- 无标题文档
查看论文信息

论文中文题名:

 冻融作用下裂隙岩石蠕变声发射特性研究    

姓名:

 程柯岩    

学号:

 20204228095    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木水利    

研究方向:

 岩石力学    

第一导师姓名:

 宋勇军    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-13    

论文答辩日期:

 2023-06-05    

论文外文题名:

 Research on creep acoustic emission characteristics of fractured rock under freeze-thaw action    

论文中文关键词:

 冻融循环 ; 裂隙岩石 ; 声发射 ; 蠕变特性 ; AE能率 ; 声发射b值    

论文外文关键词:

 freeze-thaw cycle ; fractured rock ; acoustic emission ; creep properties ; AE energy rate ; acoustic emission b value    

论文中文摘要:

天然岩体因其复杂的成岩过程而赋存大量裂隙和孔隙,岩体工程的失稳破坏通常是由其内部裂隙的扩展和贯通所引起。随着寒区岩体工程的增多,研究冻融环境下裂隙因素对岩体长期稳定性的影响变得尤为重要。鉴于此本文以不同倾角预制双裂隙岩石为主要研究对象,开展冻融循环后单轴压缩声发射试验和蠕变声发射试验,分析冻融次数和裂隙倾角对岩石的损伤特性、力学特性、蠕变特性及声发射特征的影响,研究损伤过程中b值和损伤变量演化规律,并对岩石蠕变破坏前兆差异进行了分析。主要研究内容和结论如下:

(1)为探究冻融循环和裂隙倾角对岩石的损伤特性、力学特性和声发射特性的影响,开展冻融循环试验和单轴压缩声发射试验,揭示宏观力学特性与声发射特性之间的联系,并建立基于声发射参数的损伤模型。研究结果表明:随着冻融循环次数的增加,岩石冻融损伤变量呈指数型增加;冻融循环和裂隙倾角的变化对岩石物理力学性能产生较大影响;声发射振铃计数和三维事件分布特征反映出岩石破裂过程;声发射b值整体保持上下波动状态,裂隙倾角的增大,引起b值在应力最高处更加密集;裂隙岩石的损伤过程分为3个阶段,冻融循环加速了岩石的初始损伤累积,裂隙倾角越大,损伤加速阶段的斜率越大。

(2)为探究冻融循环和裂隙倾角对岩石蠕变特性和破坏模式的影响,进行蠕变声发射试验。试验结果表明:裂隙倾角的变化影响岩石的破坏模式;冻融循环作用加剧岩石表面的破裂,导致破坏裂纹增多;冻融循环和裂隙倾角的增大使岩石的蠕应变增加。稳态蠕变速率随着冻融循环次数的增加呈指数型增长,并且随着裂隙倾角的增大而变大。此外,岩石的长期强度会随着冻融循环次数的增加而快速降低,但裂隙倾角的增大则会提高岩石的长期强度。

(3)基于声发射技术,分析冻融作用下裂隙岩石蠕变过程中声发射参数及b值变化特征,研究岩石破坏声发射前兆特征。研究结果表明:振幅和AE能率的变化趋势反映了岩石破坏过程,能够体现出不同冻融次数和裂隙倾角之间的破坏差异。裂隙倾角的增大会使岩石蠕变过程中的裂纹扩展和贯通趋于稳定和连续,岩石稳定性增强。冻融循环的增加引起振幅和AE能率的提高,但随着应力加载等级的提升,这种影响逐渐趋于消散。声发射b值在减速和等速蠕变阶段呈上升趋势,进入加速蠕变阶段后则出现快速下降现象;冻融作用使岩石在减速蠕变阶段由小尺度破坏转变为大尺度破坏;双裂隙倾角的减小会降低岩石的稳定性,加快减速蠕变阶段的b值波动;预制裂隙的存在会使b值预测破坏时间点提前,而冻融循环作用则会使b值预测破坏时间点延后;声发射b值能够有效地预示岩石的失稳破坏,可作为一种有效的岩石蠕变破坏的前兆信息。

综上所述,本文结合声发射技术对冻融作用下裂隙岩石力学及蠕变特性进行了全面分析,研究结论可以为寒区裂隙岩体的破坏规律和预测破坏提供参考。

论文外文摘要:

