论文中文题名: | 电力盾构隧道下穿既有地铁隧道施工诱发的地层变形规律及其控制技术 |
姓名: | |
学号: | 20204228093 |
保密级别: | 秘密 |
论文语种: | chi |
学科代码: | 085213 |
学科名称: | 工学 - 工程 - 建筑与土木工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 地下工程防灾减灾技术 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-12 |
论文答辩日期: | 2023-06-03 |
论文外文题名: | The law and control technology of ground deformation induced by the construction of electric shield tunnels undercrossing existing subway tunnels |
论文中文关键词: | |
论文外文关键词: | Loess region ; Shield tunneling ; Formation deformation ; Indoor model test ; Numerical simulation ; Control technology |
论文中文摘要: |
西安作为西部大开发的重要城市之一,人口密集度逐年增长,城市用电需求不断加大,为优化人们的居住环境、减小城市空间占用,原有的架空电缆输送电方式逐渐转变为地下电力隧道传输,既能保护电缆、减少事故的发生,还能实现高性能输供电。论文以西安某电力隧道下穿既有运营地铁隧道为工程背景,采用理论分析、模型试验、数值模拟和现场监测相结合的方法,进行新建盾构隧道下穿既有隧道施工诱发的地层变形规律研究,并提出相应的盾构施工变形控制措施,对黄土地区盾构隧道下穿工程具有一定的工程指导价值。本文主要的工作内容和成果如下: (1)分析了影响盾构施工引起地层沉降变形的主要影响因素,根据工程概况,得到了黄土地区盾构下穿施工引起地层和既有隧道变形的主要影响因素为地质条件、电力隧道与地铁隧道的相对位置关系、二次注浆及盾构施工参数。 (2)综合工程概况与室内试验条件,选取新建隧道与既有隧道相对交叉角度和间距为影响因素进行模型试验研究,分析不同工况下地表及既有隧道的变化规律。依据相似理论,确定了模型几何相似比以及模型土和衬砌的各材料质量配比。试验结果表明各交叉角度下地表沉降曲线符合Peck提出的正态分布,地表沉降值随着交叉角度、隧道净间距的增大而减小;新建隧道以不同交叉角度下穿既有隧道施工对既有隧道的主要影响范围为斜交下穿时约3D(D为隧道开挖直径)、垂直下穿时约2D,而平行下穿对既有隧道的影响贯穿整个施工过程;同一交叉角度条件下,地表、既有隧道最大沉降值与隧道净间距呈线性关系;两隧道净间距一定时,随着两隧道交叉角度的改变,沉降槽宽度系数略有不同,斜交下穿时沉降槽宽度系数最大,表明斜交下穿施工对横向地表沉降影响的范围较大。 (3)进行新建盾构隧道下穿既有隧道的数值模拟计算,结果表明新建隧道与既有隧道呈80°斜交角度下穿施工时,地表沉降和既有隧道的变形呈对称变化趋势,在盾构推进过程中,既有隧道拱底受力逐渐从受压转变为受拉变形;开挖面距两隧道交叉点1~2D范围内既有隧道受扰动最大,沉降变形速率最快;盾构先穿越既有隧道一侧比后穿越侧受扰动程度大,说明盾构在穿越新建隧道与既有隧道交叉点前,既有隧道对新建隧道的扰动有“阻隔”作用;既有隧道的存在改变了原始土层的应力场与位移场,在一定程度上抑制了土体和既有隧道的变形;数值模拟结果、模型试验结果与工程监测数据的沉降变化趋势基本一致,说明模型试验和数值模拟分析能够较好的预测工程沉降,能为地表及既有隧道变形控制措施提供理论支撑。 (4)通过改变新建隧道与既有隧道几何位置、施工参数及二次注浆加固厚度等因素进行盾构掘进数值模拟,计算结果表明两隧道交叉角度与沉降量呈反比关系,随着交叉角度的增大,既有隧道拱底沉降变形逐渐由“一”字型向“V”型转化;断面直径与沉降量、拱底应力呈正比关系,新建隧道断面直径越大,土体损失越大,地表及既有隧道的变形程度越大;土仓压力、注浆压力、注浆加固厚度和膨润土泥浆添加量在一定范围内均能起到抑制既有隧道变形的作用,但施工参数选取不当、注浆厚度或膨润土泥浆添加量过大,会造成不必要的经济损失或引发工程安全事故。 (5)提出了西安地区电力隧道下穿既有运营地铁隧道施工的风险控制措施,包括渣土改良、施工参数优化、隧道加固、隧道防水及其他辅助措施,根据现场监测结果可知,采取风险控制措施能有效抑制地表和既有隧道变形,确保了电力隧道施工过程中运营地铁隧道的稳定性和安全性,表明论文提出的控制措施是合理有效的,可为黄土地区盾构隧道下穿既有隧道工程提供参考依据。 |
论文外文摘要: |
As one of the important cities in the Western Development, Xi'an's population density has been increasing year by year, and the power demand in urban cities is constantly increasing. In order to optimize people's living environment and reduce urban space occupation, the original overhead cable transmission method has been gradually changed into underground power tunnel transmission, which can not only protect cables, reduce accidents, but also achieve high-performance power supply. Based on the engineering background of an electric power tunnel passing through an existing operating subway tunnel in Xi'an, this paper uses the methods of theoretical analysis, model