- 无标题文档
查看论文信息

论文中文题名:

 胶粉状态演变对橡胶沥青延度影响的介观机理研究    

姓名:

 张明明    

学号:

 20204228117    

保密级别:

 内部    

论文语种:

 chi    

学科代码:

 085900    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木水利    

研究方向:

 道路工程    

第一导师姓名:

 李海滨    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-12    

论文答辩日期:

 2023-06-10    

论文外文题名:

 Study on the Mesoscopic Mechanism of the Influence of Rubber Powder State Evolution on the Ductility of Rubber Asphalt    

论文中文关键词:

 道路工程 ; 橡胶沥青 ; 测力延度 ; 随机分布 ; 介观 ; 有限元模拟    

论文外文关键词:

 Road engineering ; Rubber asphalt ; Mesoscopic ; Multiscale ; Finite element model    

论文中文摘要:

在沥青中掺加胶粉不仅能够缓解废旧轮胎带来的“黑色污染”和危害,还能改善沥青路面的性能。目前,橡胶沥青的研究主要集中于宏观性能和微观机理分析,但传统宏观与微观方法均无法考虑宏观变形和微观结构的非均匀性,因此无法准确分析胶粉自身状态演变对橡胶沥青性能的影响。针对橡胶沥青相关研究在“介观”尺度研究较少的现状,本文在宏观性能研究和微观测试分析的基础上,从介观角度对胶粉状态演变进行数值模拟,揭示胶粉状态演变对橡胶沥青延度影响的介观机理,为橡胶沥青的研究提供介观视角,对关联橡胶沥青宏观与微观研究具有一定的理论参考价值。论文主要研究内容如下:

从表面形态、元素组成、化学成分和热稳定性等方面对胶粉性能进行测试分析,通过对胶粉掺量为15%,20%,25%,30%的橡胶沥青的三大指标、锥入度、流变性能以及抗老化性能等试验分析,探究了橡胶沥青宏观性能表现的原因。试验分析表明,胶粉自身形态和分布状态在沥青各项性能影响中起到关键作用,阐明了当胶粉掺量为20%~25%时,胶粉和胶粉团聚体分布更为均匀,橡胶沥青具有更好的低温力学性能。结合扫描电镜、荧光显微镜等微观测试手段,表征了胶粉在沥青中空间分布和运动演变的微观特性,探明了橡胶沥青中大量未溶解的胶粉单体和胶粉团聚体的无序分布,且胶粉在溶胀过程中产生的相互接触、挤压等现象,会导致橡胶沥青粘度变大、胶粉团聚体数量增加和不均匀分布等现象,将明显影响橡胶沥青的宏观性能。

选取Burgers模型和Yeoh模型分别描述沥青和胶粉的材料特性。利用蒙特卡洛法(Monte-Carlo Method)和Python实现了胶粉和胶粉团聚体在沥青中的随机分布。构建了胶粉-沥青数值模型,实现了胶粉单体和胶粉团聚体在沥青中的分布以及橡胶沥青测力延度试验的介观视角模拟,为揭示胶粉在沥青中的空间分布状态和状态演变的介观机理提供了理论支撑。

利用构建的模型,从二维和三维角度模拟分析了橡胶沥青测力延度试验,分析了橡胶沥青受拉过程中应力、应变、位移以及能量等参数变化,阐明了胶粉空间运动演变与沥青的作用关系。从介观角度分析了胶粉的分散状态和胶粉团聚体内部胶粉的相互作用,提出了影响橡胶沥青延度的关键因素,明确了均匀分布的胶粉和胶粉团聚体能为橡胶沥青提供更优的力学性能,但胶粉的空间分布和状态演变会影响胶粉团聚体内部胶粉的不均匀分布,进而导致橡胶沥青力学性能变差的现象。本文尝试从介观角度分析了橡胶沥青受拉过程中的受力状态以及胶粉空间分布对橡胶沥青延度的影响,直观阐释了宏观试验中橡胶沥青受拉断裂的原因,是橡胶沥青延度的宏观变化和微观分析的有效补充,也为分析橡胶沥青性能变化提供了介观理论依据。

