论文中文题名: |
真三轴应力下含瓦斯煤体解吸渗流与变形规律及应用
|
姓名: |
秦澳立
|
学号: |
21220226155
|
保密级别: |
保密(1年后开放)
|
论文语种: |
chi
|
学科代码: |
085700
|
学科名称: |
工学 - 资源与环境
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2024
|
培养单位: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全工程
|
研究方向: |
矿井瓦斯防治
|
第一导师姓名: |
李树刚
|
第一导师单位: |
西安科技大学
|
第二导师姓名: |
林海飞
|
论文提交日期: |
2024-06-17
|
论文答辩日期: |
2024-06-01
|
论文外文题名: |
The law and application of desorption seepage and deformation of gas containing coal under true triaxial stress
|
论文中文关键词: |
三轴应力 ; 解吸渗流 ; 煤体变形 ; 多场耦合 ; 瓦斯抽采
|
论文外文关键词: |
Triaxial stress ; Desorption seepage ; Coal deformation ; Multi-field coupling ; Gas drainage
|
论文中文摘要: |
︿
煤炭作为我国主体能源,承担着维护能源安全的重要责任。随着煤炭资源开采向深部的转移,地应力、瓦斯压力增大导致煤矿开采瓦斯事故风险增大,严重限制了煤矿安全生产。为降低瓦斯危害,煤层钻孔预抽成为矿井瓦斯灾害防治的首选手段,而实际煤层处于三向不等压状态,钻孔布置参数与三轴应力条件下煤体瓦斯解吸渗流及变形特征紧密相关。因此,本文通过物理实验、理论分析、数值模拟及现场工程实践等方法,探究真三轴应力下煤体瓦斯解吸渗流及变形特征演化规律,以期为煤层瓦斯预抽参数的确定提供一定理论依据。
论文选用典型高瓦斯矿井煤样,开展了真三轴应力下不同中间主应力及瓦斯压力下煤体瓦斯解吸渗流实验,明确了中间主应力及瓦斯压力对煤体瓦斯解吸渗流特性及变形特征的影响规律。中间主应力增大,煤体瓦斯解吸量、解吸速率及解吸变形减小,两者呈负线性相关;瓦斯压力增大,煤体瓦斯解吸量、解吸速率及解吸变形增大,两者呈正线性相关。煤体渗透率及渗流变形随中间主应力增大呈减小趋势,两者呈负线性相关;瓦斯压力增大,煤体渗透率及渗流变形增大,两者呈正线性相关。
基于煤体变形控制方程、煤体瓦斯扩散渗流控制方程等,建立了基于孔裂隙双重介质的煤体瓦斯解吸渗流与变形耦合模型。利用COMSOL Multiphysics数值模拟软件,开展了不同中间主应力及瓦斯压力下煤体瓦斯解吸渗流数值模拟,通过与物理实验对比分析发现,两者变化规律具有良好一致性。煤体瓦斯解吸量相对误差均值7%,解吸体积应变相对误差均值6%;煤体渗透率相对误差均值7%,渗流体积应变相对误差均值3%,验证了所建立模型的合理性。
以彬长某矿40307工作面为工程实践背景,利用COMSOL Multiphysics数值模拟软件,分析了不同钻孔直径、煤层瓦斯含量、抽采负压及煤层渗透率对煤层瓦斯预抽效果的影响规律,并确定煤层瓦斯预抽最优布孔参数。钻孔直径增大,钻孔有效抽采半径呈增大趋势;煤层瓦斯含量增大,有效抽采半径增大,钻孔抽采影响范围增大;抽采负压对钻孔有效抽采半径影响并不显著;煤层渗透率越大,瓦斯抽采效果越显著;随着抽采时间延长,钻孔有效抽采半径呈指数增大趋势,并在抽采后期趋于稳定。参照煤层瓦斯预抽数值模拟结果及40307工作面瓦斯赋存情况,确定出预抽钻孔最佳布置参数:钻孔直径113 mm、布孔间距6 m、抽采负压15 kPa。通过现场工程实践,分析了瓦斯抽采浓度及瓦斯抽采纯量随抽采时间的变化规律,并计算出工作面各评价单元瓦斯预抽率,取得了良好效果,保障了工作面安全生产,对煤层瓦斯精准预抽具有一定的指导意义。
﹀
|
论文外文摘要: |
︿
As the main energy of our country, coal bears the important responsibility of maintaining energy security. With the transfer of coal resources mining to the deep, the increase in ground stress and gas pressure leads to an increase in the risk of gas accidents in coal mining, which seriously restricts the safe production of coal mine. In order to reduce the gas hazard, coal seam drilling and pre-pumping has become the first choice for coal mine gas disaster prevention, but the actual coal seam is in the state of three unequal pressures, and the drilling layout parameters are closely related to the characteristics of gas desorption seepage and deformation in coal body under the condition of triaxial stress. Therefore, through physical experiment, theoretical analysis, numerical simulation and engineering practice, this paper explores the law of gas desorption seepage and deformation characteristics of coal body under true triaxial stress, in order to provide certain basis for the determination of coal seam gas pre-extraction parameters.
