- 无标题文档
查看论文信息

题名:

 地下煤火热虹吸器能量转移机制及强化传热研究    

作者:

 尹岚    

学号:

 20120089027    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 煤火灾害防治    

导师姓名:

 肖旸    

导师单位:

 西安科技大学    

提交日期:

 2024-06-17    

答辩日期:

 2024-05-26    

外文题名:

 Research on the energy transfer mechanism and enhanced heat transfer of thermosyphon acting on underground coal fires    

关键词:

 地下煤火 ; 煤火防治方法 ; 移热降温 ; 热虹吸器 ; 降温幅度    

外文关键词:

 Underground coal fire ; Prevention and control methods for coal fire ; Heat transfer and cooling ; Thermosyphon ; Cooling amplitude    

摘要:

由于地下煤层采动形成地表裂隙及煤炭自身氧化属性,地下煤层或暴露地层表面煤层易出现不同程度的煤自燃现象,并逐渐发展成不可控的地下煤火,造成煤炭资源大量损失及环境污染。现有煤火治理手段主要以打钻注水/浆(胶)降温、隔氧和惰化为主,但地下煤火热源点多、面广,热能储量大,且隐蔽性强,短期的地面工程无法确保彻底治理,因此,本论文以地下煤火移热降温为目标,针对热虹吸器作用地下煤火的能量转移过程,从弯曲井身-纳米流体协同强化热虹吸器传热特性、非均匀热源弯曲热虹吸器内部相变传热机理及其与非均匀热源复合传热规律等方面出发,开展地下煤火热虹吸器能量转移机制及强化传热研究,为寻求长期高效的地下煤火移热降温方法提供理论基础及依据。取得了以下主要成果:

通过搭建的均匀热源热虹吸器传热特性实验系统,研究了不同弯曲角度、输入功率下热虹吸器热阻、等效对流换热系数和传热效率等变化规律,探讨弯曲井身结构对热虹吸器的强化传热效果。发现相同埋深条件下弯曲角度的改变显著影响热虹吸器传热性能。当弯曲角度低于30°时,随着弯曲角度的增大,弯曲热虹吸器总热阻逐渐减小,而其等效对流换热系数和传热效率均增大;当弯曲角度高于30°时,弯曲热虹吸器总热阻增加,其等效对流换热系数和传热效率均减小,较大的弯曲角度对热虹吸器传热性能表现出阻碍作用。即弯曲角度为30°的热虹吸器传热性能最佳,与竖直热虹吸器相比,其总热阻减小了32.1%,等效对流换热系数和传热效率分别增加了37.89%和21.45%。

通过搭建的地下煤火移热降温实验系统,研究不同实验工况下最佳弯曲角度的热虹吸器对煤堆温度场的作用效果,得出热虹吸器的散热量和移热效率。随着充液率的增加,工质为纯水的弯曲热虹吸器对煤堆的降温幅度及其散热量和移热效率先增加后减小。此外,随着纳米流体质量分数的增加,弯曲热虹吸器对煤堆的散热量及其移热效率先增加后减小,且CuO-水纳米流体对弯曲热虹吸器的强化传热效果高于TiO2-水纳米流体,即当热源温度低于200 ℃时,最佳因素组合为30%充液率和2 wt.% CuO-水纳米流体;当热源温度为300 ℃时,最佳因素组合为40%充液率和2 wt.% CuO-水纳米流体。相比于相同充液率下应用纯水的弯曲热虹吸器,不同热源温度下2 wt.% CuO-水纳米流体弯曲热虹吸器散热量分别增加了13.18%、15.72%、15.84%和17.53%。

根据建立的弯曲热虹吸器内部相变传热数值计算模型,模拟出非均匀热源作用下弯曲热虹吸器蒸发段内汽泡的形成、成长、合并和脱离及液膜流动过程。发现不同热源温度、充液率及工质种类下弯曲热虹吸器蒸发段内部两相流型均类似,即蒸发段中上部以弹状流和搅拌流为主,其下部主要为泡状流,但各因素的变化对弯曲热虹吸器的传热影响不同。充液率的增加使得相同热源温度下弯曲热虹吸器蒸发段内汽泡数量增多,但较大的充液率导致液池内含气率过大,易在内壁面形成液塞,削弱弯曲热虹吸器传热性能;此外,相比于应用纯水的弯曲热虹吸器,2 wt.% CuO-水纳米流体的加入使得蒸发段液池内产生的汽泡相对增多,且较高温度下在冷凝段处形成连续液膜的时间缩短,蒸发-冷凝循环加快。热源温度为100 ℃、150 ℃、200 ℃和300 ℃时,相同充液率的2 wt.% CuO-水纳米流体弯曲热虹吸器等效导热系数分别增加了29.07%、36.57%、19.76%和25.80%,并得出了等效导热系数关联式。

应用最佳因素组合下的弯曲热虹吸器的等效导热系数关联式,构建出地下煤火-弯曲热虹吸器复合传热模型,掌握不同布置方式及布置间距的弯曲热虹吸器作用下传热模型最小单元体的温度场变化规律。发现正方形布置方式下弯曲热虹吸器降温效果明显。弯曲热虹吸器所处位置均出现较为密集的等温线,且随着弯曲热虹吸器作用时间增加,等温线逐渐向外扩散,在弯曲热虹吸器处各等温线均向下凹陷。同时,单元体平均温度变化与弯曲热虹吸器布置间距成反比,并得出了弯曲热虹吸器布置间距与其等效导热系数及煤比热容、煤堆温差等因素之间关联式。另外,研究了工业试验现场弯曲热虹吸器作用于地下煤火的温度场变化特征及降温幅度。发现试验期内地下煤火温度下降明显,其局部最高降温136.4 ℃,降温率为37.86%。

基于本文研究成果,可掌握弯曲井身-纳米流体工质热虹吸器协同强化地下煤火的降温能力,确定出地下煤火弯曲热虹吸器布置关键参数,相关结果可为煤火防治方法的研究提供有益补充。

外文摘要:

Due to the formation of surface cracks triggered by underground coal seam mining and the oxidizing property of coal itself, coal spontaneous combustion of varying degrees easily occurs on underground coal seams or the surface of exposed strata, and it gradually develops into an uncontrollable underground coal fire, resulting in abundant waste of coal resources and environmental pollution. The existing coal fire control methods mainly include drilling water injection/slurry (glue) cooling, oxygen isolation, and inserting, but underground coal fire has many high temperature points, wide range, large heat reserves, and strong concealment. The short-term ground engineering can not ensure complete treatment. Therefore, this paper aims at heat transfer and cooling of underground coal fire, and energy transfer process of thermosyphon acting on underground coal fire, starting from the aspects of the heat transfer characteristics of the thermosyphon synergistically enhanced by curved wellbore and nanofluid, the internal phase change heat transfer mechanism of the curved thermosyphon under non-uniform heat sources, and its composite heat transfer law with non-uniform heat source, the energy transfer mechanism and enhanced heat transfer of thermosyphon acting on underground coal fires is researched. It provides a theoretical basis for seeking a long-term and efficient method of heat transfer and cooling for underground coal fires, and achieved the following main results:

The experimental system of heat transfer characteristics for the thermosyphon under uniform heat source is constructed, the changes of thermal resistance, equivalent convective heat transfer coefficient, and heat transfer efficiency of thermosyphon under different curved angles and heating powers are investigated, and the effect of the curved wellbore structure on the heat transfer enhancement of the thermosyphon is explored. It is found that under the same condition of buried depth, the change of the curved angle prominently affects the heat transfer performance of the thermosyphon. When the curved angle is lower than 30°, the total thermal resistance of the curved thermosyphon gradually reduces, while its equivalent convective heat transfer coefficient and heat transfer efficiency increase. When the curved angle exceeds 30°, the total thermal resistance of the curved thermosyphon enlarges, its equivalent convective heat transfer coefficient and heat transfer efficiency reduce, and a larger curved angle shows an inhibiting effect on its heat transfer performance. The heat transfer performance of a thermosyphon with a curved angle of 30° is the optimum. Compared with the performance of vertical thermosyphon, its total thermal resistance reduced by 32.1%, and equivalent convective heat transfer coefficient and heat transfer efficiency increased by 37.89% and 21.45%, respectively.

