论文中文题名: | 榆神府矿区富油煤组构特性及破碎强度试验研究 |
姓名: | |
学号: | 18204209050 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085213 |
学科名称: | 工学 - 工程 - 建筑与土木工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 煤岩力学 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2021-06-17 |
论文答辩日期: | 2021-06-01 |
论文外文题名: | Experimental Study on Structural Characteristics and Mechanical Behavior of Oil-rich Coal in Yushenfu Mining Area |
论文中文关键词: | |
论文外文关键词: | Oil-rich coal ; Microscopic composition ; Pore structure ; Mechanical properties ; Impact crushing ; Crushing mechanism |
论文中文摘要: |
富油煤通过热解技术可以转化为油、气和半焦,具有集煤、油、气资源属性于一体的特点,利用其提油炼气是弥补我国油气供给不足问题的重要措施。但陕北地区富油煤开采利用目前尚未形成规模化生产,其限制因素之一为:在目前采煤工艺下,开采出煤样含有大量粉煤、末煤,块煤产出率低,导致其低温干馏提取的油品杂质含量高。而提高富油煤块煤开采率,需系统化掌握陕北富油煤组构特性及破碎力学强度,以便为后期选取合理的开采工艺和方法提供基础性参考依据。据此,本文依托陕西省自然科学基金重点项目《陕北富油煤形成机理及清洁高效利用研究》(编号:2019JL-01),以榆神府矿区富油煤为研究对象,首先开展煤岩组分、工业成分及孔隙结构分析,系统掌握富油煤微-细观组构特性;随后,开展富油煤力学特性测试及冲击破碎强度试验,获取富油煤破碎强度力学特性;最后,基于富油煤组构特性及力学强度关联分析,明确影响开采破碎过程中富油煤块煤成形率的控制因素,进而揭示富油煤破碎动态演化机制。研究成果可对陕北地区富油煤开采工艺和方法选择提供基础性物理力学性质参考。主要研究成果包括: (1)基于榆神府矿区富油煤煤岩组分及工业成分分析,N22、H42、H52、Z52等多处煤样均为高挥发性煤,其典型特点为:挥发分占比均超过30%,固定碳占比>50%,而灰分与水分占比较小,仅不到10%。显微组分主要为镜质组与惰质组,壳质组与矿物成分占比少。 (2)基于榆神府矿区富油煤孔隙结构特性分析,煤样微孔极为发育,小孔次之、中孔及大孔发育程度低。但不同区域富油煤样各尺度下孔隙发育特征略有差异,以微孔为例,N22、H42、H52及Z52煤样微孔占比分别为73.4%、58%、76.3%、59.9%。采用不同的孔隙结构分析方法对比显示:液氮吸附法适合表征煤样微小孔隙特征,而压汞法适合表征煤样大尺度孔隙,核磁共振法则可表征煤样全孔径,但其与富油煤含水状况密切相关,不适合用于表征干燥状态或含水量低的富油煤孔隙结构。 (3)榆神府矿区富油煤静态力学性质存在一定差异,其中,抗压强度排序为N22煤样>H52煤样>H42煤样>Z52煤样,抗拉强度排序为N22煤样>H52煤样>Z52煤样> H42煤样,抗剪强度排序为N22煤样>H42煤样> H52煤样>Z52煤样。 (4)榆神府矿区富油煤抗冲击破碎能力整体呈现的规律为:在不同空间发育条件下,柠条塔煤样抗破碎能力最强,次之为红柳林及张家峁煤样;在不同煤层条件下,2-2煤层煤样抗破碎能力最好,5-2煤层的煤样抗破碎能力强于4-2煤层煤样。 (5)富油煤的组构特性对破碎力学强度具有较大影响,其中,灰分对煤样抗拉强度影响较大,呈现正相关关系;而惰质组、固定碳对煤样破碎力学性质均有影响,孔隙率对破碎力学强度影响最大。对静态力学而言,煤样抗拉强度是大尺寸煤样冲击破碎的主控力学指标,而抗压强度则对小尺寸煤样冲击破碎具有显著影响。 (6)煤样冲击破碎特征主要表现为局部破碎、整体破碎两种形式,其中,局部破碎随着煤样冲击高度的增加而增大,整体破碎则存在“破碎高度阈值”。 |
论文外文摘要: |
Oil-rich coal can be converted into oil, gas and semi-coke through pyrolysis technology. It contains the properties of coal, oil and gas. Using it to get oil and gas is an major step to solve the problem of insufficient oil and gas in China. However, the exploitation and utilization of oil-rich coal in northern Shaanxi has not yet formed large-scale production. One of the limiting factors is: under the current coal mining technology, the extracted coal covers