test, numerical simulation and on-site monitoring to study the ground deformation law induced by the construction of a new shield tunnel passing through an existing tunnel, and proposes corresponding deformation control measures for shield construction, which has certain engineering guidance value for the shield tunnel passing through projects in loess areas. The main work and achievements of this paper are as follows: (1)This paper analyzes the main influencing factors of the ground settlement deformation caused by the shield construction, and according to the project overview, it is obtained that the main influencing factors of the ground and existing tunnel deformation caused by the shield underpass construction in the loess area are the geological conditions, the relative position relationship between the power tunnel and the subway tunnel, the secondary grouting and the shield construction parameter factors. (2)Based on the comprehensive engineering overview and indoor test conditions, the relative intersection angle and spacing between the newly built tunnel and the existing tunnel are selected as influencing factors for model test research, and the changes in surface and existing tunnels under different working conditions are analyzed. Based on the similarity theory, the geometric similarity ratio of the model and the mass ratio of various materials for the model soil and lining were determined. The test results show that the surface settlement curve at each intersection angle conforms to the normal distribution proposed by Peck, and the surface settlement value decreases with the increase of intersection angle and net tunnel spacing; The main impact range of the construction of new tunnels crossing existing tunnels at different intersection angles on existing tunnels is about 3D for oblique crossing and about 2D for vertical crossing, while the impact of parallel crossing on existing tunnels runs through the entire construction process; Under the same intersection angle condition, the maximum settlement value of the surface and existing tunnels is linearly related to the net distance between tunnels; When the clear distance between two tunnels is constant, the width coefficient of the settlement groove varies slightly with the change of the intersection angle of the two tunnels. The width coefficient of the settlement groove is the highest when the oblique crossing is under crossing, indicating that the construction of the oblique crossing has a larger impact on the horizontal surface settlement. (3)Numerical simulation calculations are conducted on the new shield tunnel crossing the existing tunnel. The results show that when the newly built tunnel and the existing tunnel are