The experimental system of heat transfer and cooling of underground coal fire is built, the effect of the thermosyphon with the optimal curved angle on the temperature field of coal pile under different working conditions was investigated, and its heat dissipation and heat transfer efficiency are obtained. With an increase in the filling ratios, the cooling amplitude of coal pile and the heat dissipation and the heat transfer efficiency of the curved thermosyphon with pure water as the working medium firstly increase and then decrease. In addition, with an increase in the mass fraction of nanofluid, the heat dissipation and the heat transfer efficiency of the curved thermosyphon on the coal pile firstly increased and then decreased, and the enhanced heat transfer effect of CuO-water nanofluid on the curved thermosyphon was higher than that of TiO2-water nanofluid. When the heat source temperatures are lower than 200 °C, the best combination of factors is filling ratios for 30% and 2 wt. % CuO-water nanofluid. When the heat source temperature is 300 °C, the best combination of factors is filling ratios for 40% and 2 wt. % CuO-water nanofluid. Compared with the curved thermosyphon applying pure water under same filling ratios, the heat dissipation of the curved thermosyphon filled with 2 wt.% CuO-water nanofluid increased by 13.18%, 15.72%, 15.84%, and 17.53%, respectively.

According to the established numerical model of phase change heat transfer inside the curved thermosyphon, the formation, growth, merging and detachment of vapour bubbles and liquid film flow processes inside the evaporation section of the curved thermosyphon are simulated under non-uniform heat source. It is found that the two-phase flow patterns in the evaporation section of the curved thermosyphon are similar under different heat source temperatures, filling ratios and working fluids are similar. The slug flow and stirring flow are dominant in the middle and upper part of the evaporation section, and the lower part is mainly the bubble flow, but the changes of various factors have different impacted on the heat transfer of the curved thermosyphon. At the same temperature of the heat source, the growth of the filling ratios increases the number of bubbles inside the evaporation section of the curved thermosyphon. However, the larger filling ratio leads to a large gas content in the liquid pool, it easily forms liquid plugs on the inner wall surface, leading to weaken its heat transfer performance. Moreover, compared with the performance of curved thermosyphon filling with pure water, the addition of the 2 wt.% CuO-water nanofluid results in the relative increase of the bubbles inside the liquid pool of the evaporation section, and the formation time of continuous liquid film in the condensation section shortens at the higher temperatures. The formation time of a continuous liquid film is shortened at higher temperatures, and the evaporation-condensation cycle is accelerated. When heat resources are 100, 150, 200, and 300 ℃, under the same filling ratios, the effective thermal conductivity of the curved thermosyphon filling with 2 wt.% CuO-water nanofluid increase by 29.07%、36.57%、19.76% and 25.80%. Moreover, the correlation of equivalent thermal conductivity is obtained.

By applying the correlation of equivalent thermal conductivity for curved thermosyphon under the optimal combination factors, the compound heat transfer model of underground coal fire and curved thermosyphon is constructed, and the tendency of temperature field for minimum unit of heat transfer model under the action of the curved thermosyphon with different arrangement mode and spacing is grasped. It is found that the curved thermosyphon with square shape has a significant cooling effect. The position of the curved thermosyphon appears denser isotherms. With the increase of the action time of the curved thermosyphon, the isotherms gradually diffuse outward, and all isotherms at the curved thermosyphon are concave downwards. Meanwhile, with the increase of arrangement spacing, the average temperature change of the unit body is inversely proportional to the arrangement spacing of the curved thermosyphon. The correlation between the layout spacing of the curved thermosyphon and its equivalent thermal conductivity, specific heat capacity of coal, temperature difference of coal pile, and other factors is obtained. Moreover, the variation characteristics of temperature field and cooling amplitude for underground coal fires under the action of curved thermosyphons in industrial testing site are explored. It is found that during the experimental period, there is a significant decrease in underground coal fire temperature, and its maximum temperature reduction and cooling rate at its local location are 136.4 ℃ and 37.86%, respectively.

Based upon the research results, we can grasp the cooling ability of the thermosyphon synergistically enhanced by curved wellbore and nanofluid on underground coal fire, and determine key layout parameters of the curved thermosyphon. The relevant results can provide a useful supplement for the study of prevention and control methods for coal fire.

参考文献:

[1] 邓军, 文虎, 张辛亥. 煤田火灾防治理论与技术[M]. 徐州: 中国矿业出版社, 2014.

[2] Wang T, Wang H, Fang X, et al. Research progress and visualization of underground coal fire detection methods[J]. Environmental Science and Pollution Research, 2023, 30(30): 74671–74690.

[3] 朱红青, 袁杰, 赵金龙, 等. 地下煤火分布及探测技术现状研究[J]. 工业安全与环保, 2019, 45(12): 28–32.

[4] Liang Y, Yang Y, Guo S, et al. Combustion mechanism and control approaches of underground coal fires: a review[J]. International Journal of Coal Science & Technology, 2023, 10(1): 24.

[5] Saini V, Gupta RP, Arora MK. Environmental impact studies in coalfields in India: A case study from Jharia coal-field[J]. Renewable & Sustainable Energy Reviews, 2016, 53: 1222–1239.

[6] Engle MA, Radke LF, Heffern EL, et al. Gas emissions, minerals, and tars associated with three coal fires, Powder River Basin, USA[J]. Science of The Total Environment, 2012, 420: 146–159.

[7] Stracher GB, Taylor TP. Coal fires burning out of control around the world: thermodynamic recipe for environmental catastrophe[J]. International Journal of Coal Geology, 2004, 59(1–2): 7–17.

[8] Zhang J, Kuenzer C. Thermal surface characteristics of coal fires 1 results of in-situ measurements[J]. Journal of Applied Geophysics, 2007, 63(3–4): 117–134.

[9] Syed TH, Riyas MJ, Kuenzer C. Remote sensing of coal fires in India: A review[J]. Earth-Science Reviews, 2018, 187: 338–355.

[10] Melody SM, Johnston FH. Coal mine fires and human health: What do we know?[J]. International Journal of Coal Geology, 2015, 152: 1–14.

[11] Song Z, Kuenzer C. Coal fires in China over the last decade: A comprehensive review[J]. International Journal of Coal Geology, 2014, 133: 72–99.

[12] 包兴东. 新疆第五次煤田火区普查成果分析[J]. 能源与环保, 2021, 43(2): 1–4.