论文外文摘要:

Adding rubber powder to asphalt can not only alleviate the "black pollution" and harm caused by waste tires, but also improve the performance of asphalt pavement. At present, research on rubber asphalt mainly focuses on macroscopic performance and microscopic mechanism analysis, but traditional macroscopic and microscopic methods cannot connect the heterogeneity of macroscopic deformation and microstructure, so it is hard to accurately analyze the impact of the evolution of rubber powder's state on the performance of rubber asphalt. In response to the lack of research on rubber asphalt at the "mesoscopic" scale, this paper conducts numerical simulations of the evolution of rubber powder state from a mesoscopic perspective, based on macroscopic performance and microscopic tests. It reveals the mesoscopic mechanism of the influence of rubber powder state evolution on the ductility of rubber asphalt, providing a new perspective for the research of rubber asphalt, and has important scientific reference value for effectively linking macro and micro research. The main research content of the paper is as follows:

The performance of rubber powder was tested and analyzed from the aspects of surface morphology, element composition, chemical composition and thermal stability. Through the test and analysis of penetration, ductility, softening point, cone penetration, rheological properties and anti-aging properties of rubber asphalt with rubber powder content of 15%, 20%, 25% and 30%, the reasons for the macro performance of rubber asphalt were explored. The results showed that the morphology and distribution state of rubber powder play a crucial role in the various performance effects of asphalt. It is clarified that when the rubber powder content is 20%~25%, the distribution of rubber powder and rubber powder aggregates is more uniform, and rubber asphalt shows better low-temperature mechanical properties. By combining scanning electron microscopy, fluorescence microscopy, and other microscopic testing methods, the microscopic characteristics of the spatial distribution and movement evolution of rubber powder in asphalt were characterized. It was discovered that there are a large number of undissolved rubber powder monomers and aggregates in rubber asphalt, which are disorderly distributed. During the swelling process, the rubber powder will produce phenomena such as mutual contact and compression, leading to an increase in the viscosity of rubber asphalt, an increase in the number of rubber powder aggregates, and uneven distribution, which have a negative impact on the macroscopic properties of rubber asphalt.

Burgers model and Yeoh model were selected to describe the material properties of asphalt and rubber powder, respectively. The Monte Carlo Method and Python were used to achieve the random distribution of rubber powder and rubber powder aggregates in asphalt, breaking through the traditional image processing process. A numerical model of rubber powder asphalt was constructed, which achieved the distribution of rubber powder monomers and rubber powder aggregates in asphalt, as well as the expression of a mesoscopic finite element model for rubber asphalt stress ductility test. This provides theoretical support for revealing the spatial distribution state and state evolution of rubber powder in asphalt through mesoscopic mechanisms.

With the constructed model, the force ductility test of rubber asphalt was simulated and analyzed from two-dimensional and three-dimensional perspectives, the changes in parameters were analyzed such as stress, strain, displacement, and energy during the tensile process of rubber asphalt, and the relationship between the spatial movement evolution of rubber powder and the action of asphalt were constructed. From a mesoscopic perspective, the dispersion state of rubber powder and the interaction between rubber powder inside rubber powder aggregates were analyzed. The key factors affecting the ductility of rubber asphalt were proposed, and it was clarified that the spatial distribution and state evolution of rubber powder would affect the uneven distribution of rubber powder inside rubber powder aggregates, leading to stress concentration in rubber asphalt and deteriorating mechanical properties, and rubber asphalt containing uniformly distributed rubber powder and rubber powder aggregates shows better mechanical properties. This paper attempts to analyze the stress state of rubber asphalt during the tensile process and the influence of rubber powder spatial distribution on the ductility of rubber asphalt from a mesoscopic perspective for the first time. It intuitively explains the reasons for the tensile fracture of rubber asphalt in macroscopic tests, which is an effective supplement to the macroscopic and microscopic analysis of rubber asphalt ductility, and also provides a mesoscopic perspective for analyzing the performance changes of rubber asphalt.

