- 无标题文档
查看论文信息

论文中文题名:

 特厚煤层下分层沿空留巷综放面复合采空区煤自燃危险区域研究    

姓名:

 张科峰    

学号:

 21220226164    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 煤火灾害防控    

第一导师姓名:

 金永飞    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-17    

论文答辩日期:

 2024-06-03    

论文外文题名:

 Research on the risk area of coal spontaneous combustion in the composite goaf of the fully mechanized mining face with goaf retaining roadway in the lower layer of the ultra-thick coal seam    

论文中文关键词:

 煤自燃 ; 特厚煤层 ; 沿空留巷 ; 漏风规律 ; 危险区域    

论文外文关键词:

 Coal spontaneous combustion ; Extra thick coal seam ; gob-side entry retaining ; Air leakage pattern ; Hazardous areas    

论文中文摘要:

煤自燃是矿井主要灾害之一,不仅造成大量煤炭资源损失,还严重影响煤矿的安全生产。许多矿井在开采特厚煤层时采用分层综放开采技术。上分层综放工作面回采结束,下分层工作面采用沿空留巷综放开采,使用这种开采方式很大程度上可以节约煤炭资源及提高煤炭回采率。但是由于下分层沿空留巷综放工作面巷道顶板向上分层采空区漏风,使得上分层采空区遗煤容易发生自燃,影响下分层沿空留巷综放面安全开采。下分层工作面回采时,采空区与上分层采空区沟通形成复合采空区,上分层采空区遗煤会掉落到下分层采空区有可能引燃下分层工作面采空区遗煤。同时下分层沿空留巷综放面复合采空区遗煤因水平漏风影响也会发生自燃。因此,判定下分层沿空留巷综放面复合采空区遗煤自燃危险区域尤为重要。本文以陈家沟煤矿8521工作面为研究对象,采用理论分析、现场测试和数值模拟相结合的方法对其复合采空区进行危险区域研究。

首先,结合煤自燃理论与现场调研相结合的方法分析了下分层沿空留巷综放面煤自燃影响因素,漏风供氧是采空区遗煤自燃主要影响因素。其漏风通道分布广泛,加之复合采空区内遗煤量大使得采空区煤自燃危险性突出。同时通过自然发火实验得到了煤自燃极限参数,为自燃预测预报奠定基础。

其次,运用SF6示踪气体法进行了上分层采空区垂直漏风测试,得到了不同测点的漏风速率及漏风通道位置,同时数值模拟了上分层采空区漏风流场及气体浓度分布特征,得到了风流通过下分层沿空留巷综放面巷道顶部上覆煤层1~3号、4~5号、6~8号、9~10号及11~13号薄煤区进入上分层采空区,在采空区下部形成较密集漏风流场。此外对下分层沿空留巷综放面复合采空区进行了水平漏风现场测试,得到了漏风速率以及主要漏风通道位置,并数值模拟得到了下分层沿空留巷综放面复合采空区的漏风流场特征及气体浓度分布特征。

最后,根据上分层采空区及下分层沿空留巷综放面复合采空区氧气浓度场的分布特征。得到了上分层采空区煤柱及进风顺槽遗煤危险区域范围为:靠近进风顺槽侧沿走向方向49m~175m,回风顺槽遗煤危险区域靠近回风侧沿走向方向201m~224m区域。中部遗煤危险区域为:靠近进风侧沿走向方向49m~175m区域,靠近回风侧沿走向方向201m~224m区域。得到了复合采空区主要危险区域为进风顺槽遗煤区及中部区。进风顺槽遗煤危险区域为:沿进风侧一段的采空区深处到工作面距离23m~38m,沿倾向方向距离柔模墙0~121m区域;中部遗煤危险区域为进风侧采空区深处到工作面距离0m~23m区域,回风侧采空区到工作面距离23m~75m区域。研究成果将对陈家沟煤矿8521工作面及相似条件工作面的煤自燃防治工作提供理论指导。

论文外文摘要:

