- 无标题文档
查看论文信息

论文中文题名:

 基于参数变化的碳化硅MOSFET并联均流技术研究    

姓名:

 霍冉    

学号:

 19206204051    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085207    

学科名称:

 工学 - 工程 - 电气工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 电力电子与电力传动    

第一导师姓名:

 童军    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-01-13    

论文答辩日期:

 2022-12-07    

论文外文题名:

 Research on Parallel Current Sharing Technology of Silicon Carbide MOSFETBased on Parameter Variation    

论文中文关键词:

 电流不均衡影响因素 ; 参数变化 ; 并联均流 ; SiC MOSFET ; 驱动    

论文外文关键词:

 Influencing factors of current imbalance ; Parameter change ; Parallel current equalization ; SiCMOSFET ; Drive    

论文中文摘要:

近年来,随着半导体技术的不断发展,硅基功率器件的性能已经达到极限,以SiCMOSFET为代表的新型宽禁带半导体功率器件具有工作频率高,耐高压和耐高温等优势,在轨道交通、航空航天、感应加热、新能源汽车等各个领域发挥重要作用。单个SiCMOSFET电流容量不大,为了满足大功率电力电子设备的需求,需要将SiCMOSFET并联以提高系统通流能力。但是由于器件自身、寄生电感、栅极驱动等参数的影响,会导致各并联支路电流分配产生差异,严重时破坏系统稳定性。因此,讨论碳化硅MOSFET的并联均流技术具有重要研究意义。

首先,本文对SiC MOSFET的静态特性、开关特性、功率特性和均流特性进行详细分析,并对SiC MOSFET的主要参数进行说明。介绍了功率器件的选型,计算了驱动参数,设计了基于1ED020I12-F2驱动芯片的驱动电路。

其次,基于Multisim软件搭建SiC MOSFET并联测试回路,对可能导致电流不平衡问题的外部参数,包括线路的寄生电感、栅极驱动以及温度的差异等,进行分析和仿真,得到不同参数变化对电流不平衡程度的影响结果,证明采取电流均流措施的必要性。

最后,为解决导致流过各并联支路电流不平衡问题,对抑制不平衡电流的方案进行深入研究和分析。针对双管并联提出了一种栅极串联均流电阻联合耦合电感的不平衡电流抑制方法,对该方法的工作原理进行了详细分析,并通过仿真软件验证了该方法的有效性。针对多管并联提出了一种栅极串联均流电阻联合源极增加功率电感的不平衡电流抑制方法,对该方法工作原理进行了分析说明,并通过仿真软件验证了该方法的有效性。通过搭建实验测试平台进行均流实验和不平衡电流测试,验证了两种不平衡电流抑制方法的正确性和可行性。

论文外文摘要:

In recent years, with the continuous development of semiconductor technology, the performance of silicon-based power devices has reached the limit. The new wide band gap semiconductor power devices represented by SiC MOSFET have the advantages of high working frequency, high pressure and high temperature resistance, and play an important role in rail transit, aerospace, induction heating, new energy vehicles and other fields. The current capacity of a single SiC MOSFET is small, in order to meet the needs of high-power electronic equipment, it is necessary to connect the SiC MOSFET in parallel to improve the current capacity of the system. However, due to the influence of the device itself, parasitic inductor, gate drive and other factors, it will lead to differences in current distribution among the parallel branches, and seriously destroy the stability of the system. Therefore, it is of great significance to discuss the parallel current sharing technology of Silicon Carbide MOSFET.

First of all, the static characteristics, switching characteristics, power characteristics and current sharing characteristics of SiC MOSFET are analyzed in detail, and explains the main parameters of the SiC MOSFET. The selection of power devices is introduced, the driving parameters are calculated, and the driving circuit based on 1ED020I12-F2 driver chip is designed.

Secondly, the SiC MOSFET parallel test circuit is built based on Multisim software, and the external parameters that may lead to current imbalance, including parasitic inductance, gate drive and temperature difference, are analyzed and simulated, and the results of the influence of different parameters on the degree of current imbalance are obtained, which proves the necessity of current sharing.

Finally, in order to solve the problem of unbalanced current flowing through each parallel branch, the scheme to restrain the unbalanced current is deeply studied and analyzed. Aiming at the parallel connection of two transistors, an unbalanced current suppression method of gate series current sharing resistor combined with coupled inductor is proposed, the working principle of this method is analyzed in detail, and the effectiveness of the method is verified by simulation software. Aiming at the parallel connection of multiple transistors, an unbalanced current suppression method of grid series current sharing resistance combined with source to increase power inductance is proposed, the working principle of this method is analyzed and explained, and the effectiveness of the method is verified by simulation software. By setting up an experimental test platform for current sharing experiment and unbalanced current test, the correctness and feasibility of the two unbalanced current suppression methods are verified.