much pulverized coal and fine coal, and the lump coal output rate is low. The oil extracted by low-temperature dry distillation has high impurity content. To improve the mining rate of oil-rich lump coal, it is necessary to systematically master the pore structure, composition and strength of the oil-rich coal in northern Shaanxi, and it can provide a basic parameter for the later improvement of mining techniques and methods. Accordingly, this article relies on the key project of Shaanxi Provincial of "Study on the Formation Mechanism and Nonpolluting and High-efficiency Utilization of Oil-rich Coal in Northern Shaanxi" (No.: 2019JL-01). First carry out the test of oil-rich coal in the Yushenfu area coal maceral, industrial composition and pore structure and systematically grasp the micro-micro fabric characteristics of rich oil coal; then, carry out the static mechanical test and impact crushing strength test of rich oil coal to obtain the mechanical characteristics of the crushing strength of rich oil coal; finally, based on The correlation analysis of the structural characteristics and mechanical strength of oil-rich coal is to clarify the controlling factors that affect the formation rate of oil-rich coal lump coal during the mining and crushing process, and then reveal the dynamic mechanism of oil-rich coal crushing. The research results can provide a basic parameter for the later improvement of mining techniques and methods in northern Shaanxi. The main research results include: (1) Based on the analysis of oil-rich coal composition and industrial composition in Yushenfu mining area, coal samples N22, H42, H52 and Z52 are all highly volatile coals, and their typical characteristics are: the proportion of volatile content exceeds 30%, the proportion of fixed carbon>50%, while the proportion of ash and moisture is relatively small, only less than 10%. The microscopic components are mainly vitrinite and inertite, and the chitin and mineral components account for a small proportion. (2) Based on the analysis of the pore test data of the oil-rich coal in the Yushenfu mining area, the coal samples have extremely developed micropores, followed by small pores, and low development degrees of microporous and mesopore. However, the pore development characteristics of oil-rich coal