Coal spontaneous combustion is one of the main disasters in mines, which not only causes significant loss of coal resources, but also seriously affects the safety production of coal mines. Many mines adopt layered fully mechanized mining technology when mining thick coal seams. The upper layer fully mechanized top coal caving face has completed mining, while the lower layer working face adopts goaf retaining roadway fully mechanized top coal caving mining. This mining method can greatly save coal resources and improve coal recovery rate. However, due to air leakage from the roof of the roadway along the goaf in the lower layer to the goaf in the upper layer, the remaining coal in the goaf in the upper layer is prone to spontaneous combustion, which affects the safe mining of the lower layer along the goaf in the fully mechanized mining face. When the lower layer working face is mined, the goaf communicates with the upper layer goaf to form a composite goaf. The remaining coal from the upper layer goaf may fall into the lower layer goaf, which may ignite the remaining coal from the lower layer working face goaf. At the same time, the residual coal in the composite goaf of the lower layered goaf with goaf retaining roadway will also undergo spontaneous combustion due to the influence of horizontal air leakage. Therefore, it is particularly important to determine the risk area of spontaneous combustion of residual coal in the composite goaf of the lower layered goaf retaining roadway in the fully mechanized mining face. This article takes the 8521 working face of Chenjiagou Coal Mine as the research object, and uses a combination of theoretical analysis, on-site testing, and numerical simulation to study the hazardous areas of its composite goaf.

Firstly, the combined method of coal spontaneous combustion theory and on-site investigation was used to analyze the influencing factors of coal spontaneous combustion in the fully mechanized top coal caving face along the goaf in the lower layer. Air leakage and oxygen supply were the main influencing factors of coal spontaneous combustion in the goaf. Its air leakage channels are widely distributed, and the amount of residual coal in the composite goaf makes the risk of coal spontaneous combustion in the goaf prominent. At the same time, the limit parameters of coal spontaneous combustion were obtained through natural ignition experiments, laying the foundation for predicting and predicting spontaneous combustion.

Secondly, the SF6 tracer gas method was used to conduct vertical air leakage tests in the upper layer goaf, and the air leakage rates and positions of the air leakage channels at different measurement points were obtained. At the same time, numerical simulations were conducted on the air leakage flow field and gas concentration distribution characteristics in the upper layer goaf. The air flow was obtained by passing through the overlying coal seams 1-3, 4-5, 6-8, 9-10, and 11-13 at the top of the lower layer goaf along the goaf, forming a dense air leakage field in the lower part of the goaf. In addition, horizontal air leakage field tests were conducted on the composite goaf of the lower layer goaf retaining roadway in the fully mechanized mining face, and the air leakage rate and main air leakage channel positions were obtained. Numerical simulations were conducted to obtain the characteristics of the air leakage flow field and gas concentration distribution in the composite goaf of the lower layer goaf retaining roadway in the fully mechanized mining face.

Finally, based on the distribution characteristics of oxygen concentration field in the composite goaf of the upper layer goaf and the lower layer along the goaf roadway in the fully mechanized mining face. The range of coal pillars in the upper layer goaf and the hazardous area of residual coal in the intake channel is obtained as follows: 49m to 175m near the direction of the intake channel, and 201m to 224m near the direction of the return channel. The hazardous area for coal residue in the middle is: an area 49m to 175m along the direction near the intake side, and an area 201m to 224m along the direction near the return side. The main hazardous areas in the composite goaf were identified as the coal residue area in the intake channel and the central area. The hazardous area for coal residue in the intake channel is: the distance from the deep goaf along the intake side to the working face is 23m to 38m, and the distance from the flexible formwork wall in the inclined direction is 0-121m; The central coal risk area is an area with a distance of 0m to 23m from the deep goaf on the intake side to the working face, and an area with a distance of 23m to 75m from the goaf on the return side to the working face. The research results will provide theoretical guidance for the prevention and control of coal spontaneous combustion in the 8521 working face and similar working faces of Chenjiagou Coal Mine.

参考文献:

[1] 程子曌. 新形势下我国煤炭洗选加工现状及展望[J]. 煤炭加工与综合利用, 2022(01):20-26.