参考文献:

[1] 中商产业研究院. 2023及中国轮胎行业市场现状及发展前景研究报告(简版), 2023.

[2] Czajczyńska D, Krzyyńska R, Jouhara H, et al. Use of pyrolytic gas from waste tire as a fuel: A review[J]. Energy, 2017, 134.

[3] 余苗, 赵晓宁, 陈海峰, 等. 橡胶颗粒改性沥青混合料黏弹性研究[J]. 公路交通科技, 2023, 40(02): 1-7.

[4] 毛琼. 从颗粒到粉末到纳米材料[J]. 科学, 2000(7): 3.

[5] Ibrahim I M, Fathy E S, El-Shafie M, et al. Impact of incorporated gamma irradiated crumb rubber on the short-term aging resistance and rheological properties of asphalt binder[J]. Construction & Building Materials, 2015, 81(apr.15): 42-46.

[6] Gibreil H A, Feng C P. Effects of high-density polyethylene and crumb rubber powder as modifiers on properties of hot mix asphalt[J]. Construction and Building Materials, 2017, 142: 101-108.

[7] Jitsangiam P, Nusit K, Phenrat T, et al. An examination of natural rubber modified asphalt: Effects of rubber latex contents based on macro- and micro-observation analyses[J]. Construction and Building Materials, 2021, 289.

[8] Fini E H, Hosseinnezhad S, Oldham D J, et al. Investigating the effectiveness of liquid rubber as a modifier for asphalt binder[J]. Road Materials and Pavement Design, 2016, 17(4): 825-840.

[9] Hesp, Terlouw T, Vonk W C. Low temperature performance of SBS-modified asphalt mixes[C]. Association of Asphalt Paving Technologists, 2000.

[10] Loderer C, Partl M N, Poulikakos L D. Effect of crumb rubber production technology on performance of modified bitumen[J]. Construction and Building Materials, 2018, 191: 1159-1171.

[11] 仇朝珍. 回收橡胶树脂改性剂对沥青混合料性能的影响[J]. 中外公路, 2020, 40(01): 200-205.

[12] 谭继宗. 基于测力延度的复合改性橡胶沥青性能对比分析[J]. 西部交通科技, 2022(10): 23-27+52.

[13] 聂忆华, 胡静轩. 加拿大沥青改进测力延度试验 (DENT) 介绍[J]. 中外公路, 2018, 38(03): 242-247.

[14] 谢祥兵, 李茂达, 梁林园, 等. 基于测力-延度曲线分析的沥青胶浆低温流变性能评价指标[J]. 材料科学与工程学报, 2022, 40(03): 491-498.

[15] Farouk A I B, Hassan N A, Mahmud M Z H, et al. Effects of mixture design variables on rubber-bitumen interaction: properties of dry mixed rubberized asphalt mixture[J]. Materials and Structures, 2017, 50(1).

[16] Hosseinnezhad S, Bocoum A, Martinez F M, et al. Biomodification of rubberized asphalt and its high temperature properties[J]. Transportation Research Record, 2015, 2506(1).

[17] Hosseinnezhad S, Kabir S F, Oldham D, et al. Surface functionalization of rubber particles to reduce phase separation in rubberized asphalt for sustainable construction[J]. Journal of Cleaner Production, 2019, 225: 82-89.

[18] Hassan N A, Airey G D, Yusoff N I M, et al. Microstructural characterisation of dry mixed rubberised asphalt mixtures[J]. Construction and Building Materials, 2015, 82: 173-183.