samples in different regions are slightly different at various scales. Taking micropores as an example, the proportions of micropores in N22, H42, H52, and Z52 coal samples are 73.4%, 58%, 76.3%, and 59.9%, respectively. The comparison of different pore structure analysis methods shows that the liquid nitrogen adsorption method is suitable for characterizing the micro-pore characteristics of coal samples, while the mercury intrusion method is suitable for characterizing the large-scale pores of coal samples, and the nuclear magnetic resonance method can characterize the full pores of coal samples, but it is better than oil-rich coal. The water content is closely related and is not suitable for characterizing the pore structure of oil-rich coals in a dry state or with low water content. (3) There are certain differences in the static mechanical properties of oil-rich coal in Yushenfu mining area. Among them, the compressive strength is ranked as N22 coal >H52 coal >H42 coal >Z52 coal, and the relationship between the tensile strength is H52 coal >Z52 coal. For coal sample>N22 coal sample>H42 coal, the order of shear strength is N22 coal >H42 coal >H52 coal sample>Z52 coal. (4) The overall appearance of the anti-shattering ability of oil-rich coal in Yushenfu mining area is as follows: Under different spatial development conditions, Ningtiaota coal samples have the strongest anti-fragmentation ability, followed by Hongliulin and Zhangjiamao coal samples; Under different coal seam conditions, the 2-2 coal seam has the best anti-fragmentation ability, and the 5-2 coal seam's anti-fragmentation ability is stronger than that of the 4-2 coal seam. (5) The structural characteristics of oil-rich coal have a great influence on the mechanical strength of crushing. Among them, tensile strength is greatly affected by ash; while the inert group and fixed carbon have influence on the mechanical properties of the coal sample. Both have an impact, and the porosity has the greatest impact on the crushing behavior. In terms of static mechanics, Impact crushing of large coal samples is mainly affected by tensile strength, while compressive strength have significant effects on impact crushing of small-size coal samples. (6) The characteristics of impact crushing of coal samples are mainly manifested in two forms: local crushing and whole crushing. Among them, the fragmentation height affects the local crushing of the coal sample, and whole crushing has a "threshold of crushing height". |