[13] Cao Q, Cheng Y, Kusakabe T, et al. Mercury emission from underground coal fires: a typical case in China[J]. Journal of Material Cycles and Waste Management, 2023, 25(5): 2706–2715.

[14] Sun R, Cao F, Dai S, et al. Atmospheric mercury isotope shifts in response to mercury emissions from underground coal fires[J]. Environmental Science & Technology, 2023, 57(23): 8638–8649.

[15] Song Z, Huang X, Kuenzer C, et al. Chimney effect induced by smoldering fire in a U-shaped porous channel: A governing mechanism of the persistent underground coal fires[J]. Process Safety and Environmental Protection, 2020, 136: 136–147.

[16] 王伟. 煤田火灾探测与治理技术现状及发展趋势[J]. 煤矿安全, 2020, 51(11): 206–209.

[17] 周福宝, 邓进昌, 史波波, 等. 煤田火区热能开发与生态利用研究进展[J]. 中国科学基金, 2021, 35(6): 871–877.

[18] Zhao Z, Jiang P, Zhou Y, et al. Heat transfer characteristics of two-phase closed thermosyphons modified with inner surfaces of various wettabilities[J]. International Communications in Heat and Mass Transfer, 2019, 103: 100–109.

[19] Lin T, Quan X, Cheng P. Experimental investigation of superlong two-phase closed thermosyphons for geothermal utilization[J]. International Journal of Thermal Sciences, 2022, 171: 107199.

[20] 赵婧昱, 宋佳佳, 郭涛, 等. 基于煤火发展演化的松散煤体自燃温度纵深蔓延特征[J]. 煤炭学报, 2021, 46(6): 1759–1767.

[21] 殷鹏程, 田兆君, 鲁义, 等. 重力热管布置方式对煤堆高温点的影响研究[J]. 工矿自动化, 2021, 47(9): 96–100, 107.

[22] Jafari D, Franco A, Filippeschi S, et al. Two-phase closed thermosyphons: A review of studies and solar applications[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 575–593.

[23] 马欣, 谢容宇, 孟曦, 等. 多工况条件下重力热管提热性能优化研究[J]. 煤矿安全, 2022, 53(2): 53–58.

[24] 刘亚俊, 贾德祥, 童庆丰. 矿井三维地温场的反演分析[J]. 阜新矿业学院学报(自然科学版), 1995(02): 8–11.

[25] Zeng Q, Tiyip T, Wuttke MW, et al. Modeling of the equivalent permeability for an underground coal fire zone, Xinjiang region, China[J]. Natural Hazards, 2015, 78(2): 957–971.

[26] 梁运涛, 王树刚, 蒋爽, 等. 煤炭自然发火介尺度分析: 从表征体元宏观模型到孔隙微观模型[J]. 煤炭学报, 2019, 44(4): 1138–1146.

[27] Zhang J, Ren T, Liang Y, et al. A review on numerical solutions to self-heating of coal stockpile: Mechanism, theoretical basis, and variable study[J]. Fuel, 2016, 182: 80–109.

[28] Zhuo H, Qin BT, Qin QH, et al. Modeling and simulation of coal spontaneous combustion in a gob of shallow buried coal seams[J]. Process Safety and Environmental Protection, 2019, 131: 246–254.

[29] Huang J, Bruining J, Wolf KH. Modeling of gas flow and temperature fields in underground coal fires[J]. Fire Safety Journal, 2001, 36(5): 477–489.

[30] Wolf KH, Bruining H. Modelling the interaction between underground coal fires and their roof rocks[J]. Fuel, 2007, 86(17–18): 2761–2777.

[31] Song Z, Zhu H, Tan B, et al. Numerical study on effects of air leakages from abandoned galleries on hill-side coal fires[J]. Fire Safety Journal, 2014, 69: 99–110.

[32] Wessling S, Kuenzer C, Kessels W, et al. Numerical modeling for analyzing thermal surface anomalies induced by underground coal fires[J]. International Journal of Coal Geology, 2008, 74(3–4): 175–184.

[33] 王海燕, 徐祚卉, 张敏敏, 等. 地质条件和地表风对煤火蔓延特征的影响研究. 中国煤矿, 2018, 44(4): 106–111.

[34] Tang Y, Zhong X, Li G, et al. Simulation of dynamic temperature evolution in an underground coal fire area based on an optimised Thermal–Hydraulic–Chemical model[J]. Combustion Theory and Modelling, 2019, 23(1): 127–146.

[35] Wang Y, G. Shi, Z. Guo. Heat transfer and thermodynamic processes in coal-bearing strata under the spontaneous combustion condition[J]. Numerical Heat Transfer, Part A-Applications, 2017, 71(1):1–16.

[36] 侯殿坤, 王兴国, 谷明宇. 露天剥挖法在西乌素沟煤矿采空区治理中的应用[J]. 现代矿业, 2013, (10): 122–124.

[37] 任万兴, 郭庆, 左兵召, 等. 近距离易自燃煤层群工作面回撤期均压防灭火技术[J]. 煤炭科学技术, 2016, 44(10): 48–52.

[38] 王建华, 陈冰凌. 汝箕沟矿区火区治理及监测方法的选择与应用[J]. 中国煤炭地质, 2021, 33(11): 81–86.

[39] 王桐, 孟祥豹, 张延松, 等. 矿用新型水泥-粉煤灰基喷涂堵漏风材料性能研究[J]. 矿业研究与开发, 2024, 44(3): 225–231.

[40] Shao Z, Wang D, Wang Y, et al. Controlling coal fires using the three-phase foam and water mist techniques in the Anjialing Open Pit Mine, China[J]. Natural Hazards, 2015, 75: 1833–1852.

[41] 张志军. “双碳”背景下我国地下煤火防治技术研究进展[J]. 中国煤炭地质, 2023, 35(1):39–42.

[42] Deng J, Xiao Y, Lu J, et al. Application of composite fly ash gel to extinguish outcrop coal fires in China[J]. Natural Hazards, 2015, 79: 881–898.

[43] Zhang Y, Xu J, Wang D. Experimental study on the inhibition effects of nitrogen and carbon dioxide on coal spontaneous combustion[J]. Energies, 2020, 13(20): 5256.

[44] Liu W, Chu X, Xu H, et al. Oxidation reaction constants for coal spontaneous combustion under inert gas environments: An experimental investigation[J]. Energy, 2022, 247: 123457.

[45] 邓军, 杨囡囡, 王彩萍, 等. 采空区煤自燃“防-抑-灭”协同防灭火关键技术[J]. 煤矿安全, 2022, 53(9): 1–8.

[46] Xiao Y, Yin L, Tian Y, et al. Sustainable utilisation and transformation of the thermal energy from coalfield fires: A comprehensive review[J]. Applied Thermal Engineering, 2023: 121164.

[47] 张嬿妮, 舒盼, 刘春辉, 等. 乙二胺四乙酸微胶囊阻化煤自燃性能研究[J]. 煤炭科学技术, 2022, 50(8): 108–117.

[48] 秦波涛, 仲晓星, 王德明, 等. 煤自燃过程特性及防治技术研究进展[J]. 煤炭科学技术, 2021, 49(1): 66–99.

[49] Xue D, Hu X, Dong H, et al. Examination of characteristics of anti-oxidation compound inhibitor for preventing the spontaneous combustion of coal[J]. Fuel, 2022, 310: 122160.