参考文献:

[1] 张运洲, 张宁, 代红才, 等. 中国电力系统低碳发展分析模型构建与转型路径比较[J]. 中国电力, 2021, 54(03): 1-11.

[2] Mitova R, Ghosh R, Mhaskar U, et al. Investigations of 600-V GaN HEMT and GaN Diode for Converter Application[J]. IEEE Transactions on Power Electronics, 2014, 29(5): 2441-2452.

[3] 李俊峰, 李广. 中国能源、环境与气候变化问题回顾与展望[J]. 环境与可持续发展, 2020, 45(05): 8-17.

[4] 王兆安, 刘进军, 杨旭, 等. 电力电子技术[M]. 北京: 机械工业出版社, 2009.

[5] 钱照明, 张军明, 盛况. 电力电子器件及其应用的现状和发展[J]. 中国电机工程学报, 2014, 34(29): 5149-5161.

[6] 陈治明, 李守智. 宽禁带半导体电力电子器件及其应用[M]. 北京: 机械工业出版社, 2009.

[7] Qi F, Fu L, Xu L, et al. Si and SiC power MOSFET characterization and comparison[C]. IEEE Transportation Electrification Conference and Expo Asia Pacific, Beijing, China, 2014.

[8] T. P. Chow. SiC and GaN high-voltage power switching devices[C]. Material Secience Forum, 2000.

[9] 刘翔, 刘尚. 宽禁带半导体行业深度: SiC与GaN的兴起与未来[J]. 变频器世界, 2019, (12): 42-48.

[10] 董耀文, 秦海鸿, 付大丰, 等. 宽禁带器件在电动汽车中的研究和应用[J]. 电源学报, 2016, 14(04): 119-127.

[11] Zheyu Zhang, Ben Guo, Fei (Tred) Wang, et al. Methodology Wide Band-Gap Decice Dynamic Characterization[J]. IEEE Transactions on Power Electronics, 2017, 32(12): 9307-9318.

[12] 杨涛, 窦泽春, 朱武, 等. 基于SiC MOSFET 的牵引逆变器在轨道交通中的应用研究[J]. 机车电传动, 2020(01): 28-33.

[13] Hamada K, Nagao M, Ajioka M, et al. SiC—Emerging Power Device Technology for Next-Generation Electrically Powered Environmentally Friendly Vehicles[J]. IEEE Transactions on Electron Devices, 2015, 62 (2): 278-285.

[14] 周伟成. 碳化硅功率器件的性能分析与多芯片并联应用研究[D]. 浙江大学, 2019.

[15] 高凡. SiC MOSFET并联均流技术的研究[J]. 数字通信世界, 2019(02):51+53.

[16] 柯俊吉, 赵志斌, 孙鹏, 等. 器件参数对SiC MOSFET并联均流影响的统计分析[J].半导体技术, 2018, 43(03): 181-187.

[17] 赵子剑. 低压大电流系统的研究与设计[D]. 杭州电子科技大学, 2019.

[18] 梁美, 郑琼林, 孙可翀, 等. SiC MOSFET、Si CoolMOS和IGBT的特性对比及其在DAB变换器中的应用[J]. 电工技术学报, 2015, 30(12): 41-50.

[19] NAKAMURA T, NAKANO Y, AKETA M, et al. High performance SiC trench devices withultralowron[C]//IEEE Electron Devices Meeting (IEDM), IEEE International, Brooklyn, New York, 2011, 26(5)1-3.

[20] 科发. Rohm发布首款沟槽式碳化硅MOSFET[J]. 半导体信息, 2015, (03): 14-15.

[21] C2M008120D数据手册[Z]. Cree. 2014.

[22] DUONG T H, BERNING D W, HEFNER A R, et al. Long-Term Stability Test System for High-Voltage, High-Frequency SiC Power Devices[C]//IEEE Applied Power Electronics Conference. Boston, MA,United states, 2007, 3 (2): 1240-1246.

[23] CALLANAN R, CAPELL D C,HULL B, et a1. State of the Art 1 0 kV NMOS Transistors[C]. Proceedings of the 20th International Symposium on Power Semiconductor Devices & IC’S. Oralando, FL, United states, 2008: 252-255.

[24] 邵天骢, 郑琼林, 李志君, 等. 一种提高SiC MOSFET在高开关速率下栅极电压稳定性的驱动电路[J]. 电源学报, 2021, 19(04): 6-15.

