论文中文题名: | 内蒙古中东部干旱特征演变及风险分区研究 |
姓名: | |
学号: | 20210226064 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085215 |
学科名称: | 工学 - 工程 - 测绘工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | GIS应用与灾害评估 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-12 |
论文答辩日期: | 2023-06-04 |
论文外文题名: | Evolution of drought characteristics and risk zoning in Central and eastern Inner Mongolia |
论文中文关键词: | |
论文外文关键词: | Drought ; Characteristics of space-time evolution ; AHP-The Entropy method ; Agricultural drought risk |
论文中文摘要: |
干旱,作为世界上频发的自然灾害之一,因持续时间长、影响范围广、经济损失巨大等特点,使其成为世界上最引人关注的自然灾害。21世纪以来,随着气候的剧烈变化,使得自然灾害频发,中国北方作为全国较大规模的粮食产区,受干旱灾害影响尤为严重。2020年,随着我国第一次自然灾害风险普查工作的开展,人们对灾害的认识更加深刻。同时出于对粮食安全的考虑,2022年党的二十大上提出农业强国战略,加快建设农业强国,保障国家粮食安全。随后各省市也陆续提出农业生产目标,为我国农业生产、粮食安全保驾护航。 内蒙古自治区,作为我国主要的粮食生产基地,其粮食作物主要分布在中东部的平原地区,复杂的地势地貌以及降水量与蒸发量的收支失衡使其发生干旱的风险较大。基于此,本文采用游程理论对1960-2020年内蒙古中东部干旱进行分析,利用趋势分析法对干旱历时、干旱频率、干旱强度和干旱事件变化趋势进行研究,进一步剖析干旱时空变化,揭示其发展规律。随后在内蒙古中东部SPEI3(季尺度下的标准化降水蒸散发指数,从降水、气温两方面表征农业干旱)的基础上,选取21世纪以来春、夏、秋三季连旱且距今最近的干旱年份(2020年)构建农业干旱风险模型,从农业方面对内蒙古中东部干旱进行分区研究。主要研究内容和成果如下: (1)1960-2020年,综合对比两种干旱指数的干旱识别情况,标准化降水指数所统计出来的干旱历时、干旱频率、干旱事件均低于标准化降水蒸散发指数。其中,基于SPI、SPEI统计出来的平均干旱历时相差无几。干旱频率均在2017年和1990年分别达到最大次数和最小次数。干旱强度和干旱事件的高低和多少虽有不同,但发展趋势呈现出一致性。通过分析干旱指数与植被指数的相关关系,结果表明标准化降水蒸散发指数在内蒙古中东部干旱识别过程中要优于标准化降水指数;在变化趋势上,干旱历时、干旱强度在内蒙古中部、内蒙古东部均呈现出显著上升的趋势。干旱频率在内蒙古中部、内蒙古东部均呈现出上升趋势,但不显著;干旱事件无明显上升趋势。 (2)利用AHP-熵权法计算2020年所选取的20个农业干旱风险因子权重值。随后采用叠加分析的方式分别得到致灾因子危险性、孕灾环境脆弱性、承灾体暴露性和抗旱减灾能力空间分布图,结论如下:对于致灾因子危险性而言,内蒙古中东部大部分地区处于中等危险及以上,呼伦贝尔市东部及兴安盟北部少部分地区处于次低危险和低危险区。孕灾环境脆弱性表现出:呼伦贝尔市整体位于低脆弱区;锡林郭勒盟和通辽市位于次低危险区;赤峰市及乌兰察布市处于中等脆弱区;兴安盟东部及南部地区处于次高脆弱区;兴安盟中部和西部大部分区域以及呼和浩特市处于高脆弱区。承灾体暴露性呈现出:呼和浩特市位于次低暴露区;锡林郭勒盟处于中等暴露区之内;呼伦贝尔市、赤峰市及乌兰察布市位于次高暴露区;兴安盟和通辽市位于高暴露区。抗旱减灾能力:乌兰察布与锡林郭勒盟抗旱减灾能力较弱,处于低抗旱减灾能力区;呼伦贝尔市则处于中等抗旱减灾能力区;赤峰市、兴安盟处于次高抗旱减灾能力区;通辽市及呼和浩特市抗旱减灾能力相对较强,处于高抗旱减灾能力区。 (3)利用加权综合评价法对2020年内蒙古中东部农业干旱风险进行分区研究,结论如下:乌兰察布市中西部处于干旱灾害高风险区;次高风险区主要分布于乌兰察布市东部、锡林郭勒盟西北部、通辽市以及赤峰市大部分区域;中等风险区分布于锡林郭勒盟中部、赤峰市西部小部分地区和兴安盟南部区域;次低风险区分布于锡林郭勒盟南部及东北部、兴安盟北部地区;呼和浩特市和呼伦贝尔市处于干旱灾害低风险区。利用2020年内蒙古中东部粮食单产量分布情况对干旱风险分区结果进行验证,结果较为一致。 |
论文外文摘要: |
Drought, as one of the most frequent natural disasters in the world, has become the most concerned natural disaster in the world due to its long duration, wide impact and huge economic losses. Since the 21st century, with the dramatic changes in climate, natural disasters have occurred frequently. As a large-scale grain producing area in China, northern China has been particularly affected by drought disasters. In 2020, with the development of China 's first natural disaster risk census, people have a deeper understanding of disasters. At the same time, out of the consideration of food security, the 20th National Congress of the Communist Party of China put forward the strategy of agricultural power in 2022, accelerating the construction of agricultural power and ensuring national food security. Subsequently, provinces and cities have also put forward agricultural production goals to escort China 's agricultural