论文中文题名: | 源区土岩结构影响下的碎屑流运动特征及堆积形貌构造研究 |
姓名: | |
学号: | 21209226112 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085700 |
学科名称: | 工学 - 资源与环境 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 地质灾害防治 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-18 |
论文答辩日期: | 2024-06-04 |
论文外文题名: | Research on the Motion Characteristics and Accumulation Morphology of Debris Flowslides Influenced by the Soil-Rock Structure of the Source Area |
论文中文关键词: | |
论文外文关键词: | Debris flowslides ; Motion characteristics ; Deposit morphology and structure ; Block morphology ; Matrix content ; Slope angle |
论文中文摘要: |
碎屑流作为最常见的一种地质灾害,常对人类生命和工程建设造成极其严重的危害。源区土岩结构作为影响碎屑流运动过程和堆积体形态形貌特征的重要因素,已经成为地质灾害领域关注的热点,但以往学者对其研究不够深入。因此,本文研究基于物理模型试验,展开滑源区岩块形态、细粒含量和坡度对碎屑流运动学特征、堆积体形貌构造影响研究。本文研究,首先通过基础力学试验测试试验材料的物理力学性质,以此获取基础参数;其次,使用专业的监测拍摄设备对试验碎屑流自启动至停积的完整运动过程及堆积体形态等进行拍摄记录;最后,对试验数据进行处理分析,分析查明岩块形态、细粒含量和坡度因素在整个运动过程中与位移场、速度场和加速度间的特征规律,同时建立堆积体形态、表面构造与动力学过程间的联系。本文主要得到以下结论: (1)试验表明,碎屑流运动过程受细粒含量和坡度影响显著。随着细粒含量增加,岩块运动能力因细粒的“束缚”逐渐减弱,碎屑流整体运动趋缓。小坡度下碎屑流厚度小、内部受力均匀,运动平缓;大坡度下则厚度大、内部受力不稳定,以自由下落方式运动。岩块形态在减速堆积阶段影响显著,岩块形状参数(OR)的增大导致岩块“摆脱”细粒束缚脱离主堆积区,在前缘零星分布区分布的岩块数量逐渐增多。 (2)碎屑流运动学参数受岩块形态、细粒含量和坡度共同影响。细粒含量对累计位移影响最大,坡度次之,岩块形态影响最小,其规律表现为随着形状参数(OR)增大、细粒含量减小和坡度减小,累计位移增大。峰值速度受坡度控制,在大坡度下表现更大,细粒含量则主要影响运动持续时间。加速度时程曲线的波动反映了碎屑流的运动特征,碎屑流在大形状参数(OR)、小细粒含量和大坡度下运动更剧烈。 (3)通过PIV粒子测速技术研究坡折处碎屑流运动特征发现,形状参数(OR)大的岩块运动能力强,下滑阶段前缘岩块以滚动为主,坡折处出现大量岩块腾空跳跃和旋转运动。细粒含量和坡度同样影响坡折处运动特征,增大细粒含量使岩块以高活跃度的运动变为细粒裹挟式滑动,而坡度的增大加剧岩块运动剧烈程度。碎屑流在坡折处前后部纵向速度差值随细粒含量增大、坡度减小而增大,横向速度则表现为中间大、两侧小的特征。 (4)碎屑流堆积体整体形态受坡度影响,各工况下堆积体整体形态随坡度增大,形态由狭长舌形转变为扇形或椭圆形态。岩块形态和细粒含量控制堆积体边缘形态,形状参数(OR)增大和细粒含量减小都导致边缘形态不稳定并出现指化现象。表征堆积体尺寸的参数随形状参数(OR)增大而减小,但纯岩块堆积体特征参数规律与其他细粒含量工况相反。堆积体特征参数周长-面积比显示,相比其他细粒含量,细粒含量为100%的堆积体形态复杂程度低、稳定性高。 (5)坡度和细粒含量对源区层序保留现象影响显著,小坡度和大细粒含量条件下层序保留效果好,这是因为平缓运动状态有利于层序保留特征形成。细粒含量为100%工况下堆积体表面构造丰富,在坡度30°堆积体表面分布大量横向脊和堆积平台,在坡度60°堆积体表面分布X形共轭槽和羽状破裂。岩块-细粒混合堆积体表面岩块间的接触方式随细粒含量增大而变化。 (6)碎屑流运动过程中岩块和细粒的运动状态始终处于动态转化的过程,在大形状参数(OR)、小细粒含量和大坡度条件下内部岩块和细粒处于惯性态和密集态数量多,岩块运动活跃度高。堆积体表面分布的横向脊是在“前阻后推”状态下形成,堆积平台是碎屑流在平缓堆积环境下连续沉积的产物,X形共轭槽和羽状破裂是在差异性扩散作用和横向挤压作用的耦合形成的。堆积体表面岩块的定向排布方式与源区岩块的排布方式存在一定关系。 |
论文外文摘要: |
Debris flowslides, a common geological hazard, pose severe threats to human lives and engineering projects. The soil-rock structure in the source area, a crucial factor influencing debris flowslides motion and deposit morphology, has attracted significant attention in the field of geological disasters. However, previous studies have not delved deeply into this aspect. Therefore, this paper investigates the effects of rock block morphology, matrix content, and slope angle on debris flowslides kinematics and deposit morphology through physical model experiments. Firstly, basic mechanical tests were conducted to determine the physical and mechanical properties of the experimental materials. Secondly, professional monitoring and photography equipment were used to record the complete motion process from initiation to deposition and deposit morphology. Finally, the experimental data were analyzed to identify the characteristic patterns between rock block morphology, matrix content, slope angle, and displacement, velocity, and acceleration fields during the entire motion process. Additionally, the relationship between deposit morphology, surface structure, and dynamic processes was established. The main conclusions of this paper are as follows: (1) The experimental