[19] Shen J, Amirkhanian S, Xiao F, et al. Influence of surface area and size of crumb rubber on high temperature properties of crumb rubber modified binders[J]. Construction & Building Materials, 2009, 23(1): 304-310.

[20] Dong D, Huang X, Li X, et al. Swelling process of rubber in asphalt and its effect on the structure and properties of rubber and asphalt[J]. Construction & Building Materials, 2012, 29: 316-322.

[21] Ma T, Zhao Y, Huang X, et al. Characteristics of desulfurized rubber asphalt and mixture[J]. Ksce Journal of Civil Engineering, 2016, 20(4): 1347-1355.

[22] Wang H, Liu X, Apostolidis P, et al. Numerical investigation of rubber swelling in bitumen[J]. Construction and Building Materials, 2019, 214(JUL.30): 506-515.

[23] 丁湛, 王爱波, 栗慧峰, 等. 胶粉颗粒变化对橡胶沥青粘度的影响分析[J]. 应用化工, 2023, 52(02): 350-354.

[24] 李培荣, 黄啟波. 橡胶沥青胶浆流变特性研究[J]. 公路, 2016, 61(07): 255-259.

[25] 李小重, 王笑风, 冯明林, 等. 橡胶颗粒对沥青的改性机理及其混溶体系分析[J]. 中外公路, 2021, 41(05): 249-253.

[26] 关庆文. 聚丁二酸丁二醇酯拉伸行为及共混改性研究[D]. 上海: 上海交通大学, 2010.

[27] 刘国明. 共混胶粉改性沥青性能及作用机理研究[D]. 西安: 西安科技大学, 2020.

[28] Zhang W, Luan Y, Ma T, et al. Multilevel analysis of the aging mechanisms and performance evolution of rubber-modified asphalt[J]. Journal of Materials in Civil Engineering, 2021, 33(12).

[29] Wang Q, Li S, Wu X, et al. Weather aging resistance of different rubber modified asphalts[J]. Construction and Building Materials, 2016, 106: 443-448.

[30] 武红娟, 王选仓, 王睿, 等. 基于老化的石墨烯/橡胶粉复合改性沥青蠕变特性及微观结构分析[J]. 长安大学学报: 自然科学版, 2020(1): 11.

[31] Kalay Z. Fundamental and functional aspects of mesoscopic architectures with examples in physics, cell biology, and chemistry[J]. Critical reviews in biochemistry and molecular biology, 2011, 46(4): 310-26.

[32] De Kernier I, Ali-Cherif A, Rongeat N, et al. Large field-of-view phase and fluorescence mesoscope with microscopic resolution[J]. Journal of Biomedical Optics, 2019, 24(3).

[33] Field D, Ammouche Y, Pena J-M, et al. Machine learning based multiscale calibration of mesoscopic constitutive models for composite materials: application to brain white matter[J]. Computational Mechanics, 2021, 67(6): 1629-1643.

[34] 杜友耀. 基于介观结构及介—宏观均匀化方法的颗粒材料力学行为研究[D]. 大连: 大连理工大学, 2017.

[35] Papenfuss C, Muschik W. Macroscopic internal variables and mesoscopic theory: A comparison considering liquid crystals[J]. Entropy, 2018, 20(1).

[36] 刘铭, 徐献忠, 刘梦云, 等. 基于非牛顿流体的聚乙烯材料介观蠕变机制研究[J]. 功能材料, 2021, 52(10): 10092-10097.

[37] 高杰, 金大勇, 郭昕, 等. 含能增塑剂Bu-NENA与黏结剂共混体系的介观动力学模拟[J]. 爆破器材, 2021, 50(06): 8-13.

[38] 王园园, 孙丹, 刘仕超, 等. 辐照-温度协同作用下U3Si2微结构演化的介观尺度研究[C]. 中国山东烟台: 中国核学会2021年学术年会, 2021: 226-231.