This paper selects typical coal samples of high gas mine to carry out gas desorption seepage experiments under different intermediate principal stress and gas pressure under true triaxial stress, and makes clear the law of influence of intermediate principal stress and gas pressure on gas desorption seepage characteristics and deformation characteristics of coal. With the increase of the intermediate principal stress, the desorption amount, desorption rate and desorption deformation of coal gas decrease, and the two have negative linear correlation. With the increase of gas pressure, the gas desorption amount, desorption rate and desorption deformation increase, and the two are positively linear correlated. The permeability and seepage deformation of coal mass decrease with the increase of intermediate principal stress, and they are negatively linear correlated. With the increase of gas pressure, the permeability and seepage deformation of coal mass increase, and the two are positively linear correlated.
Based on the deformation control equation of coal body and the gas diffusion and seepage control equation of coal body, a coupled model of coal body gas desorption and seepage and deformation based on the dual medium of pore and fissure was established. Using COMSOL Multiphysics numerical simulation software, numerical simulation of gas desorption and seepage under different intermediate principal stresses and gas pressures in the coal body was carried out, and it was found that the two patterns of change had good consistency through comparison and analysis with physical experiments. The mean relative error of coal gas desorption amount is 7%, and the mean relative error of desorption volume strain is 6%. The mean relative error of coal permeability is 7%, and the mean relative error of seepage volume strain is 3%, which verifies the rationality of the established model.
Taking 40307 working face of a mine in Binchang as the background of engineering practice, COMSOL Multiphysics numerical simulation software was used to analyze the influence of different borehole diameters, coal seam gas content, negative pressure and permeability of coal seam on the effect of coal seam gas pre-pumping, and to determine the optimal parameters of coal seam gas pre-pumping. As the diameter of the borehole increases, the effective radius of the borehole increases; the gas content of the coal seam increases, the effective radius of the borehole increases, and the influence range of the borehole increases; the effect of negative pressure on the effective radius of the borehole is not significant; the larger the permeability of the coal seam is, the more significant the effect of the gas extraction is; with the prolongation of the extraction time, the effective radius of the borehole increases exponentially, and tends to be stabilized in the late stage of the extraction. According to the numerical simulation results of coal seam gas pre-pumping and the occurrence of gas in 40307 working face, the optimal layout parameters of pre-pumping borehole are determined: borehole diameter 113 mm, spacing of borehole 6 m, negative pumping pressure 15 kPa. Through the field engineering practice, the law of gas extraction concentration and gas extraction quantity with extraction time is analyzed, and the gas pre-extraction rate of each evaluation unit of the working face is calculated, and good results are obtained, which ensures the safety of the working face and has certain guiding significance for the pre-extraction of coal seam gas.