Natural rock mass has a large number of cracks and pores due to its complex diagenesis process. The instability and failure of rock mass engineering is usually caused by the expansion and penetration of its internal cracks. With the increase of rock mass engineering in cold regions, it is particularly important to study the influence of fracture factors on the long-term stability of rock mass under freeze-thaw environment. In view of this, this paper takes the prefabricated double-fractured rock with different dip angles as the main research object, carries out uniaxial compression acoustic emission test and creep acoustic emission test after freeze-thaw cycle, analyzes the influence of freeze-thaw times and crack dip angle on the damage characteristics, mechanical properties, creep characteristics and acoustic emission characteristics of rock, studies the evolution law of b value and damage variable in the damage process, and analyzes the difference of rock creep failure precursor. The main research contents and conclusions are as follows :(1) In order to explore the effects of freeze-thaw cycles and fissure inclination on the damage characteristics, mechanical properties and acoustic emission characteristics of rock, freeze-thaw cycle tests and uniaxial compression acoustic emission tests were carried out to reveal the relationship between macroscopic mechanical properties and acoustic emission characteristics, and a damage model based on acoustic emission parameters was established. The results show that with the increase of freeze-thaw cycles, the freeze-thaw damage variable of rock increases exponentially. The change of freeze-thaw cycle and crack dip angle has a great influence on the physical and mechanical properties of rock. Acoustic emission ringing count and three-dimensional event distribution characteristics reflect the rock failure process. The b value of acoustic emission keeps fluctuating up and down as a whole, and the increase of fracture dip angle causes the b value to be more dense at the highest stress. The damage process of fractured rock is divided into three stages. The freeze-thaw cycle accelerates the initial damage accumulation of rock. The larger the fracture dip angle, the greater the slope of the damage acceleration stage.

(2) In order to explore the effects of freeze-thaw cycles and fracture inclination on the creep characteristics and failure modes of rock, creep acoustic emission tests were carried out. The test results show that the change of fracture dip angle affects the failure mode of rock. The freeze-thaw cycle intensifies the fracture of the rock surface, resulting in an increase in damage cracks. The increase of freeze-thaw cycles and fracture dip angle increases the creep strain of rock. The steady-state creep rate increases exponentially with the increase of freeze-thaw cycles, and increases with the increase of crack dip angle. In addition, the long-term strength of rock will decrease rapidly with the increase of freeze-thaw cycles, but the increase of fracture dip angle will improve the long-term strength of rock.

(3) Based on acoustic emission technology, the variation characteristics of acoustic emission parameters and b values in the creep process of fractured rock under freeze-thaw action are analyzed, and the precursor characteristics of acoustic emission in rock failure are studied. The results show that the variation trend of amplitude and AE energy rate reflects the rock failure process, which can reflect the failure difference between different freeze-thaw times and fracture dip angles. The increase of fracture dip angle will make the crack propagation and penetration in the process of rock creep tend to be stable and continuous, and the stability of rock is enhanced. The increase of freeze-thaw cycles leads to the increase of amplitude and AE energy rate, but with the increase of stress loading level, this effect tends to dissipate. The acoustic emission b value shows an upward trend in the deceleration and constant creep stages, and a rapid decline occurs after entering the accelerated creep stage. The freeze-thaw action makes the rock change from small-scale failure to large-scale failure in the deceleration creep stage. The decrease of the dip angle of the double fissures will reduce the stability of the rock and accelerate the fluctuation of the b value in the deceleration creep stage. The existence of prefabricated cracks will advance the predicted failure time point of b value, while the freeze-thaw cycle will delay the predicted failure time point of b value. Acoustic emission b value can effectively predict the instability and failure of rock, which can be used as an effective precursor information of rock creep failure.

In summary, this paper combines acoustic emission technology to comprehensively analyze the mechanics and creep characteristics of fractured rock under freeze-thaw action. The research conclusions can provide reference for the failure law and prediction of fractured rock mass in cold regions.

参考文献:

[1]赵洪宝, 胡桂林, 李伟, 等. 预制裂隙岩石裂纹扩展规律的研究进展与思考[J]. 地下空间与工程学报, 2016, 12(S2): 899-906.

[2]易婷, 唐建新, 王艳磊. 裂隙倾角及数目对岩体强度和破坏模式的影响[J]. 地下空间与工程学报, 2021, 17(01): 98-106+134.