constructed at an angle of 80 degrees, the surface settlement and deformation of the existing tunnel shows a symmetrical trend. During the shield tunneling process, the stress on the arch bottom of the existing tunnel gradually shifted from compression to tension deformation; The existing tunnel within the range of 1~2 D from the intersection of the two tunnels is the most disturbed and has the fastest settlement deformation rate; The degree of disturbance on the side where the shield passes through the existing tunnel first is greater than that on the side where it passes later, indicating that the existing tunnel has a “barrier” effect on the disturbance of the new tunnel before the shield passes through the intersection of the new tunnel and the existing tunnel; The existence of existing tunnels changes the stress and displacement fields of the original soil layer, and to some extent suppresses the deformation of the soil and existing tunnels; The numerical simulation results and model test results are basically consistent with the settlement change trend of actual monitoring data, indicating that model tests and numerical simulation analysis can effectively predict engineering settlement and provide theoretical support for surface and existing tunnel deformation control measures. (4)Numerical simulation of shield tunneling was conducted by changing the geometric position, construction parameters, and secondary grouting reinforcement thickness of the newly built and existing tunnels. The calculation results show that the intersection angle of the two tunnels is inversely proportional to the settlement amount. As the intersection angle increases, the settlement deformation of the arch bottom of the existing tunnel gradually transforms from a “—” shape to a “V” shape; The diameter of the section is directly proportional to the settlement amount and arch bottom stress. The larger the diameter of the newly built tunnel section, the greater the loss of soil, and the greater the degree of deformation of the surface and existing tunnels; The increase in soil pressure, grouting pressure, grouting reinforcement thickness, and addition amount of bentonite slurry can all suppress the deformation of existing tunnels within a certain range. However, improper selection of construction parameters, excessive grouting thickness, or addition amount of bentonite slurry can cause unnecessary economic losses or lead to engineering safety accidents. (5) The risk control measures for the construction of the power tunnel under the existing operating subway tunnel in Xi'an area are proposed, including muck improvement, construction parameter optimization, tunnel reinforcement, tunnel waterproofing, engineering