production and food security. The Inner Mongolia Autonomous Region, as the main grain production base in China, its grain crops are mainly distributed in the plain areas in the central and eastern regions. The complex topography and the imbalance between precipitation and evaporation make it a greater risk of drought. Based on this, this paper uses the run theory to analyze the drought in the central and eastern Inner Mongolia from 1960 to 2020, and uses the trend analysis method to study the drought duration, drought frequency, drought intensity and drought event change trend, further analyze the spatial and temporal changes of drought and reveal its development law. Then, on the basis of SPEI3 (Standardized Precipitation Evapotranspiration Index at Seasonal Scale, which characterizes agricultural drought from both precipitation and temperature ) in the central and eastern Inner Mongolia, the agricultural drought risk model was constructed by selecting the recent drought years (2020) with continuous drought in spring, summer and autumn since the 21st century, and the drought in the central and eastern Inner Mongolia was studied from the agricultural aspect. The main research contents and results are as follows : (1) From 1960 to 2020, the drought duration, drought frequency and drought events calculated by the standardized precipitation index were lower than those of the standardized precipitation evapotranspiration index. Among them, the average drought duration based on SPI and SPEI is almost the same. The drought frequency reached the maximum and minimum in 2107 and 1990 respectively. Although the drought intensity and drought events are different, the development trend is consistent. By analyzing the correlation between drought index and vegetation index, the results show that the standardized precipitation evapotranspiration index is superior to the standardized precipitation index in the process of drought identification in the central and eastern Inner Mongolia. In terms of change trend, drought duration and drought intensity showed a significant upward trend in central and eastern Inner Mongolia. The frequency of drought showed an upward trend in central and eastern Inner Mongolia, but not significant. Drought events had no obvious upward trend. (2) Using AHP-entropy weight method to calculate the weight value of 20 agricultural drought risk factors selected in 2020. Then, the spatial distribution maps of hazard factors, vulnerability of disaster-pregnant environment, exposure of disaster-bearing body and drought resistance and disaster reduction ability are obtained by means of superposition analysis. The conclusions are as follows : For the hazard of hazard factors, most of the central and eastern Inner Mongolia is in moderate risk and above, and the eastern part of Hulunbuir City and a small part of the northern part of Xing 'an League are in sub-low risk and low risk areas. The vulnerability of the disaster