[3]李宁, 程国栋, 谢定义. 西部大开发中的岩土力学问题[J]. 岩土工程学报, 2001(03): 268-272.

[4]徐光苗, 刘泉声. 岩石冻融破坏机理分析及冻融力学试验研究[J]. 岩石力学与工程学报, 2005(17): 3076-3082.

[5]刘泉声, 康永水, 黄兴, 等. 裂隙岩体冻融损伤关键问题及研究状况[J]. 岩土力学, 2012, 33(04): 971-978.

[6]陈卫忠, 谭贤君, 于洪丹. 低温及冻融循环下岩体热、水、力特性研究进展与思考[J]. 岩石力学与工程学报. 2011, 30(7): 1318-1336.

[7]常治国. 力-温度场作用下裂隙岩体损伤机理及边坡时效稳定性分析[D]. 中国矿业大学, 2019.

[8]李平, 唐旭海, 刘泉声, 等. 双裂隙类砂岩冻胀断裂特征与强度损失研究[J]. 岩石力学与工程学报, 2020, 39(01): 115-125.

[9]肖桃李, 李新平, 郭运华. 三轴压缩条件下单裂隙岩石的破坏特性研究[J]. 岩土力学, 2012, 33(11): 3251-3256.

[10]Cao R H, Ping C , Fan X , et al. An Experimental and Numerical Study on Mechanical Behavior of Ubiquitous-Joint Brittle Rock-Like Specimens Under Uniaxial Compression[J]. Rock Mechanics and Rock Engineering, 2016, 49(11): 1-20.

[11]董振明, 万文, 刘逸舒, 等. 双轴压缩下双裂隙类岩石材料力学特性及裂纹扩展[J]. 矿业工程研究, 2020, 35(03): 48-53.

[12]曾昭飞, 贺桂成, 戴兵, 等. 双孔洞式双裂隙类岩石力学特性及裂纹扩展分析[J]. 有色金属工程, 2021, 11(05): 87-95.

[13]唐礼忠, 宋徉霖. 含非共面重叠型微裂隙类岩石试样单轴受压宏细观力学特性颗粒流模拟[J]. 岩石力学与工程学报, 2019,38(11): 2161-2171.

[14]王振永. 裂隙性围岩力学特性和破裂机理的颗粒流数值模拟研究[D]. 西南交通大学, 2016.

[15]Tang C A , Yang W T , Fu Y F , et al. A new approach to numerical method of modelling geological processes and rock engineering problems-continuum to discontinuum and linearity to nonlinearity[J]. ENGINEERING GEOLOGY -AMSTERDAM-, 1998.

[16]Yang S Q , Liu X R , Jing H W . Experimental investigation on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression - ScienceDirect[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 63:82-92.

[17]Yang J, Yang S Q, Liu G J, et al. Experimental study of crack evolution in prefabricated double-fissure red sandstone based on acoustic emission location[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7(1): 1-20.

[18]杨圣奇, 戴永浩, 韩立军, 等. 断续预制裂隙脆性大理岩变形破坏特性单轴压缩试验研究[J]. 岩石力学与工程学报, 2009, 28(12): 2391-2404.

[19]Lee H , Jeon S . An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression[J]. International Journal of Solids and Structures, 2011, 48( 6):979-999.

[20]Hori M , Morihiro H . Micromechanical analysis on deterioratIon due to freezing and thawing in porous brittle materials[J]. International Journal of Engineering Science, 1998, 36(4):511-522.

[21]徐光苗, 刘泉声. 岩石冻融破坏机理分析及冻融力学试验研究[J]. 岩石力学与工程学报, 2005(17): 3076-3082.

[22]申艳军, 杨更社, 王铭, 等. 冻融循环过程中岩石热传导规律试验及理论分析[J]. 岩石力学与工程学报, 2016, 35(12): 2417-2425.

[23]张慧梅, 杨更社. 岩石冻融力学试验及损伤扩展特性[J]. 中国矿业大学学报, 2011, 40(01): 140-145+151.

[24]母剑桥, 裴向军, 黄勇, 等. 冻融岩体力学特性实验研究[J]. 工程地质学报, 2013, 21(01): 103-108.