[39] Zhang J, Chen L, Wu H, et al. Experimental and mesoscopic investigation of double-layer aluminum foam under impact loading[J]. Composite Structures, 2020, 241.

[40] 蔡令令, 丁浩亮, 孟娟, 等. 聚合物选区激光烧结粉末熔合介观模拟[J]. 模具技术, 2021(06): 36-42.

[41] Benatti F, Carollo F, Floreanini R, et al. Non-markovian mesoscopic dissipative dynamics of open quantum spin chains[J]. Physics Letters A, 2016, 380(3): 381-389.

[42] Nicolin L, Segal D. Thermal conductance of the Fermi-Pasta-Ulam chains: atomic to mesoscopic transition[J]. Physical review. E, Statistical, nonlinear, and soft matter physics, 2010, 81(4 Pt 1): 040102.

[43] Zeng J, Yang L, Shao R, et al. Mesoscopic Ti2Nb10O29 cages comprised of nanorod units as high-rate lithium-ion battery anode[J]. Journal of Colloid and Interface Science, 2021, 600: 111-117.

[44] 李国能, 朱智浩, 郑友取, 等. 介观尺度燃烧驱动温差发电的实验研究[J]. 中国电机工程学报: 1-9.

[45] 孙红, 张添昱, 李洁, 等. 基于介观分析的HT-PEM燃料电池阴极扩散层传质研究[J]. 沈阳建筑大学学报 (自然科学版), 2019, 35(03): 519-525.

[46] Svaneborg C. DPD simulation of coarsening dynamics of oil-surfactant-water mixtures (excess surfactant) [J], 2011.

[47] 任强, 代振宇, 周涵. 重油胶体结构的介观模拟[J]. 石油学报(石油加工), 2013, 29(01): 86-94.

[48] 何雅玲. 格子Boltzmann方法的理论及应用[M]. 科学出版社, 2009.

[49] Seaton M A, Halliday I, Masters A J. Application of the multicomponent lattice Boltzmann simulation method to oil/water dispersions[J]. Journal of Physics A: Mathematical and Theoretical, 2011, 44(10).

[50] 朱益华, 陶果, 方伟. 基于格子Boltzmann方法的储层岩石油水两相分离数值模拟[J]. 中国石油大学学报 (自然科学版), 2010, 34(03): 48-52.

[51] 钟敏. 基于格子Boltzmann方法的两液滴相溶模拟[J]. 科学技术与工程, 2012, 12(16): 3801-3803.

[52] Masad E, Jandhyala V K, Dasgupta N, et al. Characterization of air void distribution in asphalt mixes using X-ray computed tomography[J]. Journal of Materials in Civil Engineering, 2002, 14(2): 122-129.

[53] Hajikarimi P, Sadat Hosseini A, Fakhari Tehrani F, et al. Heterogeneous visco-hyperelastic numerical modelling of crumb rubber-modified asphalt binders[J]. International Journal of Pavement Engineering, 2020.

[54] Li G, Wang Z. A mesoscopic simulation for the early-age shrinkage cracking process of high performance concrete in bridge engineering[J]. Advances in Materials Science and Engineering, 2017, 2017: 1-12.

[55] Zhangyu W, Jinhua Z, Hongfa Y, et al. 3D mesoscopic analysis on the compressive behavior of coral aggregate concrete accounting for coarse aggregate volume and maximum aggregate size[J]. Composite Structures, 2021, 273.

[56] Liu J, Jian L, Wenxuan Y, et al. Mesoscopic simulations on the strength and size effect of concrete under biaxial loading[J]. Engineering Fracture Mechanics, 2021, 253.

[57] Lv D, Zheng C F, Qin Y, et al. Analysing the effects of the mesoscopic characteristics of mineral powder fillers on the cohesive strength of asphalt mortars at low temperatures[J]. Construction and Building Materials, 2014, 65: 330-337.