﹀
|
参考文献: |
︿
[1]王佟, 刘峰, 赵欣, 等. “双碳”背景下我国煤炭资源保障能力与勘查方向的思考[J]. 煤炭科学技术, 2023, 51(12):1-8. [2]国家统计局. 中华人民共和国2023年国民经济和社会发展统计公报[N]. 人民日报, 2024-3-1. [3]袁亮. 深部采动响应与灾害防控研究进展[J]. 煤炭学报, 2021, 46(3):716-725. [4]袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报, 2016, 41(1):1-6. [5]许江, 唐勖培, 张超林, 等. 不同气压条件下瓦斯抽采效果物理模拟试验研究[J]. 煤炭科学技术, 2017, 45(5):115-120+186. [6]周叡, 鲁秀芹, 张俊杰, 等. 沁水盆地樊庄区块煤层气开发生产规律分析[J]. 煤炭科学技术, 2018, 46(6):69-73+148. [7]范朝涛, 李英明, 董春亮, 等. 真三轴中间主应力循环加卸作用下砂岩损伤与声发射特征研究[J/OL]. 煤炭学报:1-12[2024-04-19]. [8]陈向军, 刘军, 王林, 等. 不同变质程度煤的孔径分布及其对吸附常数的影响[J]. 煤炭学报, 2013, 38(2):294-300. [9]戚灵灵, 王兆丰, 杨宏民, 等. 基于低温氮吸附法和压汞法的煤样孔隙研究[J]. 煤炭科学技术, 2012, 40(8):36-39+87. [10]Qi L, Wang Z F, Yang H M. Research on the differences of the pore characteristics with different destroyed-type coals[J]. Advanced Materials Research, 2013, 619:598-602. [11]任子阳. 阳泉无烟煤对CH4、CO2吸附特性研究[D]. 河南理工大学, 2011. [12]李耀谦, 刘国磊. 煤中水含量对瓦斯吸附与解吸特性影响规律研究[J]. 工矿自动化, 2015, 41(6):74-77. [13]陈向军, 贾东旭, 王林. 煤解吸瓦斯的影响因素研究[J]. 煤炭科学技术, 2013, 41(6): 50-53+79. [14]张遂安, 曹立虎, 杜彩霞. 煤层气井产气机理及排采控压控粉研究[J]. 煤炭学报, 2014, 39(9):1927–1931. [15]马东民, 张遂安, 蔺亚兵. 煤的等温吸附-解吸实验及其精确拟合[J]. 煤炭学报, 2011, 36(3):477–480. [16]史广山, 魏风清, 高志扬. 煤粒瓦斯解吸温度变化影响因素及与突出的关系研究[J]. 安全与环境学报, 2015, 15(5):78-81. [17]解北京, 王广宇, 严正. 粉煤吸附甲烷温度变化规律试验研究[J]. 煤炭科学技术, 2019, 47(8):123-128. [18]唐明云, 张海路, 段三壮, 等. 基于Langmuir模型温度对煤吸附解吸甲烷影响研究[J]. 煤炭科学技术, 2021, 49(5):182-189. [19]李波波, 高政, 李建华, 等. 不同温度与压力下瓦斯的吸附-热力学特性研究[J]. 安全与环境学报, 2021, 21(6):2479-2488. [20]杨孝波, 许江, 周斌, 等. 煤与瓦斯突出发生前后煤层温度演化规律研究[J]. 采矿与安全工程学报, 2021, 38(1):206-214. [21]王振洋, 程远平. 构造煤与原生结构煤孔隙特征及瓦斯解吸规律试验[J]. 煤炭科学技术, 2017, 45(3):84-88. [22]田虎楠, 唐巨鹏, 潘一山, 等. 平均有效应力对煤系页岩瓦斯微观吸附-解吸特性影响试验研究[J]. 岩土力学, 2022, 43(7):1803-1815. [23]李成武, 雷东记. 静电场对煤放散瓦斯特性影响的实验研究[J]. 煤炭学报, 2012, 37(6):962-966. [24]何满潮, 王春光, 李德建, 等. 单轴应力–温度作用下煤中吸附瓦斯解吸特征[J]. 岩石力学与工程学报, 2010, 29(5):865-872. [25]王登科, 彭明, 魏建平, 等. 煤岩三轴蠕变-渗流-吸附解吸实验装置的研制及应用[J]. 煤炭学报, 2016, 41(3):644-652. [26]唐巨鹏, 潘一山, 李成全, 等. 三维应力作用下煤层气吸附解吸特性实验[J]. 天然气工业, 2007(7):35-38+133. [27]李小春, 付旭, 方志明, 等. 有效应力对煤吸附特性影响的试验研究[J]. 岩土力学, 2013, 34(5):1247-1252. [28]周动, 刘志祥, 冯增朝, 等. 