[25]张淑坤, 王来贵, 唐楠楠. 化学腐蚀-冻融条件下加载岩石能量演化规律及耗散模型研究[J]. 中国安全生产科学技术, 2022, 18(06): 148-154.

[26]宋勇军, 杨慧敏, 谭皓, 等. 冻融环境下不同饱和度砂岩损伤演化特征研究[J]. 岩石力学与工程学报, 2021, 40(08): 1513-1524.

[27]路亚妮, 李新平, 吴兴宏. 单轴压缩条件下裂隙岩样冻融损伤破坏模式分析[J]. 冰川冻土, 2017, 39(02): 351-357.

[28]李新平, 路亚妮, 王仰君. 冻融荷载耦合作用下单裂隙岩体损伤模型研究[J]. 岩石力学与工程学报, 2013, 32(11): 2307-2315.

[29]裴向军, 蒙明辉, 袁进科, 等. 干燥及饱水状态下裂隙岩石冻融特征研究[J]. 岩土力学, 2017, 38(07): 1999-2006.

[30]赵建军, 解明礼, 余建乐,等. 冻融作用下含裂隙岩石力学特性及损伤演化规律试验研究[J]. 工程地质学报, 2019, 27(06): 1199-1207.

[31]申艳军, 杨更社, 荣腾龙,等. 冻融循环作用下单裂隙类砂岩局部化损伤效应及端部断裂特性分析[J]. 岩石力学与工程学报, 2017, 36(03): 562-570.

[32]Griggs D. Creep of Rocks[J]. Journal of Geology. 1939, 47(3): 225-251.

[33]Ma L, Daemen J.An experimental study on creep of welded tuff[J]. International Journal of Rock Mechanics & Mining Sciences, 2006, 43(2):282-291.

[34]C H Yang, Daemen K J J, H Y J. Experimental investigation of creep behavior of salt rock[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts. 1999,36(2):233-242.

[35]Yang C, Daemen J . Temperature effects on creep of tuff and its time—Dependent damage analysis[J]. International Journal of Rock Mechanics & Mining Sciences, 1997, 34(3-4):383-384.

[36]刘泉声, 许锡昌, 山口勉, 等. 三峡花岗岩与温度及时间相关的力学性质试验研究[J]. 岩石力学与工程学报, 2001(05): 715-719.

[37]陈亮, 刘建锋, 王春萍, 等. 不同温度及应力状态下北山花岗岩蠕变特征研究[J]. 岩石力学与工程学报, 2015,34(06): 1228-1235.

[38]杨红伟, 许江, 聂闻, 等. 渗流水压力分级加载岩石蠕变特性研究[J]. 岩土工程学报, 2015, 37(09): 1613-1619.

[39]范翔宇, 张千贵, 艾巍, 等. 煤岩储气层岩石蠕变特性与本构模型研究[J]. 岩石力学与工程学报, 2013, 32(S2): 3732-3739.

[40]杨超, 许轩, 王乐华, 等. 不同特征应力区间单裂隙砂岩与完整岩石蠕变特性的相关关系[J]. 岩石力学与工程学报, 2022, 41(07): 1347-1357.

[41]宋勇军, 张磊涛, 任建喜, 等. 冻融环境下红砂岩三轴蠕变特性及其模型研究[J]. 岩土工程学报, 2021, 43(05): 841-849.

[42]刘东燕, 谢林杰, 庹晓峰, 等. 不同围压作用下砂岩蠕变特性及非线性黏弹塑性模型研究[J]. 岩石力学与工程学报, 2017, 36(S2): 3705-3712.

[43]Jr H . Application of Acoustic Emission Techniques to Rock Mechanics Research[J]. Chinese Journal of Sinica, 1977.

[44]Qin S . EXPERIMENT RESEARCH ON ACOUSTIC EMISSION IN THE PROCESS OF ROCK FRACTURING[J]. Journal of Geological Hazards and Environment Preservation, 1994.

[45]赵奎, 冉珊瑚, 曾鹏, 等. 含水率对红砂岩特征应力及声发射特性的影响[J]. 岩土力学, 2021, 42(04): 899-908.

[46]Hu X , Su G , Chen G , et al. Experiment on Rockburst Process of Borehole and Its Acoustic Emission Characteristics[J]. Rock Mechanics and Rock Engineering, 2018, 52.

