA整流器的重复控制实现[J].电力电子技术,2021,55(07):35-38+56. [28] 陈帅,奚志林,高桪,吴超.轻载条件下单相Vienna整流器的简化前馈控制[J].电力电子技术,2021,55(01):37-39. [32] 宋卫章,余丰,戴智豪,何忠祥,余虎,邢飞雄,严骅.带负载电流前馈的VIENNA整流器PR控制[J].电机与控制学报,2019,23(05):76-83. [33] 冯建波. VIENNA电路的整流技术研究[D].秦皇岛:燕山大学,2013. [34] 杨玉波,谢运祥.三电平Vienna整流器的一种简化SVPWM算法[J].电气应用,2015,34(11):54-57. [35] 杨道宽,王久和,李建国.不平衡电网下Vienna整流器混合无源控制研究[J].燕山大学学报,2019,43(05):408-416. [37] 周左,汪洋,李正明.基于占空比控制的Vienna整流器模型预测控制策略[J].电力系统保护与控制,2021,49(10):162-169. [38] 韩会山,靳晨聪,毕艳军.定频化VIENNA整流器模型预测电流控制[J].电气传动,2021,51(05):76-80. [39] 陈玉升,肖玲斐,丁润泽.基于VIENNA整流器的多电飞机直流负载稳定研究[J].电子器件,2019,42(02):422-426. [40] 张爽. 基于混合Vienna航空中频整流器的研究[D].成都:西华大学,2022. [41] 王超. 三相VIENNA整流器控制策略研究[D].西安:西安科技大学,2021. [45] 齐岐. 基于Vienna整流器与二极管桥式整流器的混合整流器研究[D].长春:长春工业大学,2020. [46] 林佳庆. VIENNA整流器的简化模态SVPWM控制策略研究与实现[D].广东:广东工业大学,2021. [47] 张豪,侯圣语.基于SVPWM的Vienna整流器矢量控制策略的研究[J].华北电力大学学报(自然科学版),2012,39(05):54-58. [51] 周奖,陆翔,权运良.VIENNA型三相三电平PWM整流器研究[J].科学技术与工程,2013,13(15):4159-4164. [52] 肖梁乐,陈昌松,王涛,段善旭.基于三电平SVPWM调制的Vienna整流器中点电压均衡控制[J].电源学报,2017,15(05):80-86+107. [53] 施泽宇. 三相Vienna整流器关键技术研究[D].广州:华南理工大学,2019. [54] 黄磊. 三相三电平VIENNA整流器设计与中点电压均衡研究[D].成都:西南交通大学,2019. [55] 裘迅,方宇,王儒,邢岩.三相高功率因数电压型PWM整流器控制策略[J].电工技术学报,2008(11):96-102. [59] 张先进,徐坚.单周控制三相4线制VIENNA整流器研究[J].电气传动,2009,39(12):31-33. [60] 宋卫章,黄骏,钟彦儒,汪丽娟.带中点电位平衡控制的Vienna整流器滞环电流控制方法[J].电网技术,2013,37(07):1909-1914. |
中图分类号: | TM46 |
开放日期: | 2024-06-21 |