甲烷在煤的微孔隙喉道通过性及其对解吸的影响机理[J]. 煤炭学报, 2019, 44(9):2797-2802. [29]刘纪坤, 任棒, 王翠霞. 中低阶煤孔隙结构特征及其对瓦斯解吸特性影响[J]. 煤炭科学技术, 2022, 50(12):153-161. [30]李云波, 张玉贵, 张子敏, 等. 构造煤瓦斯解吸初期特征实验研究[J]. 煤炭学报, 2013, 38(1):15-20. [31]曹垚林, 仇海生. 碎屑状煤芯瓦斯解吸规律研究[J]. 中国矿业, 2007(12):119-123. [32]聂百胜, 杨涛, 李祥春, 等. 煤粒瓦斯解吸扩散规律实验[J]. 中国矿业大学学报, 2013, 42(6):975-981. [33]郝建峰, 梁冰, 孙维吉, 等. 煤与瓦斯的热流固耦合关系研究现状及展望[J]. 采矿与安全工程学报, 2022, 39(5):1051-1060+1070. [34]刘冠男, 叶大羽, 高峰, 等. 幂率型裂隙分布煤层渗流场与变形应力场耦合模型及数值模拟[J]. 岩石力学与工程学报, 2022, 41(3):492-502. [35]张遵国, 齐庆杰, 曹树刚, 等. 煤层吸附He,CH4和CO2过程中的变形特性[J]. 煤炭学报, 2018, 43(9):2484-2490. [36]陈结, 潘孝康, 姜德义, 等. 三轴应力下软煤和硬煤对不同气体的吸附变形特性[J]. 煤炭学报, 2018, 43(S1):149-157. [37]李文鑫, 王刚, 杜文州, 等. 真三轴气固耦合煤体渗流试验系统的研制及应用[J]. 岩土力学, 2016, 37(7):2109-2118. [38]Wang G, Liu Z, Hu Y, et al. Influence of gas migration on permeability of soft coalbed methane reservoirs under true triaxial stress conditions[J]. Royal Society Open Science, 2019, 6(10):190892. [39]周动, 王辰, 冯增朝, 等. 煤吸附解吸甲烷细观结构变形试验研究[J]. 煤炭学报, 2016, 41(9):2238-2245. [40]魏建平, 温志辉, 苑永旺, 等. 应力对含瓦斯煤解吸特征影响的试验研究[J]. 煤炭科学技术, 2021, 49(5):35-43. [41]张遵国, 曹树刚, 郭平, 等. 原煤和型煤吸附-解吸瓦斯变形特性对比研究[J]. 中国矿业大学学报, 2014, 43(3):388-394. [42]张遵国, 陈毅, 赵丹, 等. 原煤与型煤CO2吸附/解吸及变形特征对比研究[J]. 中国矿业大学学报, 2021, 50(4):793-803. [43]王磊, 陈礼鹏, 刘怀谦, 等. 不同初始瓦斯压力下煤体动力学特性及其劣化特征[J]. 岩土力学, 2023, 44(1):144-158. [44]邢俊旺, 杨栋, 康志勤, 等. 应力约束下煤体吸附解吸瓦斯变形特性的试验研究[J]. 煤矿安全, 2018, 49(10):9-12. [45]吕祥锋, 潘一山, 刘建军, 等. 孔隙压力对煤岩基质解吸变形影响的试验研究[J]. 岩土力学, 2010, 31(11):3447-3451. [46]祝捷, 张敏, 传李京, 等. 煤吸附/解吸瓦斯变形特征及孔隙性影响实验研究[J]. 岩石力学与工程学报, 2016, 35(S1):2620-2626. [47]刘向峰, 刘建军, 吕祥锋, 等. 煤体基质吸附(解吸)变形规律试验研究[J]. 广西大学学报(自然科学版), 2012, 37(1):173-177. [48]刘延保. 极松软煤体高压吸附过程中变形特性试验研究[J]. 矿业安全与环保, 2016, 43(5):1-4+8. [49]Karacan C, Özgen. Heterogeneous sorption and swelling in a confined and stressed coal during CO2 injection[J]. Energy & Fuels, 2013, 17(6):1595-1608. [50]Karacan C, Özgen. Swelling-induced volumetric strains internal to a stressed coal associated with CO2 sorption[J]. International Journal of Coal Geology, 2007, 72(3-4): 209-220. [51]Goodman A L, Favors R N, Hill M M, et al. Structure changes in Pittsburgh No. 8 coal caused by sorption of CO2 gas[J]. Energy & Fuels, 2005, 19(4):1759-1760. [52]肖晓春, 潘一山, 吕祥锋, 等. 