[58] 李妍, 于永金, 刁斌斌, 等. C-S-H粗粒化模型随机分布空间结构特征研究[J]. 石油科学通报, 2021, 6(03): 474-480.

[59] E20-2011 J. 公路工程沥青及沥青混合料试验规程: 北京:人民交通出版社, 2011.

[60] 李晓燕, 平路, 汪海年, 等. 基于国内外试验方法的橡胶沥青性能测试[J]. 交通运输工程学报, 2015, 15(01): 10-17.

[61] 詹美礼, 钱家欢, 陈绪禄. 软土流变特性试验及流变模型[J]. 岩土工程学报, 1993(03): 54-62.

[62] Zhou L, Huang W, Zhang Y, et al. Evaluation of the adhesion and healing properties of modified asphalt binders[J]. Construction and Building Materials, 2020, 251: 119026.

[63] Xiao F, Li R, Zhang H, et al. Low temperature performance characteristics of reclaimed asphalt pavement (RAP) mortars with virgin and aged soft binders[J]. Applied Sciences, 2017, 7(3): 304-304.

[64] Hofko, L., et al. Impact of maltene and asphaltene fraction on mechanical behavior and microstructure of bitumen[J]. Materials and Structures, 2015.

[65] 阳尧林, 赵梦珍. 测力延度在胶粉改性沥青低温性能评价中的应用[J]. 石油沥青, 2019, 33(01): 45-49.

[66] Daly W H, Balamurugan S S, Negulescu I, et al. Characterization of crumb rubber modifiers after dispersion in asphalt binders[J]. Energy & Fuels, 2019, 33(4): 2665-2679.

[67] 杨军等. 聚合物改性沥青[M]. 北京:化学工业出版社, 2007: 316.

[68] Bryan J, Moon D, Kantzas A. In situ viscosity of oil sands using Low Field NMR[J]. Journal of Canadian Petroleum Technology, 2005, 44(9): 23-30.

[69] Thodesen C, Shatanawi K, Amirkhanian S. Effect of crumb rubber characteristics on crumb rubber modified (CRM) binder viscosity[J]. Construction and Building Materials, 2009, 23(1): 295-303.

[70] 冯浩. 基于粘弹性理论的沥青胶浆试验特性研究[D]. 长沙: 长沙理工大学, 2008.

[71] 张久鹏, 徐丽, 王秉纲. 沥青混合料蠕变模型的改进及其参数确定[J]. 武汉理工大学学报: 交通科学与工程版, 2010, 34(4): 5.

[72] 杨挺青, 等. 黏弹性理论与应用[M]. 黏弹性理论与应用, 2004.

[73] Monismith C L, Coetzee N F. Reflection cracking:Analyses, laboratory studies, and design consideration[C]. Association of Asphalt Paving Technologists, 1980.

[74] 周志刚, 钱国平, 郑健龙. 沥青混合料粘弹性参数测定方法的研究[J]. 长沙交通学院学报, 2001, 17(4): 23-28.

[75] 叶永. 沥青混合料粘弹塑性本构模型的实验研究[D]. 武汉: 华中科技大学, 2009.

[76] Soares R F, Allen D H, Nebraska L. Finite element analysis of the mechanics of viscoelastic asphaltic pavements subjected to varying tire configurations[J], 2005.

[77] Zhang X, Gu X, Lv J, et al. Numerical analysis of the rheological behaviors of basalt fiber reinforced asphalt mortar using ABAQUS[J]. Construction and Building Materials, 2017, 157: 392-401.

[78] Zhang Y, Lian Z, Zhou M, et al. Viscoelastic behavior of a casing material and its utilization in premium connections in high-temperature gas wells[J]. Advances in Mechanical Engineering, 2018, 10(12).

[79] Shojaeifard M, Sheikhi S, Baniassadi M, et al. On finite bending of visco-hyperelastic materials: a novel analytical solution and FEM[J]. Acta Mechanica, 2020, 231(8): 3435-3450.