[50] 束学来, 郑炳旭, 郭子如, 等. 煤矿火区降温措施的分析与实践[J]. 爆破, 2014, 31(3): 154–158.

[51] Zhai X, Ge H, Obracaj D. The cooling range of liquid CO2 on loose coal through experimental investigation[J]. International Journal of Oil, Gas and Coal Technology, 2021, 27(1): 54–77.

[52] Yao H, Hu J, Zhang L, et al. Study on Inhibition of Spontaneous Combustion of Coal by Liquid CO2[J]. Solid Fuel Chemistry, 2023, 57(7): 513–518.

[53] 张忠温. 浅埋煤层大面积火区快速治理技术实践[J]. 煤炭科学技术, 2012, 40(9): 64–67.

[54] Cao K, Zhong X, Wang D, et al. Prevention and control of coalfield fire technology: A case study in the Antaibao Open Pit Mine goaf burning area, China[J]. International Journal of Mining Science and Technology, 2012, 22(5): 657–663.

[55] Cheng X, Wen H, Xu Y, et al. Environmental treatment technology for complex coalfield fire zone in a close distance coal seam—A case study[J]. Journal of Thermal Analysis and Calorimetry, 2021, 144: 563–574.

[56] Liu Y, Qi X, Luo D, et al. Detection and management of coal seam outcrop fire in China: a case study[J]. Scientific Reports, 2024, 14(1): 4609.

[57] Kuenzer C, Zhang J, Sun Y, et al. Coal fires revisited: The Wuda coal field in the aftermath of extensive coal fire research and accelerating extinguishing activities[J]. International Journal of Coal Geology, 2012, 102: 75–86.

[58] Shan B, Wang G, Cao F, et al. Mercury emission from underground coal fires in the mining goaf of the Wuda Coalfield, China[J]. Ecotoxicology and Environmental Safety, 2019, 182: 109409.

[59] Wang H, Fan C, Li J, et al. A field study of coal fire areas re-burning behavior assessment and related carbon emissions[J]. Fire, 2022, 5(6): 186.

[60] Wang Y, Wang X, Wang J, et al. Heat transfer performance of a two-phase closed thermosyphon with different inclination angles based on the core-tube monitoring[J]. Case Studies in Thermal Engineering, 2023, 42: 102738.

[61] Kang S, Seo JH, Lee J. Effect of inner diameter on the confinement of two-phase closed thermosyphon[J]. International Communications in Heat and Mass Transfer, 2023, 147: 106997.

[62] 张海松, 谢国威, 战洪仁, 等. 两相闭式热虹吸管内部过程可视化及其强化传热研究进展[J]. 化工进展, 2017, 36(3):791–801.

[63] Liu Y, Chen J, Wang C, et al. Experimental research on the cooling effect of a novel two-phase closed thermosyphon with semiconductor refrigeration in permafrost regions[J]. Case Studies in Thermal Engineering, 2024, 54: 103935.

[64] Shiraishi M, Kikuchi K, Yamanishi T. Investigation of heat transfer characteristics of a two-phase closed thermosyphon[M]//Advances in heat pipe technology. Pergamon, 1982: 95–104.

[65] Rohsenow WM. A method of correlating heat-transfer data for surface boiling of liquids[J]. Transactions of the American Society of Mechanical Engineers, 1952, 74(6): 969–975.

[66] Gross U, Hahne E. Heat transfer in a two-phase thermosyphon operating with a fluid in the near critical state[J]. International Journal of Heat and Mass Transfer, 1985, 28(3): 589–601.

[67] Wang JCY, Ma Y. Condensation heat transfer inside vertical and inclined thermosyphons[J]. Journal of Heat Transfer, 1991, 113(3): 777–780.

[68] Fiedler S, Auracher H. Experimental and theoretical investigation of reflux condensation in an inclined small diameter tube[J]. International Journal of Heat and Mass Transfer, 2004, 47(19-20): 4031–4043.

[69] Hussein HMS, Mohamad MA, El-Asfouri AS. Theoretical analysis of laminar-film condensation heat transfer inside inclined wickless heat pipes flat-plate solar collector[J]. Renewable Energy, 2001, 23(3-4): 525–535.

[70] Hashimoto H, Kaminaga F. Heat transfer characteristics in a condenser of closed two‐phase thermosyphon: Effect of entrainment on heat transfer deterioration[J]. Heat Transfer—Asian Research: Co‐sponsored by the Society of Chemical Engineers of Japan and the Heat Transfer Division of ASME, 2002, 31(3): 212–225.

[71] Jouhara H, Robinson AJ. Experimental investigation of small diameter two-phase closed thermosyphons charged with water, FC-84, FC-77 and FC-3283[J]. Applied Thermal Engineering, 2010, 30(2-3): 201–211.

[72] 战洪仁, 惠尧, 吴众. 闭式热虹吸管强化传热研究进展[J]. 化工进展, 2017, 36(8): 2764–2775.

[73] 张雨婷, 孙亮亮, 闵皖东, 等. 重力热管传热特性及其数值研究综述[J]. 制冷与空调(四川), 2022, 36(3): 359–370.

[74] El-Genk MS, Saber HH. Heat transfer correlations for small, uniformly heated liquid pools[J]. International Journal of Heat and Mass Transfer, 1998, 41(2): 261–274.

[75] Stephan K, Abdelsalam M. Heat-transfer correlations for natural convection boiling[J]. International Journal of Heat and Mass Transfer, 1980, 23(1): 73–87.

[76] Labuntsov DA. Heat transfer problems with nucleate boiling of liquids[J]. Thermal Engineering, 1973, 19(9): 21–28.

[77] Imura H, Sasaguchi K, Kozai H, et al. Critical heat flux in a closed two-phase thermosyphon[J]. International Journal of Heat and Mass Transfer, 1983, 26(8): 1181–1188.

[78] Rohsenow WM, Hartnett J P, Ganic E N. Handbook of heat transfer fundamentals (2nd end)[M]. New York: McGraw-Hill, 1985.

[79] Chowdhury FM, Kaminaga F, Goto K, et al. Boiling heat transfer in a small diameter tube below atmospheric pressure on a natural circulation condition[J]. Journal of the Japan Association for Heat Pipes, 1997, 16: 14–16.

[80] Kiatsiriroat T, Nuntaphan A, Tiansuwan J. Thermal performance enhancement of thermosyphon heat pipe with binary working fluids[J]. Experimental Heat Transfer, 2000, 13(2): 137–152.

[81] 卫红, 马同泽, 陈焕倬. 两相闭式热虹吸管内凝结换热的研究[J]. 工程热物理学报, 1990, 11(2): 182–187.

[82] Xia G, Wang W, Cheng L, et al. Visualization study on the instabilities of phase-change heat transfer in a flat two-phase closed thermosyphon[J]. Applied Thermal Engineering, 2017, 116: 392–405.

[83] 夏波, 姚慧聪, 杨重阳, 等. 重力热管两相传热行为可视化实验研究[J]. 建筑热能通风空调, 2020, 39 (6): 22–26.

[84] Kim JS, Kim Y, Shin DH, et al. Heat transfer and flow visualization of a two-phase closed thermosiphon using water, acetone, and HFE7100[J]. Applied Thermal Engineering, 2021, 187: 116571.