含水煤岩变形破坏过程中瓦斯运移规律的实验研究[J]. 煤炭学报, 2012, 37(S1):115-119. [53]季鹏飞, 林海飞, 孔祥国, 等. 三轴应力下煤体对CH4/N2的吸附–解吸–扩散–渗流规律及变形特征研究[J]. 岩石力学与工程学报, 2023, 42(10):2496-2514. [54]周银波, 李晓丽, 李晗晟, 等. 煤体吸附变形对3种气体渗透率演化的影响[J]. 煤矿安全, 2021, 52(11):16-21. [55]魏建平, 李波, 王凯, 等. 受载含瓦斯煤渗透性影响因素分析[J]. 采矿与安全工程学报, 2014, 31(2):322-327. [56]雷文杰, 刘相风. 硬、软煤样三轴压缩瓦斯流动特征[J]. 安全与环境学报, 2018, 18(1):156-160. [57]李天珍, 李玉寿, 马占国. 破裂岩石非达西渗流的试验研究[J]. 工程力学, 2003(4): 132-135. [58]蒋长宝, 尹光志, 李晓泉, 等. 突出煤型煤全应力–应变全程瓦斯渗流试验研究[J]. 岩石力学与工程学报, 2010, 29(S2):3482-3487. [59]潘荣锟, 王力, 陈向军, 等. 卸载煤体渗透特性及微观结构应力效应研究[J]. 煤炭科学技术, 2013, 41(7):75-78. [60]朱卓慧, 冯涛, 谢东海, 等. 不同应力路径下含瓦斯煤渗透特性的实验研究[J]. 采矿与安全工程学报, 2012, 29(4):570-574. [61]赵洪宝, 李金雨, 王涛, 等. 含不透气夹矸煤层瓦斯放散特征与模型研究[J]. 中国矿业大学学报, 2020, 49(5):826-834+873. [62]彭守建, 许江, 尹光志, 等. 基质收缩效应对含瓦斯煤渗流影响的实验分析[J]. 重庆大学学报, 2012, 35(5):109-114. [63]魏建平, 吴松刚, 王登科, 等. 温度和轴向变形耦合作用下受载含瓦斯煤渗流规律研究[J]. 采矿与安全工程学报, 2015, 32(1):168-174. [64]曹树刚, 郭平, 李勇, 等. 瓦斯压力对原煤渗透特性的影响[J]. 煤炭学报, 2010, 35(4):595-599. [65]杨天鸿, 徐涛, 刘建新, 等. 应力-损伤-渗流耦合模型及在深部煤层瓦斯卸压实践中的应用[J]. 岩石力学与工程学报, 2005(16):2900-2905. [66]白鑫, 王登科, 田富超, 等. 三轴应力加卸载作用下损伤煤岩渗透率模型研究[J]. 岩石力学与工程学报, 2021, 40(8):1536-1546. [67]Cui X, Bustin R M. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams[J]. AAPG Bulletin, 2005, 89(9):1181-1202. [68]Liu J, Chen Z, Elsworth D, et al. Evaluation of stress-controlled coal swelling processes[J]. International Journal of Coal Geology, 2010, 83(4):446-455. [69]Shi J Q, Durucan S. Drawdown induced changes in permeability of coalbeds: A new interpretation of the reservoir response to primary recovery[J]. Transport in Porous Media, 2004, 56(1):1-16. [70]Palmer I, Mansoori J. How permeability depends on stress and pore pressure in coalbeds: A new model[J]. Spe Reservoir Evaluation & Engineering, 1996, 1(6):539-544. [71]张春会, 于永江, 岳宏亮, 等. 考虑Klinbenberg效应的煤中应力-渗流耦合数学模型[J]. 岩土力学, 2010, 31(10):3217-3222. [72]张志刚, 胡千庭. 基于考虑吸附作用影响的含瓦斯煤渗透特性分析方法[J]. 矿业安全与环保, 2015, 42(3):98-100. [73]荣腾龙, 周宏伟, 王路军, 等. 开采扰动下考虑损伤破裂的深部煤体渗透率模型研究[J]. 