environment shows that the whole city of Hulunbuir City is located in a low-fragile area ; Xilingol League and Tongliao City are located in the sub-low risk area ; Chifeng City and Ulanqab City are in the middle vulnerable area ; the eastern and southern regions of Xing 'an League are in the sub-high vulnerability area ; most of the central and western regions of Hinggan League and Hohhot are in high vulnerability areas. The exposure of hazard-affected bodies shows that Hohhot is located in the sub-low exposure area ; Xilingol League is in the middle exposure area ; Hulunbuir City, Chifeng City and Ulanqab City are located in the sub-high exposure area ; Xing 'an League and Tongliao City are located in high exposure areas. Drought resistance and disaster reduction capacity : Ulanqab City and Xilingol League have weak drought resistance and disaster reduction capacity, and are in low drought resistance and disaster reduction capacity areas ; Hulunbuir City is in the area of medium drought resistance and disaster reduction capacity ; Chifeng City and Xing 'an League are in the sub-high drought resistance and disaster reduction capacity area ; the drought resistance and disaster reduction ability of Tongliao City and Hohhot is relatively strong, which is in the area of high drought resistance and disaster reduction ability. (3) The weighted comprehensive evaluation method was used to study the agricultural drought risk in the central and eastern parts of Inner Mongolia in 2020. The conclusions are as follows : the central and western parts of Ulanqab City are in the high risk area of drought disaster ; the sub-high-risk areas are mainly distributed in the east of Ulanqab City, the northwest of Xilingol League, Tongliao City and most of Chifeng City. The medium risk area is distributed in the central part of Xilingol League, a small part of the western part of Chifeng City and the southern part of Xing 'an League. The sub-low risk areas are distributed in the southern and northeastern parts of Xilingol League and the northern part of Hinggan League. Hohhot and Hulunbuir City are in the low risk area of drought disaster. The results of drought risk zoning were verified by the distribution of single grain yield in central and eastern Inner Mongolia in 2020, and the results were consistent. |
参考文献: |
[1] 吴吉东, 何鑫, 王菜林, 等. 自然灾害损失分类及评估研究评述[J]. 灾害学. 2018, 33(4): 157-163. [2] 倪深海, 吕娟, 刘静楠, 等. 变化环境下我国干旱灾害演变趋势分析[J]. 中国防汛抗旱. 2022, 32(10): 2, 1-7. [6] 张强, 王润元, 邓振镛, 等. 中国西北干旱气候变化对农业与生态影响及对策[M]. 北京:气象出版社, 2012. [7] 曹永强, 路洁. 国内外气象干旱研究现状与前沿分析[J]. 中国防汛抗旱. 2021, 31(3): 1-7. [8] 李稚, 李玉朋, 李鸿威, 等. 中亚地区干旱变化及其影响分析[J]. 地球科学进展. 2022, 37(1): 37-50. [9] 王姣妍. 新疆气候暖湿化背景下干旱分布与演变特征[J]. 干旱环境监测. 2023, 37(1): 15-21. [10] 王劲松, 姚玉璧, 王莺, 等. 青藏高原地区气象干旱研究进展与展望[J]. 地球科学进展. 2022, 37(5): 441-461. [12] 王周玉, 刘泳涛, 王永康, 等. 揭阳市气象干旱变化特征及成因分析[J]. 广东气象. 2023, 45(2): 14-17. [13] 李世奎, 霍治国, 王道龙, 等. 中国农业灾害风险评价与对策[M]. 气象出版社, 1999: 1-221. [14] 翁白莎, 严登华. 变化环境下中国干旱综合应对措施探讨[J]. 