[2] 韩美琳. 高质量发展背景下中国经济产业结构转型升级研究[D]. 吉林:吉林大学, 2022.

[3] 刘晶晶. 供给侧结构性改革背景下煤炭企业高质量发展路径研究[J]. 科技创新与应用, 2022, 12(11):185-188.

[4] 中华人民共和国自然资源部. 2012-2022中国矿产资源报告https://www.mnr.gov.cn.

[5] 房秀政, 鲁义, 王刚,等.矿井火灾防治材料研究现状及展望[J], 能源与环保, 2020, 42(8): 164-167.

[6] 谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019,44(7): 1949-1960.

[7] 方树林, 中国煤矿灾害防治技术的研究现状与发展趋势[J]. 洁净煤技术, 2012,18(01):90-94.

[8] 戚旭鹏, 郝朝瑜, 王雪峰等. 特厚易自燃煤层综放开采采空区防灭火技术[J]. 金属矿山, 2015(04):162-165.

[9] 王德明. 煤矿热动力灾害及特性[J]. 煤炭学报, 2018,43(01):137-142.

[10] 秦波涛, 张雷林, 王德明等. 采空区煤自燃引爆瓦斯的机理及控制技术[J]. 煤炭学报, 2009,34(12):1655-1659.

[11] 何启林. 煤低温氧化性与自燃过程的实验及模拟的研究[D]. 江苏:中国矿业大学, 2006.

[12] 周佩玲. 采空区遗煤氧化升温时空演化机制研究[D]. 北京:北京科技大学, 2017.

[13] 余明高, 滕飞, 褚廷湘等.浅埋煤层重复采动覆岩裂隙及漏风通道演化模拟研究[J]. 河南理工大学学报(自然科学版), 2018,37(01):1-7.

[14] 章飞. 复合采空区遗煤自燃极限参数变化及危险区域判定[J]. 矿业安全与环保, 2020,47(04):66-72

[15] 张辛亥, 万旭, 许延辉等.厚煤层分层开采采空区自燃“三带”规律及防治研究[J]. 煤炭科学技术, 2016,44(10):24-28.

[16] 薛永利, 赵亮, 冯浩. 特厚煤层分层开采煤自燃防治技术研究[J]. 煤矿现代化, 2016(01):37-40.

[17] 陈晓坤, 马腾, 马斌等. 王洼二矿上分层遗煤自燃特性的试验研究[J]. 煤矿安全, 2017,48(02):40-43.

[18] 焦庚新, 白成武, 戚绪尧等. 近距离煤层下分层采空区煤自燃危险区域分布规律[J].煤矿安全, 2020,51(01):187-190.

[19] 郑立永, 田中华, 朱红金等. 浅埋特厚煤层采空区煤自燃危险区域立体分布特性研究[J]. 煤炭工程, 2023,55(09):79-84.

[20] N. Kursunoglu, M. Gogebakan. Prediction of spontaneous coal combustion tendency using multinomial logistic regression[J]. International Journal of Occupational Safety and Ergonomics, 2014, 136: 326-333.

[21] J. Cygankiewicz, Determination of critical conditions of spontaneous combustion of coal in longwall gob areas[J]. Archives of Mining Sciences, 2015, 60(3):761-776.

[22] Mahidin. The evaluation of spontaneous combustion characteristics and properties of raw and upgraded Indonesian low rank coals[J].Fuel and Energy Abstracts,2003,44(3):81-91.

[23] 侯家琛, 张兴华, 郭明超等. 寨崖底矿W型通风条件下采空区三带划分以及漏风规律研究[J]. 煤炭技术, 2023,42(08):162-166.

[24] 李明珠. 凤凰山矿沿空留巷Y型通风方式下采空区漏风规律研究[D]. 山西:太原理工大学, 2012.

[25] 郭艳飞, 郝殿, 李学臣等. 沿空留巷工作面“一进两回”通风方式下采空区漏风规律研究[J]. 矿业安全与环保, 2022,49(06):46-51.