岩土力学, 2018, 39(11):3983-3992. [74]Zhao Y S, Hu Y Q, B H Zhao, et al. Nonlinear coupled mathematical model for solid deformation and gas seepage in fractured media[J]. Transport in Porous Media, 2004, 55(2):119-136. [75]贾荔丹, 张林, 李波波, 等. 沿抽采井筒的煤储层渗透率模型研究[J]. 煤田地质与勘探, 2022, 50(10):26-34. [76]李伟, 杨康, 邓东, 等. 考虑孔弹性效应的煤岩微纳米孔隙瓦斯表观渗透率模型及其在瓦斯抽采中的应用[J]. 岩石力学与工程学报, 2024, 43(3):587-599. [77]Zhao Y, Lin B, Ting L. Thermo-hydro-mechanical couplings controlling gas migration in heterogeneous and elastically-deformed coal[J]. Computers and Geotechnics, 2020, 123:103570. [78]陶云奇, 许江, 彭守建, 等. 含瓦斯煤孔隙率和有效应力影响因素试验研究[J]. 岩土力学, 2010, 31(11):3417-3422. [79]龙航, 林海飞, 马东民, 等. 基于弹-塑性变形的含瓦斯煤体渗透率动态演化模型研究[J/OL]. 煤炭学报:1-14[2024-04-18]. [80]Sheng, Li, Chao Jun, et al.. A fully coupled thermal-hydraulic-mechanical model with two-phase flow for coalbed methane extraction[J]. Journal of Natural Gas Science and Engineering, 2016, 33:324-336. [81]Wang C, Zhang J, Zang Y, et al. Journal pre-proof time-dependent coal permeability: Impact of gas transport from coal cleats to matrices[J]. Journal of Natural Gas Science and Engineering, 2021, 56:523-535. [82]程远平, 俞启香, 周红星, 等. 煤矿瓦斯治理“先抽后采”的实践与作用[J]. 采矿与安全工程学报, 2006(4):389-392+410. [83]陈鼎文, 卢平, 余陶. 群孔瓦斯抽采钻孔有效抽采半径的模拟与优化[J]. 湖北理工学院学报, 2022, 38(2):27-31. [84]王宏图, 江记记, 王再清, 等. 本煤层单一顺层瓦斯抽采钻孔的渗流场数值模拟[J]. 重庆大学学报, 2011, 34(4):24-29. [85]刘清泉, 程远平, 王海锋, 等. 顺层钻孔有效瓦斯抽采半径数值解算方法研究[J]. 煤矿开采, 2012, 17(2):5-7+37. [86]周福宝, 夏同强, 刘应科, 等. 地面钻井抽采卸压煤层及采空区瓦斯的流量计算模型[J]. 煤炭学报, 2010, 35(10):1638-1643. [87]李一波, 郑万成, 王凤双. 顶板走向高抽巷瓦斯抽采效果分析[J]. 矿业安全与环保, 2013, 40(3):74-76. [88]林柏泉, 宋浩然, 杨威, 等. 基于煤体各向异性的煤层瓦斯有效抽采区域研究[J]. 煤炭科学技术, 2019, 47(6):139-145. [89]刘厅, 林柏泉, 邹全乐, 等. 基于煤层原始瓦斯含量和压力的割缝钻孔有效抽采半径测定[J]. 煤矿安全, 2014, 45(8):8-11. [90]梁冰, 袁欣鹏, 孙维吉. 本煤层顺层瓦斯抽采渗流耦合模型及应用[J]. 中国矿业大学学报, 2014, 43(2):208-213. [91]张超林, 王恩元, 许江, 等. 煤层瓦斯压力对瓦斯抽采效果的影响[J]. 采矿与安全工程学报, 2022, 39(3):634-642. [92]鲁义, 申宏敏, 秦波涛, 等. 顺层钻孔瓦斯抽采半径及布孔间距研究[J]. 