- 无标题文档
查看论文信息

论文中文题名:

 突发删除信道下多维空间耦合LDPC码的研究    

姓名:

 何景临    

学号:

 20207223087    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085400    

学科名称:

 工学 - 电子信息    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 信息论与编码理论    

第一导师姓名:

 刘洋    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-15    

论文答辩日期:

 2023-06-05    

论文外文题名:

 Design of Multi-Dimensional Spatially-Coupled LDPC Codes over Burst Erasure Channel    

论文中文关键词:

 突发删除信道 ; 空间耦合LDPC码 ; 密度进化 ; 译码性能    

论文外文关键词:

 Burst erasure channels ; SC-LDPC codes ; Density evolution ; Decoding performances    

论文中文摘要:

空间耦合LDPC(Spatially Coupled LDPC, SC-LDPC)码所具有的“阈值饱和”特性和低复杂度结构特性,使其成为未来无线通信系统信道编码方案的有力竞争者。然而当面临突发删除错误时,常规的单链SC-LDPC码会出现译码中断,导致译码性能急剧下降,而这个问题无法通过增加耦合链的长度来解决,这就迫切需要设计一种能够有效对抗突发删除错误的SC-LDPC码。为此,本文针对突发删除信道提出了基于多条耦合链连接构造多维SC-LDPC码的方法,以此来提升其对抗突发删除错误的能力,为突发删除信道下SC-LDPC码的设计提供新思路。主要研究内容如下:

基于SC-LDPC码优异的“阈值饱和”特性,结合非对称边展开方式,提出了一种可逼近突发删除信道容量限的并联SC-LDPC码的构造方法。该码是通过边交换将两条非对称SC-LDPC耦合链进行并行连接构造得到。一方面由于非对称边展开方式使得SC-LDPC码具有更大的停止集最小基数,有益于其提升突发删除纠错能力。另一方面边交换的连接方式在不改变度分布和不增加复杂度的情况下,可为两条耦合链在面对突发删除错误时提供信息支持,避免其中一条耦合链出现译码中断,从而提升了对抗突发删除错误的能力。接着,针对并联SC-LDPC码,推导了用于阈值分析的密度进化算法。分析结果表明,并联SC-LDPC码的最大可纠突发删除长度可逼近于容量限,且远大于非对称SC-LDPC码和常规的单链SC-LDPC码。在突发删除信道下的有限长性能仿真结果与阈值分析结果相吻合,验证了并联SC-LDPC码对抗突发删除错误的有效性。

基于空间耦合码的原模图结构特性,提出了另一种可逼近突发删除信道容量限的串联SC-LDPC码的构造方法。该码是通过边交换将两条常规的SC-LDPC耦合链进行串行连接构造得到。不同于并联SC-LDPC码的是,一方面交换边的边数不同。对于每个耦合位置,并联SC-LDPC码交换边数取决于两条耦合链的最小变量节点个数,而串联SC-LDPC码取决于变量节点的度。另一方面交换边的连接位置不同。对任意耦合位置,并联SC-LDPC码交换边仅连接到另一条链的同一位置,而串联SC-LDPC码交换边连接到另一条链耦合宽度内满足约束条件的位置上。并推导了用于计算串联SC-LDPC码在突发删除信道下单个最大可纠突发删除长度的密度进化算法。阈值分析结果表明,串联SC-LDPC码的阈值与容量限间隔非常小,且远优于非对称SC-LDPC码和常规的单链SC-LDPC码。有限长性能仿真结果表明,所设计的串联SC-LDPC码在突发删除信道下的性能较非对称SC-LDPC码和常规的单链SC-LDPC码有显著提升。

论文外文摘要:

Spatially coupled low density parity check (SC-LDPC) codes are promising candidates for channel coding schemes in future wireless communication systems due to their "threshold saturation" properties and low complexity structures. However, when facing burst erasures, the decoding performances of the conventional single-chain SC-LDPC codes will be dramatically degraded due to the interruption of decoding chain, and this problem cannot be solved by increasing the length of the coupling chain. In this paper, we propose the multi-dimensional SC-LDPC codes constructed by connecting multiple coupling chains to improve their capabilities to combat burst erasures, which provides a new viewpoint for the design of SC-LDPC codes over burst erasure channels. The main works are as follows:

Based on the "threshold saturation" properties of SC-LDPC codes, a capacity-approaching parallelly connecting SC-LDPC (PC-SC-LDPC) code is proposed by utilizing the asymmetric edge expansion for the burst erasure channel. The PC-SC-LDPC code is constructed by connecting two asymmetric SC-LDPC coupling chains in parallel through edge exchanges. On one hand, the asymmetric edge expansion makes the SC-LDPC code possess larger minimal cardinality of stopping sets, which is beneficial to improve the burst erasures correction capability. On the other hand, the edge exchanges can provide information support for both coupling chains in the face of burst erasures without changing the degree distribution and increasing the complexity, which will avoid the decoding termination of one coupling chain and thus improve the ability to combat burst erasures. Moreover, density evolution algorithm is derived to obtain the thresholds of the proposed PC-SC-LDPC codes. The analysis results show that the maximum correctable burst erasure lengths of PC-SC-LDPC codes can approach the capacity limits and are also much larger than those of the asymmetric SC-LDPC codes and the conventional single-chain SC-LDPC codes. Finite length performances over the burst erasure channels can fit well to the threshold analysis results, which verifies the effectiveness of the proposed PC-SC-LDPC codes against burst erasures.

Based on the protographs of the SC-LDPC codes, an alternative capacity-approaching serial connecting SC-LDPC (SC-SC-LDPC) code is proposed, which is constructed by serially connecting two conventional SC-LDPC coupling chains through edge exchanges. Different from the PC-SC-LDPC codes, one is that the number of edges used for edge exchanges is different. For each coupling position, the number of the exchanged edges of PC-SC-LDPC codes depends on the minimum number of variable nodes in two chains, while for the SC-SC-LDPC code it depends on the degrees of variable nodes. The other is that the positions where the edge exchanges occurred are different. For any coupling position, the exchanged edges of PC-SC-LDPC codes are connected to the same position of another chain, while the exchanged edges of SC-SC-LDPC codes are connected to the positions that satisfies the constraints within the coupling width of another chain. Density evolution algorithm for calculating the single maximum correctable burst length of SC-SC-LDPC code under burst erasure channel is derived. Threshold analysis results show that the gaps between the thresholds and capacity limits are very small and the thresholds are much better than those of the conventional SC-LDPC codes and the asymmetric SC-LDPC codes. Finite-length performance simulation results show that the performances of the proposed SC-SC-LDPC codes over burst erasure channels can be significantly improved compared to SC-LDPC codes and asymmetric SC-LDPC codes.

参考文献:

[1] Mackay D J C, Neal R M. Near Shannon limit performance of 10W density parity check codes[J]. Electronics Letters, 1996,32(18):1645-1646.

[2] Kudekar S, Richardson T J, Urbanke R L. Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so well over the BEC[J]. IEEE Transactions on Information Theory, 2011, 57(2): 803-834.

[3] Kudekar S, Richardson T, Urbanke R L. Spatially coupled ensembles universally achieve capacity under belief propagation[J]. IEEE Transactions on Information Theory, 2013, 59(12): 7761-7813.

[4] Tauz L, Esfahanizadeh H, Dolecek L. Non-uniform windowed decoding for multi-dimensional spatially-coupled LDPC codes[C]//2020 IEEE International Symposium on Information Theory (ISIT). IEEE, 2020: 485-490.

[5] Hareedy A, Kuditipudi R, Calderbank R. Minimizing the number of detrimental objects in multi-dimensional graph-based codes[J]. IEEE Transactions on Communications, 2020, 68(9): 5299-5312.

[6] Olmos P M, Mitchell D G M, Truhachev D, et al. A finite length performance analysis of LDPC codes constructed by connecting spatially coupled chains[C]//2013 IEEE Information Theory Workshop (ITW). IEEE, 2013: 1-5.

[7] Yang M, Ryan W E. Performance of efficiently encodable low-density parity-check codes in noise bursts on the EPR4 channel[J]. IEEE transactions on magnetics, 2004, 40(2): 507-512.

[8] Yang M, Ryan W E. Design of LDPC codes for two-state fading channel models[C]//The 5th International Symposium on Wireless Personal Multimedia Communications. IEEE, 2002, 3: 986-990.