monitoring and other auxiliary measures. According to the on-site monitoring results, the risk control measures can effectively restrain the deformation of the ground and the existing tunnel, ensuring the stability and safety of the operating subway tunnel during the construction of the power tunnel, This indicates that the control measures proposed in the paper are reasonable and effective, and can provide a reference basis for shield tunnel undercrossing existing tunnel projects in loess areas. |
参考文献: |
[1]王梦恕, 谭忠盛. 中国隧道及地下工程修建技术[J]. 中国工程科学, 2010, 12(12): 4-10. [2]于群. 盾构隧道近距离下穿既有隧道影响规律的研究[D]. 北京交通大学, 2020. [3]邹家琦. 盾构下穿施工对既有管廊的变形影响分析[D]. 中国地质大学(北京), 2020. [4]魏广文. 北京地铁盾构隧道施工引起的地表沉降及建(构)筑物的变形控制标准研究[D]. 北京交通大学, 2008. [5]张健. 地铁盾构区间下穿城际铁路桥梁结构及轨道变形分析和控制措施研究[D]. 北京交通大学, 2015. [8]王超, 单生彪. 双线盾构隧道斜交下穿既有机场高速公路的地表沉降预测模型研究[J]. 中国安全生产科学技术, 2023, 19(01): 85-94. [9]朱洪高, 郑宜枫, 陈昊. 双圆盾构隧道土体地表沉降特性[J]. 建筑科学与工程学报, 2006, 23(2):62-67. [13]刘建航, 侯学渊. 软土市政地下工程施工手册[M]. 上海市市政工程管理局, 1990. [14]胡长明, 冯超, 梅源等. 西安富水砂层盾构施工Peck沉降预测公式改进[J]. 地下空间与工程学报,2018,14(01): 176-181. [16]蒋彪,皮圣,阳军生等. 长沙地铁典型地层盾构施工地表沉降分析与预测[J]. 地下空间与工程学报, 2016, 12(01): 181-187. [17]梁荣柱, 夏唐代, 林存刚等. 盾构推进引起地表变形及深层土体水平位移分析[J]. 岩石力学与工程学报, 2015, 34(03): 583-593. [19]刘庆, 崔秀丽, 秦鹏飞. 浅埋大直径盾构隧道开挖面局部破坏的被动稳定性研究[J/OL]. 铁道标准设计: 1-10. [20]张琼方, 林存刚, 丁智等. 盾构近距离下穿引起已建地铁隧道纵向变形理论研究[J]. 岩土力学, 2015, 36(S1): 568-572. [21]梁荣柱, 宗梦繁, 康成等. 考虑隧道剪切效应的隧道下穿对既有盾构隧道的纵向影响[J]. 浙江大学学报(工学版), 2018, 52(03): 420-430+472. [22]张稳军, 金明明, 张高乐等. 双洞单线盾构隧道穿湖施工引起的地层沉降分析[J]. 土木工程学报, 2015, 48(S2): 293-297. [24]邓皇适, 傅鹤林, 史越. 小转弯半径曲线盾构隧道开挖引发地表沉降计算[J]. 岩土工程学报, 2021, 43(01): 165-173. [26]魏纲, 周杨侃. 随机介质理论预测近距离平行盾构引起的地表沉降[J]. 岩土力学, 2016, 37(S2): 113-119. [27]纪梅, 谢雄耀. 大直径土压平衡盾构掘进引起的地表沉降分析[J]. 地下空间与工程学报, 2012, 8(1): 161-166+197. [28]朱斌, 王健, 徐壮等. 新建盾构隧道下穿既有构筑物施工的力学机理[J]. 山东大学学报(工学版), 2022, 52(04): 175-182. [31]熊清. 中小直径盾构施工隧道特性研究[D]. 华南理工大学, 2014. [32]王乃勇. 双线盾构隧道斜交下穿对高速公路的影响[J]. 科学技术与工程, 2021, 21(32): 13919-13925. [33]邱明明, 杨果林, 段君义等. 近距双线盾构隧道开挖诱发地层变形演变规律及数值模拟[J]. 自然灾害学报, 2021, 30(01): 60-69. [34]冯涵, 张学民, 乔世范等. 双线盾构隧道下穿既有建筑物诱发地表变形规律分析[J]. 铁道科学与工程学报, 2015, 12(04): 866-871. [36]冯慧君, 俞然刚. 双线隧道盾构掘进对地表沉降影响的数值分析[J]. 铁道工程学报, 2019, 36(03): 78-83. [37]王建秀, 邹宝平, 陈学军等. 填海区地铁盾构隧道下穿公路施工地层沉降规律的数值模拟[J]. 中国铁道科学, 2013, 34(04): 33-39. [38]罗维平, 袁大军, 金大龙等. 富水砂层盾构开挖面支护压力与地层变形关系离心模型试验研究[J]. 岩土力学, 2022, 43(S2): 345-354. [39]马险峰, 王俊淞, 李削云等. 盾构隧道引起地层损失和地表沉降的离心模型试验研究[J]. 岩土工程学报, 2012, 34(05): 942-947. [41]魏纲, 赵得乾麟. 类矩形盾构穿越既有隧道引起土体沉降的模型试验研究[J]. 铁道科学与工程学报, 2023, 20(01): 222-232. [43]范祚文, 张子新. 砂卵石地层土压力平衡盾构施工开挖面稳定及邻近建筑物影响模型试验研究[J]. 岩石力学与工程学报, 2013, 32(12): 2506-2512. [44]武文安, 黄晓康, 卢坤林等. 合肥盾构地表沉降和土压力变化模型试验[J]. 防灾减灾工程学报, 2017, 37(06): 916-922. [47]房倩, 杜建明, 王中举等. 盾构施工影响下砂土地层变形规律模型试验研究[J]. 中国公路学报, 2021, 34(05): 135-143+214. [48]朱逢斌, 缪林昌, 林水仙. 