[80] 韩玮. 沥青-集料界面相力学行为数值模拟[D]. 合肥: 合肥工业大学, 2020.

[81] You T, Al-Rub R, Darabi M K, et al. Three-dimensional microstructural modeling of asphalt concrete using a unified viscoelastic–viscoplastic–viscodamage model[J]. Construction & Building Materials, 2012, 28(1): 531-548.

[82] Kutay M E, Varma S, Jamrah A. A micromechanical model to create digital microstructures of asphalt mastics and crumb rubber-modified binders[J]. International Journal of Pavement Engineering, 2017, 18(9): 754-764.

[83] Xing C, Xu H, Tan Y, et al. Strain field distribution of asphalt mortar using digital image processing[J]. Construction and Building Materials, 2020, 238.

[84] 夏元白, 蒋春梅, 吕治忠. 钻井泵活塞接触应力分析[J]. 西南石油大学学报(自然科学版), 2004, 26(1): 71-74.

[85] Yeoh O H. Some forms of the strain energy function for rubber[J]. Rubber Chemistry and Technology, 1993, 66(5): 754-771.

[86] Rafei M, Ghoreishy M H R, Naderi G. Thermo-mechanical coupled finite element simulation of tire cornering characteristicsEffect of complex material models and friction law[J]. Mathematics and Computers in Simulation, 2018, 144: 35-51.

[87] 陈家照, 黄闽翔, 王学仁, 等. 几种典型的橡胶材料本构模型及其适用性[J]. 材料导报, 2015.

[88] Valanis K C, Landel R F. The strain-energy function of a hyperelastic material in terms of the extension ratios[J]. Journal of Applied Physics, 1967, 38(7): 2997-3002.

[89] Sheikhi M R, Shamsadinlo B, Nver Z, et al. Finite element analysis of different material models for polyurethane elastomer using estimation data sets[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(12).

[90] 杜康, 周恒为, 丁明明, 等. 聚类分析橡胶炭黑填充量与Yeoh模型参数的关联[J]. 应用化学, 2021, 38(06): 675-684.

[91] Majid S, Ali K, Zeeshan S M, et al. Mechanical characterization and FE modelling of a hyperelastic material[J]. Materials Research, 2015, 18(5): 918-924.

[92] Yeoh O H. Some forms of the strain energy function for rubber[J], 1993.

[93] Hajikarimi P, Sadat Hosseini A, Fakhari Tehrani F, et al. Heterogeneous visco-hyperelastic numerical modelling of crumb rubber-modified asphalt binders[J]. International Journal of Pavement Engineering, 2022, 23(5): 1500-1511.

[94] Pan G, Chen M, Wang Y, et al. Hyper-Pseudo-Viscoelastic model and parameter identification for describing tensile recovery stress-strain responses of rubber components in TBR[J]. Polymers, 2023, 15(1).

[95] Yao X, Wang Z, Ma L, et al. Temperature dependence of rubber hyper-elasticity based on different constitutive models and their prediction ability[J]. Polymers, 2022, 14(17).

[96] 徐洪亮. 基于原子力显微镜的沥青材料微观损伤自愈特性分析[D]. 哈尔滨: 哈尔滨工业大学, 2019.

[97] 李文博. 介观尺度下胶粉空间运动行为对橡胶沥青基本性能的影响[D]. 西安: 西安科技大学, 2021.

[98] Zhang X, Gu X, Lv J, et al. 3D numerical model to investigate the rheological properties of basalt fiber reinforced asphalt-like materials[J]. Construction and Building Materials, 2017, 138(MAY1): 185-194.

[99] Hajikarimi P, Tehrani F F, Nejad F M, et al. Mechanical behavior of polymer-modified bituminous mastics. II: Numerical approach[J]. Journal of Materials in Civil Engineering, 2019, 31(1): 04018338.

中图分类号:

 U414    

开放日期:

 2024-06-12    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式