[47]Lei R, Wang Y, Zhang L, et al. The evolution of sandstone microstructure and mechanical properties with thermal damage[J]. Energy Science & Engineering, 2019, 7(6): 3058-3075.

[48]Ban Y , Fu X , Xie Q . Revealing the laminar shale microdamage mechanism considering the relationship between fracture geometrical morphology and acoustic emission power spectrum characteristics[J]. Bulletin of Engineering Geology and the Environment, 2019(7).

[49]Li L R , Deng J H , Zheng L , et al. Dominant Frequency Characteristics of Acoustic Emissions in White Marble During Direct Tensile Tests[J]. Rock Mechanics & Rock Engineering, 2017, 50(5):1-10.

[50]Liu J P , Zhang C Y , Si Y T , et al. Temporal-spatial evolution of acoustic emission during progressive fracture processes around tunnel triggered by blast-induced disturbances under uniaxial and biaxial compression[J]. Tunnelling and Underground Space Technology, 2020, 96:103229.

[51]Zhang Y , Feng X T , Yang C , et al. Fracturing evolution analysis of Beishan granite under true triaxial compression based on acoustic emission and strain energy[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 117:150-161.

[52]李安强, 张茹, 艾婷, 等. 花岗岩单轴压缩全过程声发射时空演化行为及破坏前兆研究[J]. 岩土工程学报, 2016, 38(S2): 306-311.

[53]高保彬, 李回贵, 刘云鹏, 等. 单轴压缩下煤岩声发射及分形特征研究[J]. 地下空间与工程学报, 2013, 9(05): 986-991+1005.

[54]杨圣奇, 刘相如, 李玉寿. 单轴压缩下含孔洞裂隙砂岩力学特性试验分析[J]. 岩石力学与工程学报, 2012, 31(S2): 3539-3546.

[55]王创业, 常新科, 杜晓娅. 砂岩单轴压缩破坏全过程声发射主频特征分析[J]. 地下空间与工程学报, 2020, 16(02): 451-462.

[56]刘学伟, 刘泉声, 陈元, 等. 裂隙形式对岩体强度特征及破坏模式影响的试验研究[J]. 岩土力学, 2015, 36(S2): 208-214.

[57]赵延林, 刘强, 刘欢, 等. 水-力耦合作用下单裂隙灰岩三轴压缩与声发射试验及压剪断裂模型[J]. 煤炭学报, 2021, 46(12): 3855-3868.

[58]蒋军军, 邓志刚, 欧阳振华, 等. 不同尺寸冲击倾向性煤样声发射b值特征研究[J]. 煤炭科学技术, 2019, 47(03): 120-124.

[59]苏占东, 孙进忠, 夏京, 等. 冻融循环对花岗岩声发射特性影响的试验研究[J]. 岩石力学与工程学报, 2019, 38(05): 865-874.

[60]Ywa B , Wkf B , Hjw A , et al. Rock bridge fracturing characteristics in granite induced by freeze-thaw and uniaxial deformation revealed by AE monitoring and post-test CT scanning[J]. Cold Regions Science and Technology, 2020, 177.

[61]赵奎, 冉珊瑚, 曾鹏, 等. 含水率对红砂岩特征应力及声发射特性的影响[J]. 岩土力学, 2021, 42(04): 899-908.

[62]李天斌, 陈子全, 陈国庆, 等. 不同含水率作用下砂岩的能量机制研究[J]. 岩土力学, 2015, 36(S2): 229-236.

[63]Li Y H , Liu J P , Zhao X D , et al. Experimental studies of the change of spatial correlation length of acoustic emission events during rock fracture process[J]. International Journal of Rock Mechanics & Mining Sciences, 2010, 47(8):1254-1262.

[64]Lei R , Zhang Z , Berto F , et al. Cracking process and acoustic emission characteristics of sandstone with two parallel filled-flaws under biaxial compression[J]. Engineering Fracture Mechanics, 2020, 237(2):107253.

[65]Shi G , Yang X , Yu H , et al. Acoustic emission characteristics of creep fracture evolution in double-fracture fine sandstone under uniaxial compression[J]. Engineering Fracture Mechanics, 2018, 210:S001379441830609X-.