[85] Li J, Chen Q, Dong X, et al. Electrical capacitance tomography measurement of flow patterns and film thickness in a thermosyphon[J]. Journal of Thermal Science, 2005, 14: 81–86.

[86] 李惊涛, 韩振兴, 李志宏, 等. 脉动热管运行和传热特性的可视化实验研究[J]. 现代化工, 2008, 28(11): 68–72.

[87] 韩振兴, 王冬骁, 王飞, 等. 重力热管冷凝段运行特征的可视化实验研究[J]. 化工学报, 2014, 65(8): 2934–2939.

[88] Almutairi Z, Al-Alweet FM, Alghamdi YA, et al. Investigating the characteristics of two-phase flow using electrical capacitance tomography (ECT) for three pipe orientations[J]. Processes, 2020, 8(1): 51.

[89] Kim Y, Choi J, Kim S, et al. Effects of mass transfer time relaxation parameters on condensation in a thermosyphon[J]. Journal of Mechanical Science and Technology, 2015, 29: 5497–5505.

[90] 张云峰, 罗嵩容, 罗稀玉, 等. 重力热管内水相变换热的数值模拟[J]. 长沙理工大学学报(自然科学版), 2016, 13(1): 69–74.

[91] 战洪仁, 吴众, 金志浩, 等. 两相闭式热虹吸管传热机理模拟研究[J]. 热力发电, 2018, 47(1): 46–52.

[92] Wang X, Yao H, Li J, et al. Experimental and numerical investigation on heat transfer characteristics of ammonia thermosyhpons at shallow geothermal temperature[J]. International Journal of Heat and Mass Transfer, 2019, 136: 1147–1159.

[93] Zai Y, Qiao Y, Song C, et al. Numerical analysis of flow characteristics and bubble behavior inside a two-phase closed thermosyphon under various temperature difference[J]. Numerical Heat Transfer, Part A: Applications, 2023, 84(12): 1552–1569.

[94] Cho S, Kong D, Geum G, et al. Experimental and computational investigation of thermal performance and fluid flow in two-phase closed thermosyphon[J]. Applied Thermal Engineering, 2023, 235: 121327.

[95] 陈家绪, 尹建国, 赵贯甲, 等. 基于改进相变模型的重力热管传热特性数值模拟[J]. 中国电机工程学报, 2023, 43(8): 3109–3117.

[96] Cai H, Lin S, Zai Y, et al. Numerical study of Two-Phase flow behavior during dryout in a Two-Phase closed thermosyphon under thermal boundary conditions[J]. Applied Thermal Engineering, 2024: 122921.

[97] 邓军, 李贝, 马砺. 用热棒技术强化煤堆降温幅度试验[J]. 中国安全科学学报, 2015, 25 (6): 62–67.

[98] 党逸峰, 张亚平, 屈瑞, 等. 热管实现煤堆深部热转移的实验研究[J]. 煤炭技术, 2016, 35(12): 214–215.

[99] Su H, Zhou F, Qi H, et al. Design for thermoelectric power generation using subsurface coal fires[J]. Energy, 2017, 140: 929–940.

[100] Shi B, Su H, Li J, et al. Clean power generation from the intractable natural coalfield fires: Turn harm into benefit[J]. Scientific Report, 2017, 7: 5302.

[101] Li B, Deng J, Xiao Y, et al. Heat transfer capacity of heat pipes: An application in coalfield wildfire in China[J]. Heat and Mass Transfer, 2018, 54: 1755–1766.

[102] 程方明, 常助川, 李贝, 等. 基于热棒降温技术的自燃煤堆热迁移行为数值模拟[J]. 西安科技大学学报, 2019, 39(4): 581–588.

[103] 李贝, 高伟, 邓军, 等. 基于热棒防灭火技术的煤自燃区域热迁移特征[J]. 中南大学学报(自然科学版), 2020, 51(4): 1135–1144.

[104] 王建国, 郑晨光, 王延秋. 冷凝段翅片类型对热管抑制煤自燃的降温效应影响研究[J]. 矿业安全与环保, 2020, 47(5): 13–17.

[105] Cheng F, Chang Z, Deng J, et al. Numerical evaluation of inclined heat pipes on suppressing spontaneous coal combustion[J]. Heat and Mass Transfer, 2020, 56: 1861–1874.

[106] 刘鑫, 任万兴, 石晶泰. 导热棒提取松散高温介质内部热量的实验研究[J]. 煤矿安全, 2021, 52(2): 48–53.

[107] Zhou X, Guo L, Zhang Y, et al. Ignition control and waste heat assessment of spontaneous combustion gangue hill by gravity heat pipe group: a case study in Shanxi Province, China[J]. Environmental Science and Pollution Research, 2023, 30(21): 59262–59281.

[108] Jiao B, Qiu LM, Gan ZH, et al. Determination of the operation range of a vertical two-phase closed thermosyphon[J]. Heat and Mass Transfer, 2012, 48(6): 1043–1055.

[109] Shabgard H, Xiao B, Faghri A, et al. Thermal characteristics of a closed thermosyphon under various filling conditions[J]. International Journal of Heat and Mass Transfer, 2014, 70: 91–102.

[110] Jafari D, Filippeschi S, Franco A, et al. Unsteady experimental and numerical analysis of a two-phase closed thermosyphon at different filling ratios[J]. Experimental Thermal and Fluid Science, 2017, 81: 164–174.

[111] Jafari D, Di Marco P, Filippeschi S, et al. An experimental investigation on the evaporation and condensation heat transfer of two-phase closed thermosyphons[J]. Experimental Thermal and Fluid Science, 2017, 88: 111–123.

[112] Kim Y, Shin DH, Kim JS, et al. Boiling and condensation heat transfer of inclined two-phase closed thermosyphon with various filling ratios[J]. Applied Thermal Engineering, 2018, 145: 328–342.

[113] Solomon AB, Roshan R, Vincent W, et al. Heat transfer performance of an anodized two-phase closed thermosyphon with refrigerant as working fluid[J]. International Journal of Heat and Mass Transfer, 2015, 82: 521–529.

[114] Fadhl B, Wrobel LC, Jouhara H. CFD modelling of a two-phase closed thermosyphon charged with R134a and R404a[J]. Applied Thermal Engineering, 2015, 78: 482–490.

[115] Gorecki G. Investigation of two-phase thermosyphon performance filled with modern HFC refrigerants[J]. Heat and Mass Transfer, 2018, 54(7): 2131–2143.

[116] Paramatthanuwat T, Boothaisong S, Rittidech S, et al. Heat transfer characteristics of a two-phase closed thermosyphon using de ionized water mixed with silver nano[J]. Heat and Mass Transfer, 2010, 46(3): 281–285.

[117] Xu Q, Liu L, Feng J, et al. A comparative investigation on the effect of different nanofluids on the thermal performance of two-phase closed thermosyphon[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119189.

[118] Kaya M. An experimental investigation on thermal efficiency of two-phase closed thermosyphon (TPCT) filled with CuO/water nanofluid[J]. Engineering Science and Technology, an International Journal, 2020, 23(4): 812–820.

[119] Gallego A, Herrera B, Buitrago-Sierra R, et al. Influence of filling ratio on the thermal performance and efficiency of a thermosyphon operating with Al2O3-water based nanofluids[J]. Nano-Structures & Nano-Objects, 2020, 22: 100448.

