论文中文题名: | 矿下无轨胶轮车安全监测系统设计与实现 |
姓名: | |
学号: | 19207205071 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085400 |
学科名称: | 工学 - 电子信息 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2019 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 工矿自动化 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-21 |
论文答辩日期: | 2022-06-05 |
论文外文题名: | Design and implementation of safety monnitoring system for trackless rubber-tyred vehicles in mines |
论文中文关键词: | |
论文外文关键词: | Tackless Rubber Tire Vehicles ; Safety Monitoring ; Parameter Collection ; Intrinsically Safe Design |
论文中文摘要: |
矿用无轨胶轮车是煤矿井下辅助运输系统的重要设备。它承担着井下生产材料及人员运输的任务。由于煤矿井下工作环境恶劣、无轨胶轮车运输任务重、使用较为频繁等原因,以及现有安全装置存在车况参数监测种类较少、车辆定位不准确、监测参数数据噪声较大等问题,导致事故频繁发生。本文针对上述问题,分析了现阶段无轨胶轮车安全监测工作的不足之处,提出了一种定位精度高、功能较全面、性能较稳定的无轨胶轮车安全监测系统,以保障车辆的安全运行。 车辆的准确定位调度能够保障无轨胶轮车安全运行,提高运输效率。本文分析了常用的几种定位算法,将RSSI及TOF测距定位算法相结合,提出了一种基于现场蓝牙装置的混合测距定位算法。在理论分析的基础上,本文设计了一款无轨胶轮车安全监测系统。该系统由上位机和终端装置两部分组成,其中上位机部分主要用于车况参数的远程查看,终端装置部分主要用于对无轨胶轮车冷却水温度、机油温度、车速、瓦斯体积浓度、尾气温度等参数的采集与显示。同时,倒车防碰撞装置是保障车辆安全运行的重要措施之一,本文分析了不同测距传感器的性能特点,选择了多位超声波测距传感器作为测距仪器,并对其监测盲区、报警方式及超声波干扰问题进行了详细分析设计,提出了基于多位超声波测距传感器无干扰协同工作的全方位、高精度的倒车防碰撞装置。最后,在完成系统整体功能设计的前提下,对系统电源本安、电路抗干扰、故障监测进行了分析设计。 根据以上设计,本文上位机基于Android Studio开发平台,终端装置基于FPGA控制器及多种外围设备,进行了系统开发,并完成了实验室测试。测试结果表明,本文提出的无轨胶轮车安全监测系统是可行的、有效的,实现了对无轨胶轮车的实时监测。其研究结果对同行业的理论研究有一定的借鉴意义,同时也具有一定的实用性及推广价值。 |
论文外文摘要: |
Mining trackless rubber-tyred truck is an important equipment for the auxiliary transportation system in coal mines. It undertakes the task of underground production materials and personnel transportation. Due to the harsh working environment in coal mines, heavy transportation tasks of trackless rubber-tired vehicles, and frequent use, as well as the existing safety devices have problems such as fewer types of vehicle condition parameter monitoring, inaccurate vehicle positioning, and high noise of monitoring parameter data, etc., resulting in accidents. Occurs frequently. In view of the above problems, this paper analyzes the shortcomings of the current trackless rubber-tired vehicle safety monitoring work, and proposes a trackless rubber-tyred vehicle safety monitoring system with high positioning accuracy, comprehensive functions and stable performance to ensure the safety of the vehicle. run. The accurate positioning and scheduling of vehicles can ensure the safe operation of trackless rubber-tired vehicles and improve transportation efficiency. This paper analyzes several commonly used positioning algorithms, and combines RSSI and TOF ranging and positioning algorithms to propose a hybrid ranging and positioning algorithm based on on-site Bluetooth devices. On the basis of theoretical analysis, this paper designs a safety monitoring system for trackless rubber-tyred vehicles. The system consists of two parts: the upper computer and the terminal device. The upper computer part is mainly used for remote viewing of vehicle condition parameters, and the terminal device part is mainly used to monitor the cooling water temperature, oil temperature, vehicle speed, gas volume concentration, and exhaust gas of the trackless rubber tire. Collection and display of parameters such as temperature. At the same time, the reversing anti-collision device is one of the important measures to ensure the safe operation of the vehicle. This paper analyzes the performance characteristics of different ranging sensors, selects multiple ultrasonic ranging sensors as ranging instruments, and monitors blind spots, alarm methods and The ultrasonic interference problem is analyzed and designed in detail, and an omnidirectional and high-precision reversing anti-collision device based on