参考文献: |
[1] 王双明, 孙强, 乔军伟, 等. 论煤炭绿色开采的地质保障[J]. 煤炭学报, 2020, 45(01):8-15. [2] 刘洁. 我国煤炭国内贸易格局、影响因素及与经济增长关联研究[D]. 中国地质大学(北京), 2020. [3] 中国石油集团经济技术研究院. 2019年国内外油气行业发展报告[M]. 北京:石油工业出版社, 2020. [4] 程靖峰. 陕西富油煤资源量居全国之首榆林可“再造一个大庆油田”[N]. 陕西日报, 2019-11-30. [5] 起冰翠, 张荣曾. 关于煤孔隙特性的最新研究[J]. 煤质技术, 1997(02):25-27+32. [6] 蔺亚兵, 贾雪梅, 马东民. 基于液氮吸附法对煤的孔隙特征研究与应用[J]. 煤炭科学技术, 2016, 44(03):135-140. [7] 任会康, 王安民, 李昌峰, 等. 基于核磁共振技术的低阶煤储层孔隙特征研究[J]. 煤炭科学技术, 2017, 45(04):143-148. [8] 赵健光, 王猛, 马如英, 等. 基于压汞法对黔西青龙矿构造煤孔隙结构特征的研究[J/OL]. 煤炭科学技术:1-11. [9] 赵兴龙, 汤达祯, 许浩, 等. 煤变质作用对煤储层孔隙系统发育的影响[J]. 煤炭学报, 2010, 35(09):1506-1511. [11] 谢松彬, 姚艳斌, 陈基瑜, 等. 煤储层微小孔孔隙结构的低场核磁共振研究[J].煤炭学报, 2015, 40(S1):170-176. [12] 刘亚鹏. 高阶煤孔裂隙特征及其影响因素的低场核磁共振实验研究[D]. 河南理工大学, 2017. [13] 杨明, 刘亚鹏. 高阶煤孔隙特征的低场核磁共振实验研究[J]. 中国安全生产科学技术, 2016, 12(11):63-69. [15] 吴见, 汤达祯, 李松, 等. 鄂尔多斯盆地东缘煤储层孔隙结构特征差异及影响因素[J]. 煤田地质与勘探, 2017, 45(05):58-65. [18] 薛光武, 刘鸿福, 要惠芳, 等. 韩城地区构造煤类型与孔隙特征[J].煤炭学报, 2011, 36(11):1845-1851. [19] 杨甫, 贺丹, 马东民, 等. 低阶煤储层微观孔隙结构多尺度联合表征[J].岩性油气藏, 2020, 32(03):14-23. [22] 王晓卿, 康红普, 高富强, 等. 大尺寸节理煤体单轴压缩力学行为的离散元模拟研究[J]. 煤炭学报, 2018, 43(11):3088-3097. [23] 于振锋, 郝春生, 邵显华, 等. 阳泉寺家庄井田含煤地层煤层测井密度模型和有效孔隙度计算[J]. 煤炭工程, 2019, 51(01):82-86. [24] 严康, 韦乐乐, 马东民, 等. 彬长矿区煤岩孔隙特征的实验研究[J]. 煤炭技术, 2015, 34(10):98-100. [25] 段旭琴, 曲剑午, 王祖讷. 低变质烟煤有机显微煤岩组分的孔结构分析[J]. 中国矿业大学学报, 2009, 38(02):224-228. [26] 陆春辉. 深部煤层稳定性与煤岩体力学性质的研究[D]. 安徽理工大学, 2011. [27] 雷顺, 高富强, 王晓卿. 煤体单轴抗压强度统计与强度分级研究[J/OL]. 煤炭科学技术:1-14[2021-03-20]. [28] 顾小愚, 钟心. 无烟煤的物理性质对其型煤抗压强度的影响[J]. 煤炭转化, 2009, 32(02):71-74. [29] 杨宏民, 郭怀广, 仇海生. 水分对煤体物性参数影响试验研究[J]. 中国安全科学学报, 2016, 26(09):67-72. [32] 郭保华, 司凯, 郭文兵. 煤样的尺寸、形状及锚固效应[J]. 地下空间与工程学报, 2015, 11(06):1483-1490. [33] 宋良, 刘卫群, 靳翠军, 等. 含瓦斯煤单轴压缩的尺度效应实验研究[J]. 实验力学, 2009, 24(02):127-132. [34] 李彦伟, 姜耀东, 杨英明,等. 煤单轴抗压强度特性的加载速率效应研究[J]. 采矿与安全工程学报, 2016,33(04):754-760. [37] 吴志刚, 康红普, 李文洲, 等.不同取样深度对煤体力学性能及变化规律的实验室研究[J].煤矿开采,2017,22(05):1-4. [38] 雷顺, 康红普, 高富强, 等. 破碎煤体点载荷强度测试及单轴抗压强度预测分析[J].煤炭科学技术,2019,47(04):107-113. [39] Broch E, Franklin JA (1972) Point load strength test. Int J Rock Mech Min Sci 9(6):669–697. [40] 闫立宏, 吴基文. 淮北杨庄煤矿煤的抗拉强度试验研究与分析[J]. 煤炭科学技术, 2002, 30(005):39-41. [41] 林峰, 荣浩宇. 松软煤体巴西劈裂试验研究及应用[J].