results demonstrate that debris flowslides motion is significantly influenced by matrix content and slope angle. As matrix content increases, the motion capacity of rock blocks gradually weakens due to matrix "binding," resulting in slower overall debris flowslides motion. Under low slope angles, debris flowslides exhibit thinner thicknesses, uniform internal forces, and smoother motion. Conversely, under steep slopes, they have thicker thicknesses, unstable internal forces, and move primarily through free-fall. Rock block morphology significantly impacts the deceleration and accumulation stage. As the shape parameter (OR) increases, rock blocks tend to "escape" from the matrix and detach from the main accumulation area, leading to a gradual increase in the number of rock blocks distributed in scattered areas at the front edge. (2) Debris flowslides kinematics are jointly influenced by rock block morphology, matrix content, and slope angle. Matrix content has the greatest impact on cumulative displacement, followed by slope angle, and finally, rock block morphology. The trend is that as the shape parameter (OR) increases, matrix content decreases, and slope angle decreases, cumulative displacement increases. Peak velocity is primarily controlled by slope angle, exhibiting higher values under steeper slopes. Matrix content primarily affects the duration of motion. Fluctuations in the acceleration time-history curve reflect motion characteristics, indicating more intense debris flowslides motion under conditions of high shape parameter (OR), low matrix content, and steep slopes. (3) Using Particle Image Velocimetry (PIV) to investigate debris flowslides motion characteristics at slope breaks, it was found that rock blocks with larger shape parameters (OR) exhibit stronger motion capabilities. During the decline phase, rock blocks at the front edge primarily move by rolling, and a significant number of rock blocks exhibit leaping and rotational motion at slope breaks. Matrix content and slope angle also influence motion characteristics. Increasing matrix content transforms highly active rock block motion into matrix-entrained sliding, while steeper slopes intensify the motion of rock blocks. The longitudinal velocity difference between the front and rear of the debris flowslides at slope breaks increases with increasing matrix content and decreasing slope angle. Transverse velocity patterns show higher velocities in the middle and gradually decreasing velocities towards the sides. (4) The morphology of debris flowslides deposits is influenced by matrix content, slope angle, and rock block morphology. Overall deposit morphology transforms from a narrow tongue shape to a fan or elliptical shape as slope angle increases under various conditions. Rock block morphology and matrix content control the edge morphology of deposits. Increasing the shape parameter (OR) and decreasing matrix content lead to unstable edge morphologies and fingering phenomena. Parameters characterizing deposit size decrease with increasing shape parameter (OR) but follow an opposite trend for pure rock block deposits. The perimeter-to-area ratio indicates that pure matrix deposits exhibit lower morphological complexity and higher stability compared to other matrix content conditions. (5) Slope angle and matrix content significantly impact