论文中文题名: | 基于深度学习的公共场所人体异常行为检测算法研究 |
姓名: | |
学号: | 21208223077 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085400 |
学科名称: | 工学 - 电子信息 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 智能信息处理 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-17 |
论文答辩日期: | 2024-05-30 |
论文外文题名: | Research on Human Abnormal Behavior Detection Algorithm in Public Places Based on Deep Learning |
论文中文关键词: | |
论文外文关键词: | Detection of abnormal human behavior ; PoseC3D ; Attention module ; BoTNet network ; Time Shift Module |
论文中文摘要: |
当今视频监控系统在经济发展、公共安全管控、构建和谐社会等方面发挥着越来越重要的作用,如何从海量的监控图像数据中及时准确地检测识别异常行为对提升管控效率和保障公共安全有着重要意义,同时也具有较大的技术难度。尽管计算力提升带来了新的发展机遇,视频监控系统面临的识别成本和行为识别难题仍旧存在,影响了人体异常行为的检测与识别效率。针对这些挑战,本文通过深入研究深度学习技术在人体异常行为检测与识别中的应用,提出了基于改进BoTNet网络和PoseC3D网络的算法。本文主要研究工作如下: |
论文外文摘要: |
Nowadays, video surveillance systems play an increasingly important role in economic development, public safety control, and building a harmonious society. It is of great significance to timely and accurately detect and identify abnormal behaviors from massive surveillance image data to improve control efficiency and ensure public safety, while also having significant technical difficulties. Despite the new development opportunities brought by the improvement of computing power, video surveillance systems still face recognition costs and behavioral recognition challenges, which affect the efficiency of detecting and recognizing abnormal human behavior. In response to these challenges, this article proposes an algorithm based on improved BoTNet network and PoseC3D network through in-depth research on the application of deep learning technology in human abnormal behavior detection and recognition. The main research work of this article is as follows: |
中图分类号: | TP391.4 |
开放日期: | 2024-06-17 |