[120] Khazaee I, Hosseini R, Noie SH. Experimental investigation of effective parameters and correlation of geyser boiling in a two-phase closed thermosyphon[J]. Applied Thermal Engineering, 2010, 30(5): 406–412.

[121] 张文涛, 辛旋, 李庆领. 管径与蒸发段壁温对重力热管流型影响的数值模拟研究[J]. 机械制造, 2018, 56(10): 28–31.

[122] 张怀洁, 张伟. 重力热管几何结构优化的数值研究[J]. 天津城建大学学报, 2019, 25(5): 317–320.

[123] Kusuma MH, Putra N, Antariksawan A R, et al. Investigation of the thermal performance of a vertical two-phase closed thermosyphon as a passive cooling system for a nuclear reactor spent fuel storage pool[J]. Nuclear Engineering and Technology, 2017, 49(3): 476–483.

[124] 李庭樑, 岑继文, 黄文博, 等. 超长重力热管传热性能实验研究[J]. 化工学报, 2020, 71(3): 997–1008.

[125] Yan Z, Zhang M, Pei W, et al. Effect of length ratios on the cooling performance of an inclined two-phase closed thermosyphon under negative temperature conditions[J]. Solar Energy, 2020, 204: 600–616.

[126] Gou X, Li G, Zhang R, et al. Critical and optimal inclination angles of two-phase closed thermosyphon under different operating conditions[J]. International Journal of Heat and Mass Transfer, 2021, 177: 121540.

[127] Xiao Y, Liu JW, Zeng JF, et al. Coupling effect of operational factors on heat extraction from a coal pile using a two-phase closed thermosyphon[J]. Energy, 2022, 239: 122371.

[128] Sadeghi K, Kahani M, Ahmadi MH, et al. CFD Modelling and visual analysis of heat transfer and flow pattern in a vertical two-phase closed thermosyphon for moderate-temperature application[J]. Energies, 2022, 15(23): 8955.

[129] Anto LP, Varghese J. Three-dimensional steady state numerical analysis of inclined two phase closed thermosyphon for solar applications[J]. Case Studies in Thermal Engineering, 2022, 30: 101805.

[130] 战洪仁, 于胜利, 王立鹏, 等. 重力热管基于VOF模型的传热特性研究[J]. 沈阳化工大学学报, 2023, 37(3): 260–265+282.

[131] 方书起, 赵凌, 史启辉, 等. 螺旋槽重力热管强化传热实验研究[J]. 化学工程, 2008, 36(6): 19–21.

[132] Chehade AA, Louahlia-Gualous H, Le Masson S, et al. Experimental investigation of thermosyphon loop thermal performance[J]. Energy Conversion and Management, 2014, 84: 671–680.

[133] Naresh Y, Balaji C. Experimental investigations of heat transfer from an internally finned two phase closed thermosyphon[J]. Applied Thermal Engineering, 2017, 112: 1658–1666.

[134] Kim Y, Shin DH, Kim JS, et al. Effect of sintered microporous coating at the evaporator on the thermal performance of a two-phase closed thermosyphon[J]. International Journal of Heat and Mass Transfer, 2019, 131: 1064–1074.

[135] Choi D, Lee KY. Experimental study on confinement effect of two-phase closed thermosyphon and heat transfer enhancement using cellulose nanofluid[J]. Applied Thermal Engineering, 2021, 183: 116247.

[136] Baek S, Lee A, Lee S, et al. Experimental Study on the Enhanced Thermal Performance of Two-Phase Closed Thermosyphon Using Mechanical and Chemical Treated MWCNTs Nanofluids[J]. Microgravity Science and Technology, 2021, 33(2): 1–11.

[137] Nie C, Marlow WH, Hassan YA. Discussion of proposed mechanisms of thermal conductivity enhancement in nanofluids[J]. International Journal of heat and Mass transfer, 2008, 51(5-6): 1342–1348.

[138] Cacua K, Buitrago-Sierra R, Pabón E, et al. Nanofluids stability effect on a thermosyphon thermal performance[J]. International Journal of Thermal Sciences, 2020, 153: 106347.

[139] Choi SUS. Enhancing thermal conductivity of fluid with nanoparticles, developments and applications of non-newtonian flows[R]. FED-V. 231/ MD-V, vol. 66, ASME, New York, USA 1995: 99–105.

[140] Liu Z, Xiong J, Bao R. Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface[J]. International Journal of Multiphase Flow, 2007, 33(12): 1284–1295.

[141] Yang XF, Liu ZH, Zhao J. Heat transfer performance of a horizontal micro-grooved heat pipe using CuO nanofluid[J]. Journal of Micromechanics and Microengineering, 2008, 18(3): 035038.

[142] Kang SW, Wei WC, Tsai SH, et al. Experimental investigation of silver nano-fluid on heat pipe thermal performance[J]. Applied Thermal Engineering, 2006, 26(17–18): 2377–2382.

[143] Kang SW, Wei WC, Tsai SH, et al. Experimental investigation of nanofluids on sintered heat pipe thermal performance[J]. Applied Thermal Engineering, 2009, 29(5–6): 973–979.

[144] Tsai CY, Chien HT, Ding PP, et al. Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance[J]. Materials Letters, 2004, 58(9): 1461–1465.

[145] Huminic G, Huminic A, Morjan I, et al. Experimental study of the thermal performance of thermosyphon heat pipe using iron oxide nanoparticles[J]. International Journal of Heat and Mass Transfer, 2011, 54(1–3): 656–661.

[146] Khandekar S, Joshi YM, Mehta B. Thermal performance of closed two-phase thermosyphon using nanofluids[J]. International Journal of Thermal Sciences, 2008, 47(6): 659–667.

[147] 黄素逸, 李中洲, 黄锟剑, 等. 纳米材料在热管中的应用[J]. 华中科技大学学报(自然科学版), 2006, 34(5): 105–107.

[148] 宫玉英, 赵蔚琳, 朱保杰, 等. SiO2-水纳米流体热管传热性能的实验研究[J]. 化工机械, 2013, 40(3): 302–305.

[149] 王助良, 戴世佳, 王宏宇, 等. 纳米流体及分散剂对重力热管性能影响试验[J]. 江苏大学学报(自然科学版), 2017, 38(5): 544–554.

[150] Noie SH, Heris SZ, Kahani M, et al. Heat transfer enhancement using Al2O3/water nanofluid in a two-phase closed thermosyphon[J]. International Journal of Heat and Fluid Flow, 2009, 30(4): 700–705.

[151] Huminic G, Huminic A. Heat transfer characteristics of a two-phase closed thermosyphons using nanofluids[J]. Experimental Thermal and Fluid Science, 2011, 35(3): 550–557.

[152] Xuan Y, Li Q. Heat transfer enhancement of nanofluids[J]. International Journal of Heat and Fluid Flow, 2000, 21(1): 58–64.

[153] Vadi R, Sepanloo K. Numerical investigation of regular and hybrid nanofluids application as the working fluids on thermal performance of TPCT[J]. Journal of Thermal Science and Engineering Applications, 2019, 11(4): 041010.

[154] Hung YH, Teng TP, Lin BG. Evaluation of the thermal performance of a heat pipe using alumina nanofluids[J]. Experimental Thermal and Fluid Science, 2013, 44: 504–511.