采矿与安全工程学报, 2015, 32(1):156-162. [93]Zhao D, Liu J, Pan J T. Study on gas seepage from coal seams in the distance between boreholes for gas extraction[J]. Journal of Loss Prevention in the Process Industries, 2018, 54:266-272. [94]Zhang C, Xu J, Peng S, et al. Experimental study of drainage radius considering borehole interaction based on 3D monitoring of gas pressure in coal[J]. Fuel, 2019, 239:955-963. [95]林海飞, 季鹏飞, 孔祥国, 等. 顺层钻孔预抽煤层瓦斯精准布孔模式及工程实践[J]. 煤炭学报, 2022, 47(3):1220-1234. [96]程远平, 董骏, 李伟, 等. 负压对瓦斯抽采的作用机制及在瓦斯资源化利用中的应用[J]. 煤炭学报, 2017, 42(6):1466-1474. [97]唐恩贤, 党利鹏, 闫国锋. 基于时空属性的黄陵矿区瓦斯精准化预抽实践[J]. 煤炭科学技术, 2018, 46(8):87-92. [98]罗明坤, 李胜, 荣海, 等. CH4与N2,CO2间竞争吸附关系的核磁共振实验研究[J]. 煤炭学报, 2018, 43(2):490-497. [99]林海飞, 龙航, 李树刚, 等. 煤体瓦斯吸附解吸与压裂渗流全过程真三轴试验系统研发与应用[J]. 岩石力学与工程学报, 2022, 41(2):3294-3305. [100]许江, 曹偈, 李波波, 等. 煤岩渗透率对孔隙压力变化响应规律的试验研究[J]. 岩石力学与工程学报, 2013, 32(2):225-230. [101]张保勇, 赵国建, 高霞, 等. 瓦斯压力对含水合物煤体渗透率及滑脱效应影响研究[J]. 岩石力学与工程学报, 2023, 42(11):2655-2667. [102]刘清泉. 多重应力路径下双重孔隙煤体损伤扩容及渗透性演化机制与应用[D]. 中国矿业大学, 2016. [103]Hin H F, Huang M, Li S G, et al. Numerical simulation of influence of Langmuir adsorption constant on gas drainage radius of drilling in coal seam[J]. International Journal of Mining Science and Technology, 2016, 26(3):377-382. [104]Li S, Fan C, Han J, et al. A fully coupled thermal-hydraulic-mechanical model with two-phase flow for coalbed methane extraction[J]. Journal of Natural Gas Science and Engineering, 2016, 33:324-336. [105]Wu Y, Liu J S, Elsworth D, et al. Development of anisotropic permeability during coalbed methane production[J]. Journal of Natural Gas Science & Engineering, 2010, 2(4):197-210. [106]Detournay E, Cheng A. Fundamentals of poroelasticity in comprehensive rock engineering[J]. Principles Practice & Projects, 1993, 2(1):113-171. [107]金元甲, 马凯, 张亚洲, 等. 定向孔抽采特性对布孔参数响应变化规律研究[J]. 矿业安全与环保, 2023, 50(6):120-124. [108]张文豪, 崔崇斌, 张智, 等. 低渗煤层大直径钻孔瓦斯抽采参数优化研究[J]. 煤炭技术, 2024, 43(2):195-199. [109]彭守建, 贾立, 许江, 等. 煤层瓦斯抽采多物理场参数动态响应特征及其耦合规律[J]. 煤炭学报, 2022, 47(3):1235-1243. [110]李波, 孙东辉, 张路路. 煤矿顺层钻孔瓦斯抽采合理布孔间距研究[J]. 煤炭科学技术, 2016, 44(8):121-126+155. [111]刘佳佳, 贾改妮, 王丹, 等. 基于多物理场耦合的顺层钻孔瓦斯抽采参数优化研究[J]. 煤炭科学技术, 2018, 46(7):115-119+156.
﹀
|
中图分类号: |
TD712
|
开放日期: |
2025-06-18
|