盾构隧道动态施工诱发地面沉降试验研究[J]. 中国安全科学学报, 2017 ,27(11): 116-120. [50]方勇, 何川, 江英超, 等. 土压平衡式盾构掘进对地层应变场扰动模型试验研究[J]. 铁道学报, 2013, 35(5): 85-89. [52]邓佳威. 地铁下穿既有建筑物的建筑物安全措施[D]. 南昌大学, 2015. [54]吕金剑, 李忠超, 龙华东等. 小净距双线隧道下穿诱发运营盾构隧道纵向变形分析[J]. 科技通报, 2022, 38(11): 94-100. [55]魏纲, 赵得乾麟, 齐永洁. 类矩形盾构隧道下穿引起既有隧道竖向位移计算方法研究[J]. 隧道建设(中英文), 2022, 42(06): 960-966. [56]李磊, 张孟喜, 吴惠明等. 近距离多线叠交盾构施工对既有隧道变形的影响研究[J]. 岩土工程学报, 2014, 36(06): 1036-1043. [57]方勇, 何川. 平行盾构隧道施工对既有隧道影响的数值分析[J]. 岩土力学, 2007, 28(7): 1402-1406. [58]来弘鹏, 王腾腾, 张林杰等. 考虑盾壳与土体摩擦力的盾构下穿既有地铁隧道施工控制研究[J]. 隧道建设(中英文), 2021, 41(05): 729-739. [61]杨荟斯, 刘涛, 缪红彬等. 盾构隧道近距离下穿对既有运营隧道影响[J]. 大连理工大学学报, 2022, 62(03): 263-271. [63]陈向阳, 张雯超, 赵西亭等. 盾构下穿施工对既有盾构隧道结构的影响研究[J]. 人民长江, 2021, 52(12): 126-132. [64]张建新, 涂川, 李岩. 小间距平行隧道施工加固措施和影响因素分析[J]. 建筑技术, 2017, 48(03): 259-262. [65]来弘鹏, 郑海伟, 何秋敏等. 砂土地层盾构隧道小角度斜下穿既有隧道施工参数优化研究[J]. 中国公路学报, 2018, 31(10): 130-140. [69]张琼方, 夏唐代, 丁智等. 盾构近距离下穿对已建地铁隧道的位移影响及施工控制[J]. 岩土力学, 2016, 37(12): 3561-3568. [70]周向阳, 林清辉. 浅覆土大断面顶管施工对运营盾构隧道变形影响及控制措施[J]. 工程勘察, 2016(12): 7-12. [71]唐汐. 地铁双区间下穿既有盾构隧道结构变形控制措施及效果分析[J/OL]. 建筑结构: 1-6. [72]胡秋斌. 双线盾构隧道下穿对既有暗挖大断面隧道影响的数值分析[J/OL]. 华北水利水电大学学报(自然科学版): 1-9. [73]周锦强, 王海林, 杨雄等. 盾构隧道穿越人行天桥桩基的变形控制技术研究[J]. 结构工程师, 2023, 39(01): 148-154. [74]任建喜, 李庆园, 郑赞赞,等. 盾构诱发的地表及邻近建筑物变形规律研究[J]. 铁道工程学报, 2014, 31(1): 69-74. [75]李士中. 合肥地区新建盾构隧道下穿铁路路基段地层预加固措施研究[J]. 铁道建筑, 2019, 59(12): 60-64. [76]张旭, 满忠昂, 许有俊等. 盾构隧道下穿地下过街通道安全控制案例研究[J]. 地下空间与工程学报, 2022, 18(S2): 952-957. [77]张丽丽, 单琳, 郭飞等. 小曲线半径叠落盾构隧道近接施工安全控制研究[J]. 现代隧道技术, 2022, 59(03): 254-264. [78]高玉娟, 柴桂红. 基于正交试验法盾构隧道下穿电力隧道变形控制研究[J]. 建筑结构, 2022, 52(S1): 2888-2893. [79]汤劲松, 李梓亮, 赵书银等. 盾构隧道下穿砌体结构的洞内深孔注浆加固参数分析[J]. 应用基础与工程科学学报, 2022, 30(02): 421-433. [80]谢雄耀, 张永来, 周彪等. 盾构隧道下穿老旧建筑物群微沉降控制技术研究[J]. 岩土工程学报, 2019, 41(10): 1781-1789. [81]施仲衡, 张弥, 王新等. 地下铁道设计与施工[M]. 西安: 陕西科学技术出版社, 1997: 378-381. [82]王立新, 高洋, 苗苗等. 盾构隧道下穿高铁路基变形分析及影响因素研究[J]. 河北工程大学学报(自然科学版), 2023, 40(01): 55-65.; [83]任建喜, 杨锋, 朱元伟. 邻近建筑物条件下西安地铁盾构施工风险评估[J]. 铁道工程学报, 2016, 33(07): 88-93. [84]胡长明, 张文萃, 梅源等. 土压平衡盾构穿越含砂土层地表变形规律与控制技术[J]. 西安建筑科技大学学报(自然科学版), 2013, 45(03): 341-347. [85]谢雄耀, 牛俊涛, 杨国伟等. 重叠隧道盾构施工对先建隧道影响模型试验研究[J]. 岩石力学与工程学报, 2013, 32(10): 2061-2069. [86]何川, 汪洋, 方勇, 等. 土压平衡式盾构掘进过程的相似模型试验[J]. 土木工程学报, 2012, 45(02): 162-169. [87]李术才, 周毅, 李利平等. 地下工程流–固耦合模型试验新型相似材料的研制及应用[J]. 岩石力学与工程学报, 2012, 31(06): 1128-1137. [88]沈翔, 袁大军, 曹宇陶等. 模拟深海环境砂土地层的材料配比试验研究[J]. 西南交通大学学报, 2020, 55(03): 628-634. [89]张静, 左双英, 张彦召等. 岩质相似材料配比的正交试验研究[J]. 水利水电技术, 2019, 50(03): 161-168. [90]张余标. 互层岩体中硐室稳定性试验研究及数值模拟[D]. 青岛科技大学, 2019. [91]董金玉, 杨继红, 杨国香等. 基于正交设计的模型试验相似材料的配比试验研究[J]. 煤炭学报, 2012, 37(01): 44-49. [92]胡长明, 崔耀, 王雪艳等. 土压平衡盾构施工穿越砂层渣土改良试验研究[J]. 西安建筑科技大学学报(自然科学版), 2013, 45(06): 761-766. [93]卢艳. 西安地铁盾构隧道含砂黄土地层渣土改良试验研究[J]. 现代城市轨道交通, 2018(06): 37-40. |
中图分类号: | U456.3 |
开放日期: | 2025-06-13 |