[26] 郝殿, 李学臣, 郭艳飞等. 基于SF6示踪气体的沿空留巷采空区瓦斯运移规律研究[J]. 煤炭技术, 2022,41(02):145-148.

[27] 张振彬, 于聪明, 陈瑞鼎. 沿空留巷工作面复杂通风模式采空区漏风规律数值模拟研究[J]. 能源技术与管理, 2022,47(04):50-52+67.

[28] 王炯, 刘鹏, 姜健等. 切顶卸压沿空留巷回采工作面Y型通风漏风规律研究[J]. 采矿与安全工程学报, 2021,38(03):625-633.

[29] 赵亮, 王飞, 刘红威等. 切顶留巷侧帮孔隙率对工作面采空区漏风规律研究[J]. 中国矿业, 2021,30(03):188-192+197.

[30] 和凯敏. 沿空留巷工作面漏风规律分析及通风优化[J]. 自动化应用, 2020(11):143-144+147.

[31] 李艳飞. 放顶煤沿空留巷工作面漏风规律及防治[J]. 山东煤炭科技, 2020(07):95-97+105.

[32] 荆红俊. 综放工作面沿空留巷时的漏风规律与通风系统优化[J]. 同煤科技, 2019(03):21-23.

[33] 余明高, 李龙飞, 褚廷湘等. 瓦斯抽采下沿空留巷工作面采空区漏风机制研究[J]. 安全与环境学报, 2016,16(02):108-113.

[34] Tengteng Li, Bing Wu, Baiwei Lei, Qiming Huang(2020): Study on air leakage and gas distribution in goaf of Y-type ventilation system ,Energy Sources, Part A:Recovery, Utilization,and Environmental Effects.

[35] Zhou, X, Jing, Z. & Li, Y. Research on controlling gas overrun in a working face based on gob-side entry retaining by utilizing ventilation type “Y”. Sci Rep 13,9199 (2023).

[36] Chen, X, Du, Y, Wang, L, Zhao, S. Evolution and application of airflow permeability characteristics of gob in roof cutting and pressure releasing mining method. Energy Sci Eng.

[37] 黎经雷, 牛会永, 鲁义等. 风速对近距离煤层采空区漏风及煤自燃影响研究[J]. 煤炭科学技术, 2019,47(03):156-162.

[38] 张立国. 浅埋深近距离易自燃煤层群复合采空区漏风规律研究[J]. 煤矿安全, 2018,49(S1):5-8+13.

[39] 文虎, 程小蛟, 许延辉等. 特厚煤层综放工作面不同漏风源位置对自燃带分布的影响[J]. 煤矿安全, 2018,49(02):138-142.

[40] 邓军, 徐精彩, 张辛亥. 综放面采空区温度场动态数学模化及应用[J]. 中国矿业大学学报, 1999(02):81-83.

[41] 文虎. 煤自燃过程的实验及数值模拟研究[D]. 西安:西安科技大学, 2003.

[42] 何启林, 王德明. 综放面采空区遗煤自然发火过程动态数值模拟[J]. 中国矿业大学学报, 2004(01):14-17.

[43] 李宗翔, 李海洋, 贾进章. Y形通风采空区注氮防灭火的数值模拟[J]. 煤炭学报,2005(05):51-55.

[44] 李宗翔, 吴志君, 马友发. 采空区场域自燃CO向工作面涌出的数值模拟[J]. 燃烧科学与技术, 2006(06):563-568.

[45] 张瑞林, 杨运良, 马哲伦等. 自燃采空区风流场、温度场及热力风压场的计算机模拟[J]. 焦作工学院学报, 1998(04):12-16.

[46] 杜礼明, 杨运良. 采空区三维非稳定流场的数学模型及热力风压的计算[J]. 焦作工学院学报, 1999(03):16-20.

[47] 梁运涛, 张腾飞, 王树刚等. 采空区孔隙率非均质模型及其流场分布模拟[J]. 煤炭学报, 2009,34(09):1203-1207.

[48] 唐明云, 戴广龙, 秦汝祥等. 综采工作面采空区漏风规律数值模拟[J]. 中南大学学报(自然科学版), 2012,43(04):1494-1498.