[9] Song H, Cruz J R. Reduced-complexity decoding of Q-ary LDPC codes for magnetic recording[J]. IEEE Transactions on Magnetics, 2003, 39(2): 1081-1087.

[10] Johnson S J. Burst erasure correcting LDPC codes[J]. IEEE Transactions on communications, 2009, 57(3): 641-652.

[11] Hosoya G, Yagi H, Matsushima T, et al. A modification method for constructing low-density parity-check codes for burst erasures[J]. IEICE transactions on fundamentals of electronics, communications and computer sciences, 2006, 89(10): 2501-2509.

[12] Li K, Kavčić A, Erden M F. Construction of burst-erasure efficient LDPC codes for use with belief propagation decoding[C]//2010 IEEE International Conference on Communications. IEEE, 2010: 1-5.

[13] Sridharan G, Kumarasubramanian A, Thangaraj A, et al. Optimizing burst erasure correction of LDPC codes by interleaving[C]//2008 IEEE International Symposium on Information Theory. IEEE, 2008: 1143-1147.

[14] Boutros J J, i Fabregas A G, Biglieri E, et al. Low-density parity-check codes for nonergodic block-fading channels[J]. IEEE Transactions on Information Theory, 2010, 56(9): 4286-4300.

[15] Fang Y, Bi G, Guan Y L. Design and analysis of root-protograph LDPC codes for non-ergodic block-fading channels[J]. IEEE Transactions on Wireless Communications, 2014, 14(2): 738-749.

[16] 张博, 林伟, 刘春元, 等. 突发错误信道下的多元 LDPC 码设计与性能分析[J]. 通信学报, 2013, 34(7): 98-104.

[17] 杨忠立, 刘玉君, 王云鹤, 等. RS 码纠突发错误译码算法研究与实现[J]. 信息工程大学学报, 2004, 5(4): 77-79.

[18] 张瑞, 刘开华. 缩短循环码在突发信道中应用[J]. 电子测量技术, 2005 (1): 73-74.

[19] 任域皞. 突发信道中短码抗突发噪声信道编码算法的性能研究[D]. 电子科技大学, 2014.

[20] Chen L, Mo S, Costello D J, et al. A protograph-based design of quasi-cyclic spatially coupled LDPC codes[C]//2017 IEEE International Symposium on Information Theory (ISIT). IEEE, 2017: 1683-1687.

[21] 张昭基, 李颖. 适用于突发删除信道的非对称空间耦合 LDPC 码[J]. 西安电子科技大学学报, 2017, 44(5): 1-6.

[22] Julé A, Andriyanova I. Performance bounds for spatially-coupled LDPC codes over the block erasure channel[C]//2013 IEEE International Symposium on Information Theory. IEEE, 2013: 1879-1883.

[23] Ashrafi R A, Pusane A E. Spatially‐coupled communication system for the correlated erasure channel[J]. IET Communications, 2013, 7(8): 755-765.

[24] Aref V, Rengaswamy N, Schmalen L. Spatially coupled LDPC codes affected by a single random burst of erasures[C]//2016 9th International Symposium on Turbo Codes and Iterative Information Processing (ISTC). IEEE, 2016: 166-170.

[25] Aref V, Rengaswamy N, Schmalen L. Finite-length analysis of spatially-coupled regular LDPC ensembles on burst-erasure channels[J]. IEEE Transactions on Information Theory, 2018, 64(5): 3431-3449.

[26] Mori H, Wadayama T. Band splitting permutations for spatially coupled LDPC codes achieving asymptotically optimal burst erasure immunity[J]. IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, 2017, 100(2): 663-669.

[27] 张思延. 突发删除信道下空间耦合 LDPC 码结构设计[D]. 西安:西安电子科技大学, 2015.

[28] Inayat A, Hyunjae L, Ayaz H, et al. Protograph-based folded spatially coupled LDPC codes for burst erasure channels[J]. IEEE Wireless Communications Letters, 2019, 8(2): 516-519.

[29] He X, Liu Y, Wang B, et al. Spatially Coupled Generalized LDPC Codes Over Burst Erasure Channels[C]//2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT). IEEE, 2022: 720-724.

[30] Li K, Kavčić A, Venkataramani R, et al. Channels with both random errors and burst erasures: Capacities, LDPC code thresholds, and code performances[J]. Information Theory Proceedings IEEE International Symposium on, 2010: 699-703.