煤矿安全,2017,48(05):61-63+68. [43] 成乾龙. 剪切速率及法向应力对煤散体抗剪强度影响研究[J].中国安全生产科学技术,2019,15(03):81-85. [45] 赵科, 康红普, 王晓卿, 等. 晋城无烟煤结构面剪切参数的试验测定与估算方法[J].煤炭学报, 2018,43(09):2432-2437. [46] 周鹏, 张博. 极松软煤层抗剪强度的水敏性试验研究[J]. 煤炭科学技术, 2017,45(05):103-108. [47] 孙佳楠, 范超. 含水率及粒径对煤的抗剪强度影响研究[J].煤炭技术,2017,36(01):184-187. [48] 张峰伟, 茹毅, 张海军. 不同破碎方式下重选中煤破碎效果研究[J].煤炭技术,2017,36(02):303-306. [49] 蔡成功, 熊亚选. 突出危险煤破碎功理论与实验研究[J]. 煤炭学报, 2005(01):63-66. [50] 张宪尚, 刘军, 刘金根. 落锤法冲击次数对颗粒煤粒度分布规律的影响[J].煤矿安全,2020,51(04):61-65. [51] 张天军, 陈佳伟, 包若羽, 等. 不同浸水时间级配破碎煤样的粒度分布分形特征[J].采矿与安全工程学报,2018,35(03):598-604. [52] 印万忠, 侯英, 丁亚卓, 等. 破碎方式对邦铺钼铜矿石可磨性及钼浮选的影响[J].金属矿山,2013,2:86-89. [53] 段乐珍, 徐国元, 朱成忠. 冲击破岩时破碎区扩展规律数值模拟[J].中南工业大学学报,1998(05):20-23. [54] 侯英, 印万忠, 丁亚卓, 等. 不同破碎方式下产品磨矿动力学方程的对比研究[J].有色金属(选矿部分),2014,4:70-74. [53] 李德, 李守巨, 于申, 等. 压头作用下岩石破碎过程分形特性研究[J].岩土工程学报,2013,35(S2):314-319. [55] 涂新斌, 王思敬, 岳中琦. 风化岩石的破碎分形及其工程地质意义[J]. 岩石力学与工程学报, 2005(04):587-595. [56] 刘鑫. 岩石的动态特性及其破碎特征分析[D].辽宁科技大学,2016.. [57] 吴发名, 刘勇林, 李洪涛, 等. 基于原生节理统计和爆破裂纹模拟的堆石料块度分布预测[J]. 岩石力学与工程学报, 2017, 36(006):1341-1352. [58] 王家臣, 白希军, 吴志山, 等. 坚硬煤体综放开采顶煤破碎块度的研究[J]. 煤炭学报, 2000, 25(3):238-242. [59] 王家臣, 熊道慧, 方君实. 矿石自然崩落块度的拓扑研究[J]. 岩石力学与工程学报, 2001, 20(004):443-443. [61] 单晓云, 李占金. 分形理论和岩石破碎的分形研究[J]. 河北联合大学学报(自然科学版), 2003, 25(2):11-17. [62] 王双明, 申艳军, 孙强, 等. 西部生态脆弱区煤炭减损开采地质保障科学问题及技术展望[J/OL]. 采矿与岩层控制工程学报:1-15. [63] 张憧. 低渗透煤层孔隙结构的分形特征及力学性质研究[D]. 西安科技大学,2015. [64] 李彦举. 基于恒速压汞的孔隙结构特征研究[D]. 中国地质大学(北京),2014. [65] 王永志. 冻融诱发砂岩-混凝土界面损伤脱粘细观机制及力学模型研究[D].西安科技大学,2020. [66] 李阳, 张玉贵, 张浪, 等. 基于压汞、低温N2吸附和CO2吸附的构造煤孔隙结构表征[J]. 煤炭学报, 2019, 44(04):1188-1196. [67] 张春旺, 李绍泉. 低渗透煤的孔隙结构特征及其瓦斯吸附特性[J]. 煤矿安全, 2019, 50(01):29-32. [68] 李焕同, 陈飞, 邹晓艳, 等. 基于低温液氮吸附法的陕南中低煤级煤孔隙结构特征[J]. 中国科技论文, 2019, 14(07):808-814. [69] 张憧. 低渗透煤层孔隙结构的分形特征及力学性质研究[D].西安科技大学,2015. [71] 刘彦飞, 汤达祯, 许浩, 等. 基于核磁共振的煤岩孔裂隙应力变形特征[J]. 煤炭学报, 2015, 040(006):1415-1421. [72] 邓涛, 杨林德, 韩文峰. 加载方式对大理岩碎块分布影响的试验研究[J]. 同济大学学报:自然科学版,2007,35(1):10-14. [73] 谢和平. 分形岩石力学导论[M]. 北京:科学出版社,1997:242-243. [74] 何满潮, 杨国兴, 苗金丽, 等. 岩爆实验碎屑分类及其研究方法[J]. 岩石力学与工程学报,2009,28(8):1521-1529. [75] 姜永东, 郑权, 刘浩, 等.煤体破碎能的实验研究[J].矿业安全与环保2013,40(03):13-16. [76] 黄达, 谭清, 黄润秋. 高围压卸荷条件下大理岩破碎块度分形特征及其与能量相关性研究[J].岩石力学与工程学报,2012,31(07):1379-1389. [77] 刘浩, 黄文辉, 敖卫华, 等. 沁南3~#煤与15~#煤显微煤岩组分对微裂隙的控制研究[J].资源与产业, 2012,14(04):75-81. [78] 刘喜武. 弹性波场论基础[M]. 青岛:中国海洋大学出版社,2008. |
中图分类号: | TU458 |
开放日期: | 2021-06-17 |