[155] Cui G, Ren S, Zhang L, et al. Geothermal exploitation from hot dry rocks via recycling heat transmission fluid in a horizontal well[J]. Energy, 2017, 128: 366–377.

[156] Chen J, Jiang F. Designing multi-well layout for enhanced geothermal system to better exploit hot dry rock geothermal energy[J]. Renewable Energy, 2015, 74: 37–48.

[157] Shi Y, Song X, Wang G, et al. Study on wellbore fluid flow and heat transfer of a multilateral-well CO2 enhanced geothermal system[J]. Applied Energy, 2019, 249: 14–27.

[158] Zhang J, Xie J, Liu X. Numerical evaluation of heat extraction for EGS with tree-shaped wells[J]. International Journal of Heat and Mass Transfer, 2019, 134: 296–310.

[159] 夏珍. 不同微结构对分离式热管蒸发段换热特性的影响[D]. 南昌: 南昌大学, 2020.

[160] 胡伟强.带气液分离腔树状分型微通道热管性能研宄[D]. 南昌: 南昌大学, 2018.

[161] 胡伟强, 宋本哲, 王志强, 等. 带汽液分离腔的树状微通道热管运行性能研究[J]. 流体机械, 2018, 46(11): 68–73, 59.

[162] 宋本哲, 陈岳, 李培生, 等. 新型板式微流道热管运行特性实验分析[J]. 化学工程, 2019, 47(5): 23–28.

[163] 蒋方明, 黄文博, 曹文炅. 干热岩热能的热管开采方案及其技术可行性研究[J]. 新能源进展, 2017, 5(6): 426–434.

[164] Pei W, Zhang M, Yan Z, et al. Numerical evaluation of the cooling performance of a composite L-shaped two-phase closed thermosyphon (LTPCT) technique in permafrost regions[J]. Solar Energy, 2019, 177: 22–31.

[165] Alammar AA, Al-Mousawi FN, Al-Dadah RK, et al. Enhancing thermal performance of a two-phase closed thermosyphon with an internal surface roughness[J]. Journal of Cleaner Production, 2018, 185: 128–136.

[166] Narcy M, Lips S, Sartre V. Experimental investigation of a confined flat two-phase thermosyphon for electronics cooling[J]. Experimental Thermal and Fluid Science, 2018, 96: 516–529.

[167] 张瑞瑛. 倾斜重力热管换热及流动特性研究[D]. 西安: 西安建筑科技大学, 2020.

[168] Srimuang W, Amatachaya P. A review of the applications of heat pipe heat exchangers for heat recovery[J]. Renewable and Sustainable Energy Reviews, 2012, 16(6): 4303–4315.

[169] Anand RS, Jawahar CP, Solomon AB, et al. A review of experimental studies on cylindrical two-phase closed thermosyphon using refrigerant for low-temperature applications[J]. International Journal of Refrigeration, 2020, 120: 296–313.

[170] 庄骏,张红. 热管技术及其工程应用[M]. 北京: 化学工业出版社, 2000.

[171] 李广尧, 张瑞晨, 宗佩莹, 等. 不同功率下绝热段长度对重力热管性能的影响[J]. 热能动力工程, 2022, 37(7): 70–76.

[172] 唐志伟, 俞昌铭, 马重芳. 热管性能评价准则探讨[J]. 北京工业大学学报, 2003, 29(1): 55–58.

[173] 周乐平, 李媛园, 魏龙亭, 等. 汽泡间的碰撞、合并和绕流现象与数值研究[J]. 工程热物理学报, 2013, 34(12): 2371–2375.

[174] 李新禹, 李朋, 韩忠贤, 等. 弯曲角度对扁平热管传热性能的影响[J]. 储能科学与技术, 2020, 9(3): 840–847.

[175] 张瑞瑛, 郑庆红, 贾雷雷, 等. 倾角对不同充液率重力热管性能的影响[J]. 建筑热能通风空调, 2021, 40(3): 14–18.

[176] Khazaee I, Hosseini R, Kianifar A, et al. Experimental consideration and correlation of heat transfer of a two-phase closed thermosyphon due to the inclination angle, filling ratio, and aspect ratio[J]. Journal of Enhanced Heat Transfer, 2011, 18(1).

[177] 马旭, 丁宜军, 张连锋, 等. 南屯煤矿综采工作面煤自燃分级预警体系研究[J]. 煤炭技术, 2022, 41(10): 170–173.

[178] 江莉娟, 邓存宝, 王彩萍, 等. 煤自燃指标气体分析与分级预警[J]. 西安科技大学学报, 2023, 43(06): 1088–1098.

[179] 钟凯琪, 肖旸, 芦星, 等. 煤火热能TPCT提取正交试验设计与极差分析[J]. 中国安全科学学报, 2021, 31(9): 135–141.

[180] Zhong KQ, Xiao Y, Lu X, et al. Nanofluidic two-phase closed thermosyphon-assisted thermoelectric generator for heat recovery from coal spontaneous combustion[J]. Applied Thermal Engineering, 2021, 197: 117397.

[181] Xiao Y, Huang YK, Yin L, et al. Thermal behaviors and kinetic characteristics of coal spontaneous combustion at multiple airflow rates by TG−DSC[J]. Journal of Thermal Analysis and Calorimetry, 2024: 1–16.

[182] 邓军, 吕慧菲, 李达江, 等. [BMIM][BF4]对不同变质程度煤自燃热行为的影响研究[J]. 煤炭学报, 2019, 44(1): 254–262.

[183] 肖旸, 叶星星, 刘昆华, 等. 二次氧化煤自燃过程关键官能团的转变规律[J]. 煤炭学报, 2021, 46(S2): 989–1000.

[184] 李荣. 重力热管群治理矸石山自燃试验及热能利用研究[J]. 建筑节能(中英文), 2023, 51(11): 139–145.

[185] 曹静宇, 郑玲, 彭晋卿, 等. 基于热管的光伏冷却技术研究进展[J]. 湖南大学学报(自然科学版), 2024, 51(1): 201–216.

[186] Fadhl B, Wrobel L C, Jouhara H. Numerical modelling of the temperature distribution in a two-phase closed thermosyphon[J]. Applied Thermal Engineering, 2013, 60(1-2): 122–131.

[187] De Schepper SCK, Heynderickx GJ, Marin GB. CFD modeling of all gas–liquid and vapor–liquid flow regimes predicted by the Baker chart[J]. Chemical Engineering Journal, 2008, 138(1-3): 349–357.

[188] 冀丽娜. 重力热管流动与传热的仿真技术研究[D]. 天津: 天津城建大学, 2022.

[189] Spedding PL. Regime maps for air water two phase flow[J]. Chemical Engineering Science, 1980, 35(4): 779–793.

[190] 肖章平, 蔡欣, 张琳, 等. 充液率及工质对复合中空热管传热性能的影响[J]. 化学工程, 2013, 41(12): 31–34.

[191] 燕超. 重力热管传热传质特性数值模拟及实验研究[D]. 杭州: 浙江理工大学, 2021.

[192] Pathak SK, Kumar R, Goel V, et al. Recent advancements in thermal performance of nano-fluids charged heat pipes used for thermal management applications: A comprehensive review[J]. Applied Thermal Engineering, 2022, 216: 119023.

[193] Manna I. Synthesis, characterization and application of nanofluid-an overview[J]. Journal of the Indian Institute of Science, 2009, 89(1): 21–33.