[31] Truhachev D, Mitchell D G M, Lentmaier M, et al. Improving spatially coupled LDPC codes by connecting chains[C]//2012 IEEE International Symposium on Information Theory Proceedings. IEEE, 2012: 468-472.

[32] Truhachev D, Mitchell D G M, Lentmaier M, et al. New codes on graphs constructed by connecting spatially coupled chains[C]//2012 Information Theory and Applications Workshop. IEEE, 2012: 392-397.

[33] Truhachev D, Mitchell D G M, Lentmaier M, et al. Code design based on connecting spatially coupled graph chains[J]. IEEE Transactions on Information Theory, 2019, 65(9): 5604-5617.

[34] Nitzold W, Fettweis G P, Lentmaier M. Spatially-coupled nearly-regular LDPC code ensembles for rate-flexible code design[C]//2014 IEEE International Conference on Communications (ICC). IEEE, 2014: 2027-2032.

[35] Dehaghani A E, Sadeghi M R, Amirzade F. Improving Asymptotic Properties of Loop Construction of SC-LDPC Chains Over the BEC[J]. IEEE Communications Letters, 2022, 26(3): 495-499.

[36] 刘洋. 低密度奇偶校验码的设计与应用研究[D]. 西安:西安电子科技大学, 2016.

[37] Olmos P M, Mitchell D G M, Truhachev D, et al. Continuous transmission of spatially coupled LDPC code chains[J]. IEEE Transactions on Communications, 2017, 65(12): 5097-5109.

[38] Esfahanizadeh H, Tauz L, Dolecek L. Multi-dimensional spatially-coupled code design: Enhancing the cycle properties[J]. IEEE Transactions on Communications, 2020, 68(5): 2653-2666.

[39] Schmalen L, Mahdaviani K. Laterally connected spatially coupled code chains for transmission over unstable parallel channels[C]//2014 8th International Symposium on Turbo Codes and Iterative Information Processing (ISTC). IEEE, 2014: 77-81.

[40] Ohashi R, Kasai K, Takeuchi K. Multi-dimensional spatially-coupled codes[C]//2013 IEEE International Symposium on Information Theory. IEEE, 2013: 2448-2452.

[41] Thomas M. Cover, Joy A. Thomas[著], 阮吉寿, 张华[译], 沈世镒[审校]. 信息论基础[M].机械工业出版社, 2007.

[42] Lan L, Zeng L, Tai Y Y, et al. Construction of quasi-cyclic LDPC codes for AWGN and binary erasure channels: A finite field approach[J]. IEEE Transactions on Information Theory, 2007, 53(7): 2429-2458.

[43] Mitchell D G M, Lentmaier M, Costello D J. Spatially coupled LDPC codes constructed from protographs[J]. IEEE Transactions on Information Theory, 2015, 61(9): 4866-4889.

[44] Thorpe J. Low-density parity-check (LDPC) codes constructed from protographs[J]. IPN progress report, 2003, 42(154): 42-154.

[45] Mitchell D G M, Lentmaier M, Pusane A E, et al. Randomly punctured spatially coupled LDPC codes[C]//2014 8th International Symposium on Turbo Codes and Iterative Information Processing (ISTC). IEEE, 2014: 1-6.

[46] Lentmaier M, Fettweis G P, Zigangirov K S, et al. Approaching capacity with asymptotically regular LDPC codes[C]//2009 Information Theory and Applications Workshop. IEEE, 2009: 173-177.

[47] Zhang Z, Li Y. Asymmetric spatially coupled LDPC codes for multiple-burst erasure channels[J]. IEEE Communications Letters, 2017, 21(8): 1695-1698.

[48] Liu Y, Li Y, Chi Y. Spatially coupled LDPC codes constructed by parallelly connecting multiple chains[J]. IEEE Communications Letters, 2015, 19(9): 1472-1475.

[49] Lin S, Li J. Fundamentals of Classical and Modern Error-Correcting Codes[M]. Cambridge University Press, 2021.

[50] Ul Hassan N, Andriyanova I, Lentmaier M, et al. Protograph design for spatially-coupled codes to attain an arbitrary diversity order[C]//2015 IEEE Information Theory Workshop-Fall (ITW). IEEE, 2015: 148-152.

中图分类号:

 TN911.22    

开放日期:

 2023-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式