the preservation of stratigraphic sequences in the source area. Good stratigraphic preservation is observed under conditions of low slope angles and high matrix content due to the favorable motion conditions for stratigraphic preservation. Pure matrix deposits exhibit rich surface structures, with abundant transverse ridges and accumulation platforms distributed on the surface of deposits at a 30° slope angle. Unique X-shaped conjugate troughs and feather-like fractures are observed on the surface of deposits at a 60° slope angle. The contact modes between rock blocks on the surface of rock-matrix mixed deposits vary with increasing matrix content. (6) During debris flowslides motion, rock blocks and matrix undergo continuous dynamic transformation. Under conditions of high shape parameter (OR), low matrix content, and steep slopes, there are a large number of rock blocks and matrix in inertial and dense states, indicating high activity levels. Transverse ridges on the surface of deposits form under conditions of "front resistance and rear push." Accumulation platforms are the product of continuous deposition in a gentle accumulation environment. X-shaped conjugate troughs and feather-like fractures result from the coupling of differential diffusion and transverse compression effects. |
参考文献: |
[1]黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007(3): 433-454. [5]孙广忠. 论“岩体结构控制论”[J]. 工程地质学报, 1993(1): 14-18. [6]兰恒星, 仉义星, 伍宇明. 岩体结构效应与长远程滑坡动力学[J]. 工程地质学报, 2019, 27(1): 108-122. [9]程谦恭, 张倬元, 黄润秋. 高速远程崩滑动力学的研究现状及发展趋势[J]. 山地学报, 2007(1): 72-84. [10]殷跃平. 西藏波密易贡高速巨型滑坡特征及减灾研究[J]. 水文地质工程地质, 2000(4): 8-11. [11]黄润秋. 中国西部地区典型岩质滑坡机理研究[J]. 地球科学进展, 2004(3): 443-450. [12]许强, 黄润秋, 殷跃平, 等. 2009年6·5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究[J]. 工程地质学报, 2009, 17(4): 433-444. [13]许强, 李为乐, 董秀军, 等. 四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J]. 岩石力学与工程学报, 2017, 36(11): 2612-2628. [16]张明, 殷跃平, 吴树仁, 等. 高速远程滑坡-碎屑流运动机理研究发展现状与展望[J]. 工程地质学报, 2010, 18(6): 805-817. [17]黄河清, 赵其华. 汶川地震诱发文家沟巨型滑坡-碎屑流基本特征及成因机制初步分析[J]. 工程地质学报, 2010, 18(2): 168-177. [20]王玉峰, 程谦恭, 林棋文, 等. 青藏高原古高速远程滑坡沉积学特征研究[J]. 地学前缘, 2021, 28(2): 106-124. [25] 王玉峰, 程谦恭, 张柯宏, 等. 高速远程滑坡裹气流态化模型试验研究[J]. 岩土力学, 2014, 35(10): 2775-2786. [27]胡明鉴, 程谦恭, 汪发武. 易贡远程高速滑坡形成原因试验探索[J]. 岩石力学与工程学报, 2009, 28(1): 138-143. [30]殷跃平. 斜倾厚层山体滑坡视向滑动机制研究——以重庆武隆鸡尾山滑坡为例[J]. 岩石力学与工程学报, 2010, 29(2): 217-226. [34]兰恒星, 仉义星, 伍宇明. 岩体结构效应与长远程滑坡动力学[J]. 工程地质学报, 2019, 27(1): 108-122. [36]曾宇浩. 三维激光扫描系统在头寨岩崩堆积体粗碎屑几何形态学研究中的应用[D]. 昆明, 昆明理工大学, 2019. [37]许强, 黄润秋, 殷跃平, 等. 2009年6·5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究[J]. 工程地质学报, 2009, 17(4): 433-444. [41]龙艳梅, 宋章, 王玉峰, 等. 基于物理模型试验的碎屑流流态化运动特征分析[J]. 水文地质工程地质, 2022, 49(1): 126-136. [42]李坤, 王玉峰, 程谦恭, 等. 分形粒径分布对颗粒流粒径分选的影响规律[J]. 岩石力学与工程学报, 2021, 40(2): 330-343. [51]Heim A, Skermer N. Landslides & human lives[M]. Vancouver, B.C: BiTech, 1989. [52]陈一鸣. 无粘性散粒堆积体运动与堆积特性的模型试验和数值模拟研究[D]. 合肥, 合肥工业大学, 2020. [53]王玉峰, 许强, 程谦恭, 等. 复杂三维地形条件下滑坡–碎屑流运动与堆积特征物理模拟实验研究[J]. 岩石力学与工程学报, 2016, 35(9): 1776-1791. [58]黄润秋, 刘卫华, 周江平, 等. 滚石运动特征试验研究[J]. 岩土工程学报, 2007(9): 1296-1302. [70]李坤, 王玉峰, 程谦恭, 等. 分形粒径分布对颗粒流粒径分选的影响规律[J]. 岩石力学与工程学报, 2021, 40(2): 330-343. [71]龙艳梅. 侧向约束对碎屑流运动与堆积特征的影响分析[D]. 成都, 西南交通大学, 2022: 106. [72]李坤. 高速远程滑坡流态化运动及堆积机理研究[D]. 成都, 西南交通大学, 2024: 191. [74]李坤, 程谦恭, 林棋文, 等. 高速远程滑坡颗粒流研究进展[J]. 地球科学, 2022, 47(3): 893-912. |
中图分类号: | P642.22 |
开放日期: | 2024-06-18 |