[194] Yu W, Xie H. A review on nanofluids: preparation, stability mechanisms, and applications[J]. Journal of Nanomaterials, 2012, 2012: 1–17.

[195] Liu MS, Lin M CC, Tsai CY, et al. Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method[J]. International Journal of Heat and Mass Transfer, 2006, 49(17-18): 3028–3033.

[196] Eastman JA, Choi SUS, Li S, et al. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles[J]. Applied Physics Letters, 2001, 78(6): 718–720.

[197] 徐瑛, 王为旺, 黄云云, 等. 高导热纳米流体的制备与应用研究进展[J]. 功能材料, 2019, 50(5): 5012–5017.

[198] 石月, 杨宾. 水基ZnO纳米流体黏度及流变特性研究[J]. 河北工业大学学报, 2023, 52(6): 69–74.

[199] 左夏华, 宋立健, 关昌峰, 等. 用于直接吸收式太阳能集热器的纳米流体研究进展[J].材料导报, 2023, 37(21): 29–37.

[200] Kamatchi R, Venkatachalapathy S. Parametric study of pool boiling heat transfer with nanofluids for the enhancement of critical heat flux: a review[J]. International Journal of Thermal Sciences, 2015, 87: 228–240.

[201] Mehrali M, Sadeghinezhad E, Tahan Latibari S, et al. Preparation, characterization, viscosity, and thermal conductivity of nitrogen-doped graphene aqueous nanofluids[J]. Journal of Materials Science, 2014, 49: 7156–7171.

[202] Chakraborty S, Panigrahi PK. Stability of nanofluid: A review[J]. Applied Thermal Engineering, 2020, 174: 115259.

[203] 贾东, 蔡淑红, 李献强, 等. 纳米流体导热介质研究进展[J]. 材料导报, 2021, 35(S2): 540–549.

[204] Sharma P, Baek IH, Cho T, et al. Enhancement of thermal conductivity of ethylene glycol based silver nanofluids[J]. Powder Technology, 2011, 208(1): 7–19.

[205] 刘宇龙, 佘跃惠. 纳米粒子的分散稳定机制及影响因素研究[J]. 化工新型材料, 2022, 50(S1): 298–302.

[206] 林海斌, 张国贤, 黄林林, 等. 纳米流体的分散性研究及其热物性测量[J]. 材料导报, 2010, 24(12): 29–32.

[207] 李云翔, 解国珍, 安龙, 等. 纳米流体研究进展[J]. 制冷技术, 2013, 33(4): 45–54.

[208] 马连湘, 常强, 邱金友, 等. 水基碳管纳米流体制备及其热物性实验研究[J]. 材料导报, 2015, 29(8): 79–82+99.

[209] 江巍雪, 汤新宇, 宋金蔚, 等. 纳米流体的制备、稳定性及热物性研究进展[J]. 材料导报, 2024, 38(4): 233–243.

[210] Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles[J]. Experimental Heat Transfer an International Journal, 1998, 11(2): 151–170.

[211] Einstein A. Investigations on the Theory of the Brownian Movement[M]. Physics Bulletin, 1956, 7(10): 281–281.

[212] 孙超杰, 孙保民, 钟亚峰, 等. CuO-H2O纳米流体强化换热的数值模拟[J]. 热能动力工程, 2015, 30(2): 200–204+316–317.

[213] 吴兴应, 向夏楠, 段姣姣, 等. 热管纳米流体工质热物性的研究进展[J]. 制冷与空调, 2023, 23(9): 1–6.

[214] 闫佳, 夏国栋, 马丹丹. 银铜合金纳米流体的热物性影响因素分析[J]. 工程热物理学报, 2023, 44(1): 131–136.

[215] 石月, 杨宾. 水基氧化锌纳米流体的制备及其热物性能研究[J]. 现代化工, 2023, 43(5): 109–114.

[216] 李蓉, 梁斐, 丁静, 等. 氯化物熔盐纳米流体热物性强化的分子动力学模拟[J]. 中山大学学报(自然科学版)(中英文), 2022, 61(6): 129–135.

[217] 马明琰, 翟玉玲, 李法社, 等. 混合纳米流体粒子比对热物性参数的影响及性能分析[J]. 昆明理工大学学报(自然科学版), 2021, 46(2): 29–36.

[218] Evans W, Prasher R, Fish J, et al. Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids[J]. International Journal of Heat and Mass Transfer, 2008, 51(5-6): 1431–1438.

[219] Wang Z, Han F, Ji Y, et al. Performance and exergy transfer analysis of heat exchangers with graphene nanofluids in seawater source marine heat pump system[J]. Energies, 2020, 13.

[220] Lefevre G, Jolivet A. Caculations of hamaker constant applied to the deposition of metallic oxide particles at high temperature[C]//Beijing: Proceedings of International Conference on Heat Exchanger Fouling and Cleaning, 2009, 120–124.

[221] 邵雪峰, 陈颖, 贾莉斯, 等. 中低温环境下Al2O3-乙醇纳米流体稳定性的研究[J]. 功能材料, 2014, 45(20): 20024–20027.

[222] Das PK. A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids[J]. Journal of Molecular Liquids, 2017, 240: 420–446.

[223] 李贝. 煤矸石山非控自燃热动力学特征及移热方法研究[D]. 西安: 西安科技大学, 2017.

[224] 徐兵魁, 熊治文. 青藏高原多年冻土区热棒路基设计计算[J]. 中国铁道科学, 2006, 27(5): 17–22.

[225] Wen H, Yu Z, Deng J, et al. Spontaneous ignition characteristics of coal in a large-scale furnace: an experimental and numerical investigation[J]. Applied Thermal Engineering, 2017, 114: 583–592.

[226] 李宗翔, 张明乾, 刘宇, 等. 煤氧化放热特征及影响因素的关联分析[J]. 安全与环境学报, 2023, 23(1): 49–56.

[227] Yin L, Xiao Y, Zhong KQ, et al. Temperature effects on thermal diffusivity of bituminous coal using different pre-oxidation levels in a nitrogenous atmosphere[J]. Fuel, 2021, 288: 119640.

[228] Yin L, Xiao Y, Li QW, et al. Temperature effect on thermal conductivity of oxidised coal associated with its predictive model during coal pyrolysis[J]. Energy, 2023, 274: 127417.

[229] 沈云鸽, 王德明, 朱云飞. 不同自燃倾向性煤的指标气体产生规律实验研究[J]. 中国安全生产科学技术, 2018, 14(4): 69–74.

[230] 张荣刚, 解树亮. 复杂条件下煤自燃特性参数变化规律研究[J]. 煤炭工程, 2023, 55(5): 130–134.

[231] Wang CP, Deng Y, Xiao Y, et al. Gas-heat characteristics and oxidation kinetics of coal spontaneous combustion in heating and decaying processes[J]. Energy, 2022, 250: 123810.

[232] 刘东. 基于程序升温实验的煤低温氧化特性数值模拟研究[J]. 煤矿安全, 2022, 53(5): 40–45.

[233] 周西华, 郭晓阳, 宋东平, 等. 多因素影响下的煤低温氧化特性试验研究[J]. 洁净煤技术, 2016, 22(6): 82–87.

中图分类号:

 TD752    

开放日期:

 2026-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式