[66]曹树刚, 刘延保, 张立强, 等. 突出煤体单轴压缩和蠕变状态下的声发射对比试验[J]. 煤炭学报, 2007(12): 1264-1268.

[67]姚强岭, 朱柳, 黄庆享, 等. 含水率对细粒长石岩屑砂岩蠕变特征影响试验研究[J]. 采矿与安全工程学报, 2019, 36(05): 1034-1042+1051.

[68]刘迪, 周宏伟, 赵阳, 等. 基于声发射特征的盐岩蠕变本构模型研究[J]. 岩土力学, 2017, 38(07): 1951-1958.

[69]Liu X, Yu J, Zhu Y, et al. Creep damage evolution of marble from acoustic emission and the damage threshold[J]. Frontiers in Earth Science, 2020, 8: 58.

[70]Zhao K , Xiong L , Xu Y , et al. Uniaxial compression creep and acoustic emission characteristics of sandstone under loading-unloading paths[J]. Arabian Journal of Geosciences, 2020, 13(23):1243.

[71]Patricia R , Celestino T B . Application of acoustic emission monitoring and signal analysis to the qualitative and quantitative characterization of the fracturing process in rocks[J]. Engineering Fracture Mechanics, 2018:S0013794418302157-.

[72]龚囱, 李长洪, 赵奎. 红砂岩短时蠕变声发射b值特征[J]. 煤炭学报, 2015, 40(S1): 85-92.

[73]赵修成, 赵晓彦, 郭佳奇. 断续节理岩体声学力学特性试验研究[J]. 岩石力学与工程学报, 2020, 39(07): 1408-1419.

[74]Huang D, Cen D F, Ma G W, et al. Step-path failure of rock slopes with intermittent joints[J]. Landslides, 2015, 12(5): 911-926.

[75]杨超, 黄达, 黄润秋, 等. 断续双裂隙砂岩三轴卸荷蠕变特性试验及损伤蠕变模型[J]. 煤炭学报, 2016 ,41(9): 2203-2211.

[76]GB/T 50266-2013, 工程岩体试验方法标准[S]. 北京: 中国规划出版社, 2013.

[77]RABOTNOV Y N. On the equation of state of creep[C]// Proceedings of the Institution of Mechanical Engineers. [S.l.]:[s.n.],1963,178(1):2 117-2 122.

[78]曾正文, 马瑾, 刘力强, 等. 岩石破裂扩展过程中的声发射b值动态特征及意义[J]. 地震地质, 1995, 17(01): 7-12.

[79]KATCHANOV L M. Time of the rupture process under creep conditions[J]. Izk. Akad. Nauk, 1958 (8): 26-31.

[80]ZONG Y, HAN L, WEI J, et al. Mechanical and damage evolution properties of sandstone under triaxial compression[J]. International Journal of Mining Science and Technology, 2016, 26(4): 601-607.

[81]刘保县, 黄敬林, 王泽云, 等. 单轴压缩煤岩损伤演化及声发射特性研究[J]. 岩石力学与工程学报, 2009, 28(A01): 3234-3238.

[82]周志威, 刘建锋, 邹航, 等. 单轴压缩盐岩声发射特征及损伤演化探讨[J]. 长江科学院院报, 2016, 33(5): 63-68.

[83]杨永杰, 王德超, 郭明福, 等. 基于三轴压缩声发射试验的岩石损伤特征研究[J]. 岩石力学与工程学报, 2014, 33(1): 98-104.

[84]LEMAITRE J, SERMAGE J P, DESMORAT R. A two scale damage concept applied to fatigue[J]. Internationa Journal of fracture, 1999, 97(1): 67-81.

[85]TAN T K, KANG W F. Locked in stresses, creep and dilatancy of rocks, and constitutive equations[J]. Rockmechanics and rock engineering,1980,13(1):5-22

[86]李茂桐. 不同产状裂隙岩体卸荷蠕变本构模型及破坏前兆研究[D].山东农业大学, 2022.

[87]武东生, 孟陆波, 李天斌, 等. 灰岩三轴高温后效流变特性及长期强度研究[J]. 岩土力学, 2016, 37(S1): 183-191.

[88]张磊涛. 冻融环境下砂岩蠕变特性及其模型研究[D]. 西安科技大学, 2020.

中图分类号:

 TU458    

开放日期:

 2023-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式