[25] Q. Haihong. An overview of SiC MOSFET gate drivers[C]. 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), Siem Reap, Cambodia, 2017: 25-3.

[26] Zhao S, Zhao X, Dearien A, et al. An Intelligent Versatile Model-Based Trajectory Optimized Active Gate Driver for Silicon Carbide Devices[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics,2019, (99)z: 429-441.

[27] J V P Sekhar, R. Maheshwari, H. Li. An energy recovery based low loss resonant gate driver circuit for Silicon Carbide MOSFETs[C]. 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Trivandrum, India, 2016: 1-5.

[28] Camacho A P, Sala V, Ghorbani H, et al. A Novel Active Gate Driver for Improving SiC MOSFET Switching Trajectory[J]. IEEE Transactions on Industrial Electronics, 2017,PP(99):1-1.

[29] H. Ghorbani, V. Sala, A. Paredes, et al. A simple gate drive for SiC MOSFET with switching transient improvement[C]. 2017 IEEE Industry Applications Society Annual Meeting, Cincinnati, OH, USA, 2017: 1-6.

[30] 曾正, 邵伟华, 陈昊, 等. 基于栅极驱动回路的SiC MOSFET开关行为调控[J]. 中国电机工程报, 2018, 38(04): 1165-1176+1294.

[31] 胡红胜. 大功率IGBT功率模块并联特性研究[D]. 中国矿业大学, 2018.

[32] FabreJ,LadouxP. ParallelConnectionof1200-V/100-ASiC-MOSFETHalf-BridgeModules[J]. IEEETransactions on Industry Applications, 2016,52(2):1669-1676.

[33] AbdiB,RanjbarAH,MalekianK,etal.Problemsassociatedwithparallelperformance ofhighcurrentsemiconductorswitchesandtheirremedy[C]// International Symposium on Power Electronics, Electrical Drives, Automation and Motion. IEEE, 2008:1379-1383.

[34] 路景阳. IGBT并联组件均流技术研究[D]. 西安理工大学, 2010.

[35] 查申森, 郑建勇, 苏麟, 等. 大功率IGBT并联运行时均流问题研究[J]. 电力自动化设备, 2005, (07): 32-34.

[36] 余超. 碳化硅MOSFET器件特性与并联技术研究[D]. 中国矿业大学, 2021.

[37] 赵斌, 秦海鸿, 马策宇, 等. SiC功率器件的开关特性探究[J]. 电工电能新技术, 2014, 33(03): 18-22.

[38] 方波, 张元敏, 崔卫群. 实际应用条件下Power MOSFET开关特性研究(下)[J]. 现代电子技术, 2008, (05): 145-148+151.

[39] 李辉, 廖兴林, 曾正, 等. SiC MOSFET栅极电容提取实验方法及影响因素研究[J]. 中国电机工程学报, 2016, 36(15): 4224-4232.

[40] 修强. SiC MOSFET器件并联均流问题研究[D]. 南京航空航天大学, 2020.

[41] 吴沛飞, 汤广福, 杨霏, 等. 1200V SiC MOSFET参数分散性对并联均流的影响分析[J]. 中国电力, 2021, 54(12): 73-80.

[42] 巴腾飞, 李艳, 梁美. 寄生参数对SiC MOSFET栅源极电压影响的研究[J]. 电工技术学报, 2016, 31(13): 64-73.

[43] Wang Z, Zhang J, Wu X, et al. Analysis of stray inductance's influence on SiC MOSFET switching performance[C]// Energy Conversion Congress and Exposition. IEEE, 2014: 2838-2843.

[44] 张存凯,李正坤,陈乐,等. 多MOSFET并联均流的高稳定度恒流源研究[J].电测与仪表,2016,53(12):81-86.

[45] 潘健,李平,李新华,等.BSG系统MOSFET并联均流研究[J].湖北工业大学学报,2016,31(01):55-58.

[46] Q. Haihong, Z Ying, Z Ziyue, et al. Influences of circuit mismatch on paralleling silicon carbide MOSFETs[C]. 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), Siem Reap, Cambodia, 2017: 556-561.

[47] 黄华震,柯俊吉,孙鹏,等.寄生电感不匹配对SiC MOSFET并联电流分配的影响[J].半导体技术,2018,43(11):833-840.

[48] 赵君,谭博,丁力,等.基于并联SiC MOSFET架构的无刷直流电机高效驱动技术研究[J].现代电子技术,2018,41(09):147-151.

[49] 刘通, 崔业兵. SiC MOSFET并联主动均流设计与仿真[J]. 导航定位与授时, 2019, 6(05): 115-122.