[49] Li M Yuan, Alex C Smith, Brune J F. Computational fluid dynamics study on the ventilation flow paths in a longwall gobs[C]. Proceedings of the 11th U.S./North American Mine Ventilation Symposium, University Park, 2006:76-88.

[50] Alex C S, Li M Y. Simulation of spontaneous heating in longwall gob area with a bleederless ventilation system[J]. Mining Engineering, 2008,60(8):61-66.

[51] Dick Schmal, Jan H Duyzer, Jan Willem van Heuven. A model for the spontaneous heating of coal[J]. Fuel, 1985,64(7):963-972.

[52] Gang W, Hao X, Meng M W, et al. Porosity model and air leakage flow field simulation of goaf based on DEM-CFD[J]. Arabian Journal of Geosciences, 2018,11(7):1-17.

[53] 徐精彩, 张辛亥, 邓军等. 常村煤矿2106综放面采空区“三带”规律及自燃危险性研究[J]. 湖南科技大学学报(自然科学版), 2004(03):1-4.

[54] 许延辉, 程小蛟,文虎等. 多分层错距开采特厚遗煤自燃规律及精准防控技术研究[J/OL]. 煤炭科学技术:1-13[2024-03-26].

[55] 岳宁芳, 金彦, 陈桂林等. 基于多参量的采空区煤自燃危险区域划分方法研究[J]. 矿业安全与环保, 2021,48(04):1-5+11.

[56]李崇茂, 李永元, 王海文. 特厚煤层综放工作面自燃危险区域分布规律研究[J]. 煤矿安全, 2013,44(09):34-37.

[57]王中举, 张德鹏, 韩伟. 六家煤矿综放采空区自燃危险区域实测及数值模拟[J]. 现代矿业, 2023,39(12):187-190.

[58]刘山, 卢树德, 王凯等. 王家山煤矿大倾角综放面采空区煤自燃危险区域研究[J]. 能源与环保, 2023,45(12):62-67.

[59]徐精彩, 文虎, 邓军, 等. 煤自燃极限参数研究[J]. 火灾科学, 2000(02):14-18.

[60]牛会永, 周心权. 综放面采空区遗煤自然发火特点及环境分析[J]. 煤矿安全,2008(08):12-15.

[61]秦玉金, 姜文忠, 王学洋. 采空区瓦斯爆炸(燃烧)点火源的确定[J]. 煤矿安全,2005(07):35-37.

[62]高峰. 浅埋煤层群上部采空区遗煤自燃危险区域分布特征研究[D]. 内蒙古:内蒙古科技大学, 2022.

[63]刘蓉蒸. 特厚煤层分层开采上覆岩层裂隙场演化规律及采空区遗煤自燃防治技术研究[D]. 辽宁:辽宁工程技术大学, 2022.

[64]徐精彩. 煤自燃危险区域判定理论[M]. 北京:煤炭工业出版社. 2002.

[65]文虎, 徐精彩, 李莉等. 煤自燃的热量积聚过程及影响因素分析[J]. 煤炭学报, 2003(04):370-374.

[66]邓军, 徐精彩, 陈晓坤. 煤自燃机理及预测理论研究进展[J]. 辽宁工程技术大学学报, 2003(04):455-459.

[67]谢军, 薛生. 综放采空区空间自燃三带划分指标及方法研究[J]. 煤炭科学技术, 2011,39(01):65-68.

[68]Deng J, Lei C, Xiao Y, et al. Determination and prediction on "three zones" of coal spontaneous combustion in a gob of fully mechanized caving face. Fuel. 2018,211:458-470.

[69]Yang Y, Li Z, Si L, et al. Study on test method of heart release intensity and thermophysical parameters of loose coal. Fuel. 2018,229:34-43.

[70]Song Z, Zhu H, Jia G, et al. Comprehensive evaluation on self-ignition risks of coal stockpiles using fuzzy AHP approaches. Journal of Loss Prevention in the Process Industries. 2014,32:78-94.

中图分类号:

 TD752.2    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式