资源科学. 2010, 32(2): 309-316. [15] 黄春艳. 黄河流域的干旱驱动及评估预测研究[D]. 西安: 西安理工大学, 2021. [18] 张艳明. 甘肃省干旱灾害风险评估及区划研究[D]. 西安: 西安科技大学, 2021. [26] Jr Richard R. Heim, 周跃武, 冯建英. 美国20世纪干旱指数评述[J]. 干旱气象. 2006, 01(24): 79-89. [27] 胡彩虹, 王金星, 王艺璇, 等. 水文干旱指标研究进展综述[J]. 人民长江. 2013, 44(7): 11-15. [29] Palmer W C. Meteorological drought[R]. [S. l ]: U. S.Weather Bureau, 1965. [35] 鞠笑生, 杨贤为, 陈丽娟, 等. 我国单站旱涝指标确定和区域旱涝级别划分的研究[J]. 应用气象学报. 1997: 27-34. [36] 曾碧球, 解河海, 查大伟. 基于SPI和SRI的马别河流域气象与水文干旱相关性分析[J]. 湖北农业科学. 2020, 59(12): 40-44. [37] 段居琦, 张强, 何雨峰, 等. 基于大气-土壤-植被系统干旱发生发展过程的综合干旱指标构建与应用[J]. 气象学报. 2021, 79(2): 229-239. [38] 容锦盟, 周丹, 罗静, 等. 4种干旱指标在华北地区气象干旱监测中的适用性分析[J]. 干旱地区农业研究. 2019, 37(1): 259-267. [40] 吴天晓, 李宝富, 郭浩, 等. 基于优选遥感干旱指数的华北平原干旱时空变化特征分析[J]. 生态学报. 2023, 43(4): 1621-1634. [41] 尹占娥. 自然灾害风险理论与方法研究[J]. 上海师范大学学报. 2012, 41(1): 99-103. [42] 许筱乐, 彭涛, 林青霞, 等. 西南地区干旱风险传递特征及驱动因素分析[J]. 水力发电学报. 2022, 41(12): 69-79. [43] 李臻, 季民, 李云岭, 等. 山东省干旱灾害风险评估与区划研究[J]. 人民长江. 2023, 54(1): 80-87. [44] 赵晓萌, 雷田旺, 范婧儿, 等. 基于气象干旱综合监测指数(MCI)的陕西省干旱灾害风险评估与区划[J]. 中国沙漠. 2022, 42(6): 125-133. [45] 郑方, 马力文. 宁夏农业干旱风险评估与区划[J]. 农业灾害研究. 2021, 11(6): 152-155. [46] 李娜, 霍治国, 钱锦霞, 等. 山西省干旱灾害风险评估与区划[J]. 中国农业资源与区划. 2021, 42(5): 1-10. [47] 刘晓冉, 康俊, 王颖, 等. 基于GIS的重庆地区不同季节干旱灾害风险评估与区划[J]. 自然灾害学报. 2019, 28(2): 92-100. [48] 吴秀兰, 张婧莉, 余行杰, 等. 新疆天山山区干旱灾害综合风险评估与区划[J]. 气象与环境学报. 2022, 38(4): 161-167. [49] 宋柏泱, 陈报章. 巴基斯坦瓜达尔港地区干旱灾害风险评估[J]. 地理研究. 2022, 41(8): 2251-2264. [50] 高红霞, 张晓磊, 吴淑梅, 等. 内蒙古中部马铃薯干旱灾害风险分析与区划[J]. 江西农业学报. 2022, 34(2): 20-26. [51] 侯静茹. 内蒙古东部农牧交错带干旱风险评估与区划[D]. 呼和浩特: 内蒙古大学, 2017. [52] 冯晓晶, 高志国, 马朴. 气象干旱指标在内蒙古干旱监测评估中的应用[J]. 内蒙古气象. 2011(5): 39-41. [53] 张美杰. 近60a内蒙古干旱动态分析[D]. 呼和浩特: 内蒙古师范大学, 2012. [54] 李兴华, 李云鹏, 杨丽萍. 内蒙古干旱监测评估方法综合应用研究[J]. 干旱区资源与环境. 2014, 28(3): 162-166. [55] 刘继遥, 春喜, 梁文军, 等. 基于SPI指数的内蒙古干旱时空分布特征研究[J]. 内蒙古师范大学学报. 2016, 45(4): 533-539. [56] 包丹丹, 屈帅, 邱炎. 基于标准化降水指数监测内蒙古干旱特征[J]. 科技传播. 2016, 8(15): 137-138. [57] 张煦庭, 潘学标, 徐琳, 等. 基于降水蒸发指数的1960-2015年内蒙古干旱时空特征[J]. 农业工程学报. 2017, 33(15): 190-199. [58] 张然, 高兴利. 内蒙古干旱成因及抗旱举措初探[J]. 内蒙古水利. 2020(1): 55-57. [59] 郗蒙浩, 赵秋红, 姚忠, 等. 自然灾害风险评估方法研究综述[Z]. 中国内蒙古呼和浩特: 2014. [60] 王彬彬, 石丽红, 卢月明. 一种顾及高程的时空反距离加权插值方法[J]. 测绘与空间地理信息. 2018, 41(10): 82-85. [61] 柴国亮, 苏军伟, 王乐. 一种保持二阶精度的反距离加权空间插值算法[J]. 计算物理. 2020, 37(4): 393-402. [63] 姜春雷. 克里格插值的加速和参数优化及其应用[D]. 北京: 中国科学院大学,2016. [64] 丁蓓蓓, 刘根, 赵倩. 基于克里格插值法的重金属污染分布分析[J]. 中国环境管理干部学院学报. 2018, 28(4): 44-47, 51. [65] 胡碧峰, 王佳昱, 傅婷婷, 等. 空间分析在土壤重金属污染研究中的应用[J]. 土壤通报. 2017, 48(4): 1014-1024. [66] 刘帆. 泰森多边形耦合插值优化场地污染空间预测与布点[D]. 湘潭: 湘潭大学, 2021. [67] 张霞, 何南. 综合评价方法分类及适用性研究[J]. 统计与决策. 2022, 38(6): 31-36. [68] 彭张林, 张强, 杨善林. 综合评价理论与方法研究综述[J]. 中国管理科学. 2015, 23(S1): 245-256. [70] 商东耀, 张志红, 岳元, 等. 基于标准化降水指数的河南省近45年干旱时空特征分析[J]. 干旱地区农业研究. 2021, 39(4): 162-170. [71] 张建成. 基于多变量M-K检验的大凌河流域降水趋势分析[J]. 黑龙江水利科技. 2020, 48(1): 29-33. [72] 游漫, 贺中华, 张浪, 等. 基于相对湿润指数的贵州省气象干旱时空变化特征研究[J]. 水土保持研究. 2022, 29(4): 255-262, 269. [73] 彭健. 内蒙古东部气象干旱时空演变特征及预估[D]. 呼和浩特: 内蒙古师范大学, 2021. [74] 崔修来, 孙瑶, 王东. 干旱监测预报研究综述[J]. 南方农业. 2019, 13(20): 151-152. |
中图分类号: | P208.2 |
开放日期: | 2023-06-14 |