multiple ultrasonic ranging sensors working together without interference is proposed. Finally, on the premise of completing the overall function design of the system, the system power supply intrinsic safety, circuit anti-interference, and fault monitoring are analyzed and designed. According to the above design, the host computer in this paper is based on the Android Studio development platform, and the terminal device is based on the FPGA controller and various peripheral devices. The system is developed and the laboratory test is completed. The test results show that the safety monitoring system for the trackless rubber-tyred vehicle proposed in this paper is feasible and effective, and the real-time monitoring of the trackless rubber-tyred vehicle is realized. The research results have certain reference significance for theoretical research in the same industry, and also have certain practical and promotion value. |
参考文献: |
[1]祁海莹. 产煤发达国家生产现状及安全形势分析[J]. 中国煤炭, 2015, 41(08): 140-143. [2]郭克煌. 煤矿井下辅助运输的现状与发展研究[J]. 机械管理开发, 2017, 32(10): 151-152+178. [3]曹凯. 浅谈矿用无轨胶轮车的未来发展方向[J]. 内燃机与配件, 2020(13): 186-187. [4]李艳非. 无轨胶轮车自动感应防跑系统的设计与应用[J]. 煤矿机电, 2020, 41(04): 99-101. [5]范力. 煤矿机械发展探析[J]. 能源与节能, 2020, (01): 160-161. [6]赵建刚. 基于新形势下煤矿安全生产管理研究[J]. 石化技术, 2020, 27(09): 155-156. Fresenius Environmental Bulletin. 2021, 30(4): 3754-3761. [8]郝崇威. 煤矿安全监测监控技术现状及发展趋势[J]. 石化技术, 2020, 27(06): 314-315. [9]宋蕾. 试析国内煤炭开采现状及发展[J]. 现代经济信息, 2019(18): 356. [10]索文龙. 煤矿综采工作面智能化开采[J]. 能源与节能, 2020(10): 101-102. [11]景少波. 煤矿智能化开采技术发展现状及展望[J]. 陕西煤炭, 2021, 40(06): 184-187. [12]张瑞青. 无轨胶轮车安全驾驶管控系统的研究[J]. 机械管理开发, 2020, 35(06): 222-223+273. [13]韩成寿. 矿井无轨胶轮车智能调度管理系统研究[J]. 机电工程技术, 2020, 49(09): [14]孙超. 煤炭开采中存在的问题及其对策探讨[J]. 能源与节能, 2021(07): 151-152. [15]李全喜. 我国煤矿无轨胶轮车的现状及发展方向[J]. 技术与市场, 2020, 27(02): 173+175. [16]邱华. 煤矿生产中无轨胶轮车安全保护措施的研究[J]. 机械管理开发, 2022, 37(01): 85-86+89. [17]贾炎. 矿用无轨胶轮车检验信息数据采集技术研究[J]. 煤矿机械, 2017, 38(12): 41-43. [19]韩成文. 井下无轨胶轮车运输分析[J]. 能源与节能, 2022(01): 107-108+158. [22]张福祥. 煤矿无轨胶轮车动力源发展方向研究[J]. 机电产品开发与创新, 2022, 35(01): 75-76+85. vehicle[J]. China Coal Society, 2020(46): 520-528. [26]黄伟, 陈瑶, 华月存, 孙超. 煤矿安全监控系统层级故障自诊断技术[J]. 煤矿安全, 2021, 52(12): 133-137. [28]Cheng B, Cheng X, Chen JL. Lightweight monitoring and control system for coal mine safety using REST style[J]. ISA Transactions, 2015(54): 225-239. [29]谭章禄, 肖懿轩, 吴琦. 煤矿安全生产调度信息可视化方式选择评价研究[J]. 矿业研究与开发, 2019, 39(04): 138-143. [32]杨阳. 煤矿安全监测监控系统在应用中存在的问题及解决策略[J]. 工程技术研究, 2018(08): 22+25. [35]F.J.Paus. Latest developments in Underground Vehicle Technology Rubber Tyred transportation in Mines[J]. Coal International, 2006, 254(6): 16-18. [36]王凯军. 煤矿无轨胶轮车辅助运输系统及其改造过程探讨[J]. 煤炭与化工, 2021, 44(S1): 54-55. [37]谢兆丰. 浅谈矿井无轨胶轮车管理系统监测基站设计[J]. 陕西煤炭, 2021, 40(S1): 132-135+183. [38]程刘胜. 矿用防爆无轨胶轮车温度监测电路设计[J]. 工矿自动化, 2016, 42(02): 67-71. [39]张德生. 煤矿无轨胶轮车感应防撞装置设计应用[J]. 煤矿现代化, 2020(02): 100-101+105. [40]乔哲伟. 矿用无轨胶轮车感应防撞装置的设计[J]. 机械管理开发, 2020, 35(07): 3-4. [41]胡鹏. 基于毫米波雷达的井下防爆无轨胶轮车前防撞系统研究[J]. 煤矿机电, 2021, 42(01): 11-15. [42]杨小凤. 矿用防爆无轨胶轮车数据采集装置设计[J]. 工矿自动化, 2014, 40(02): 102-104. [45]吕小强, 程刘胜, 单成伟, 贾咏洁. 矿用无轨胶轮车信息采录与数据便携交互系统设计[J]. 中国煤炭, 2020, 46(01): 41-45. [46]尹文强. 矿用防爆胶轮车安全监测系统的设计[J]. 机械管理开发, 2020, 35(01): 219-220. [47]成中华. 矿用防爆无轨胶轮车安全保护监控系统设计[J]. 机电工程技术, 2021, 50(02): 135-137. [48]刘伟. 无轨胶轮车安全系统的设计与优化[J]. 自动化应用, 2019(11):118-119+156. [49]庞宏. 关于煤矿瓦斯爆炸事故监控预警系统的分析与研究[J].煤, 2021, 30(01): 95-96+99. [50]梁杰. 无轨胶轮车在煤矿中的应用优势及选型要点探析[J]. 自动化应用, 2020(08): 126-127. [51]朱俊亚. WC5E无轨胶轮车动力系统研制[J]. 科技创新与生产力, 2015, (04): 94-95. [52]薛文. 我国煤矿辅助运输的现状和无轨胶轮技术的应用[J]. 内蒙古煤炭经济, 2017(11): 17-18. [54]贾永兴, 杨宏, 刘文慧, 陈明, 滕杰. 基于国产FPGA的网络平台跨时钟域设计方法[J]. 通信技术, 2021, 54(10): 2447-2450. |
中图分类号: | TP277 |
开放日期: | 2022-06-22 |