[50] Xue Y, Lu J, Wang Z, et al. A compact planar Rogowski coil current sensor for active current balancing of parallel connected silicon carbide MOSFETs [C]// 2014 IEEE Energy Conversion Congress and Exposition(ECCE). IEEE, 2014: 4685-4690.

[51] Cui Y, Chinthavali M S, Xu F, et al. Characterization and modeling of silicon carbide power devices and paralleling operation,[C]// IEEE International Symposium on Industrial Electronics(ISIE). 2012: 228–233.

[52] Jahdi S, Alatise O, Fisher C, et al. An Evaluation of Silicon Carbide Unipolar Technologies for Electric Vehicle Drive-Trains[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2014, 2(3): 517-528.

[53] Bertelshofer T, Maerz A, Bakran M. Limits of SiC MOSFETs' Parameter Deviations for Safe Parallel Operation[C]// 20th European Conference on Power Electronics and Applications, Berlin, Germany. 2018, 3(1): 128-132.

[54] 陈琪蕾,范忻蓉, 张沛超, 等. 逆变型分布式电源的灵活正负序电流控制方法与等值序网模型[J]. 电力系统保护与控制, 2018, 46(14): 57-62.

[55] E H, Yang Z, Dai J, et al. Common mode noise modeling and analysis of dual boost PFC circuit[C]// IEEE, International Telecommunications Energy Conference,San Diego, United states. 2005, 2(4): 11-18.

[56] Choochuan C. A survey of output filter topologies to minimize the impact of PWM inverter waveforms on three-phase AC induction motors[C]// IEEE, International Power Engineering Conference. Palm Springs, CA, 2006. 12(4): 1082-1088.

[57] Zhou Q, Gao F, Jiang T. A gate driver of SiC MOSFET with passive triggered auxiliary transistor in a phase-leg configuration[C]// IEEE, Energy Conversion Congress & Exposition. Orlando, FL, United states, 2015, 21(2): 7023-7030.

[58] Anthony P, Mcneil N, Holliday D. High-Speed Resonant Gate Driver With Controlled Peak Gate Voltage for Silicon Carbide MOSFETs[J]. IEEE Transactions on Industry Applications, Boston, 2014, 50(1): 573-583.

[59] FujiPower MOSFET,Application Note, Japan,[EB/OL].Japan, 2014.

[60] Ke J, Zhao Z, Sun P, et al. New Screening Method for Improving Transient Current sharing of Paralleled SiC MOSFETs[C]// 2018 International Power Electronics Conference, Nanjing China. 2018, 1698-1704.

[61] 陈星弼.SiC MOSFET与高压集成电路[M]. 南京:东南大学出版社, 1990: 31-33.

[62] 王毅. SiC MOSFET的失效分析及其驱动设计[D]. 武汉理工大学, 2014.

[63] 王志刚, 龚杰星.现代电子线路[M]. 北京:清华大学出版社, 2003: 62-71.

[64] 刘松.基于漏极导通区特性理解MOSFET开关过程[J]. 今日电子, 2008, (11): 74-75.

[65] YaliXiong, Shan Sun. New Physical Insight on Power MOSFET Swtching Losses[J]. IEEE Transactions on Power Electronics, 2009, 24: 525-531.

[66] 吕海臣. 基于SRM电动汽车驱动系统的研制[D]. 北京:北京交通大学, 2007.

[67] 胡涛,唐勇奇,黄林森,等.MOSFET与IGBT驱动电路的研究与设计[J]. 新型工业化, 2015(3): 11-19.

[68] 余银辉. 微型电动汽车传动系统匹配及驱动优化研究[D]. 重庆大学, 2009.

[69] 陈建萍, 张文, 魏仲华. 一种基于IR2113的隔离型MOSFET驱动电路设计[J]. 赣南师范学院学报, 2011, 32(03): 57-59.

[70] 郭晓君,林维明.新型双SiC MOSFET管谐振驱动电路[J].中国电机工程学报, 2011, 31(33): 44-51.

[71] 鲁莉容,李晓帆,蒋平.功率MOSFET高速驱动电路的研究[J]. 电力电子技术, 2001, (06): 45-47.

[72] Wang J, Chung S H, Li T H, et al. Characterization and Experimental assessment of the effects of parasitic elements on the MOSFET switching performance[J]. IEEE Transaction on Power Electronics. 2012, 28(1): 573-590.

[73] Chen Z, Boroyevich D, Burgos R. Experimental parametric study of the parasitic inductance influence on MOSFET switching characteristics[C]. International Power Electronics Conference. 2010: 164–169.

中图分类号:

 TM386    

开放日期:

 2023-01-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式